
Minimum Spanning
Trees
Lecture 05.03

by Marina Barsky

Motivation

• Connect all the
computers in a new
office building using
the least amount of
cable

• Road repair: repair
min-cost roads such
that all the cities are
still connected

• Airline: downsize
operations but preserve
connectivity

Definition
• A Spanning Tree of a graph G, is a subgraph of G

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a

weighted graph G is a spanning tree with the

smallest weight

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means:

❑ T has no cycles

❑ T has exactly n-1 edges

❑ T is connected (for any two nodes u, v,

∃ path u ~>v (and v ~> u, undirected

graph)

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Assumptions:

❑ Input graph G is connected

Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest
Path algorithm

Grows a tree from a single vertex

• Start from an arbitrary vertex

• Span another vertex by choosing
the edge with the min cost

• Now have a tree of 2 vertices

• Check all edges out of this tree and
choose the one with min-cost …

a b

c d

1

4
3

5

2

a b

c d

1

4
3

5

a b

c d

1

43

5

2

2

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) the cheapest edge of G with u ∈ X and v ∉ X

add e to T

add v to X

that increases the number of spanned vertices

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17

Correctness

We need to prove:

1. Prim computes a spanning tree T*

2. T* is a MST

Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets

(proper subsets)

• How many different cuts can be in a G with n vertices? (n,
n2, 2n)?

A B

Edges

crossing cut

(A,B)

Empty Crossing Lemma

A graph is not connected exists cut (A,B) with no crossing
edges

Proof

<=

• Assume RHS. Pick any u ∈ A and v ∈ B. Since no edges
cross the cut, there is no path from u to v => G is not
connected

=>

• Assume LHS. Define A = {all vertices reachable from u}, u’s
connected component, and B={all the remaining vertices
in G}. No edges cross from A to B, otherwise A would
absorb B into a single connected component

Cycle Crossing Lemma
If two vertices u and v are part of a cycle, then for a cut (A,B)
such that u ∈ A and v ∈ B there must be at least two crossing
edges.

Lonely Edge Corollary
If there is a single crossing edge e in cut (A,B), e is not a part
of any cycle

Proof
If there is a path from u to v that includes one
crossing edge e, then it must also be a
different path from v to u to close the cycle.
The only way to reach u from v is through
crossing edges, thus we need at least one
more crossing edge to return to A.

u ve

Theorem 1. Prim outputs a Spanning Tree
Proof

• Consider a cut of G into (X, V-X) at some step of the
algorithm.

• Next, we add a single crossing edge to T, and the vertex on
the opposite end of this edge gets added to X.

• By the Lonely Edge Corollary addition of the first crossing
edge does not create a cycle in T, and we never explore
other crossing edges for this cut again.

• Thus the produced T is acyclic. (1)

• T is also connected. According to the Empty Crossing Lemma
there must be at least one edge from X to V-X, if G is
connected. (2)

• Hence the algorithm adds n-1 edges and spans all n nodes of
G: (1) acyclic, (2) connected graph with all n vertices and n-1
edges is a Spanning Tree

The MST Cycle Lemma
Let G be a weighted connected graph,
and let T be a minimum spanning tree for
G.

If e is an edge of G that is not in T, then if
we add e to the tree this will create a
cycle.

Proof

Because any spanning tree already
contains a unique path between any pair
of vertices, if we add one more edge this
will create an alternative path – a cycle.

e

MST

The Non-MST Edge Cost Lemma
Let G be a weighted connected graph, and let T be a
minimum spanning tree for G. If e is an edge of G that is not
in T, the weight of e >= the weight of any edge in the cycle
created by adding e to T.

Proof
If e is not in T, then adding e to T creates a cycle, C. Suppose, for the
sake of contradiction, that there is an edge f on this cycle, whose weight
is: w(f) > w(e).

Then we can remove f from T and replace it with e, and this will result in
a spanning tree, T’, whose total weight is less than the total weight of T.

But the existence of such a better tree, T’, would contradict the fact that
T is a minimum spanning tree. So no such edge, f, can exist.

Example

• Any nontree edge must have weight
that is ≥ every edge in the cycle
created by that edge and a minimum
spanning tree.

• Suppose edge e has weight 32 and
edge f in the same cycle has weight
33. Edge f is a part of MST (shown
with bold edges), and edge e is not.

• But then we could replace f by e and
get a spanning tree with lower total
weight, which would contradict the
fact that we started with a minimum
spanning tree.

Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A,
B) be some possible cut of G.

• If e is the cheapest edge crossing cut (A, B), then e
must be a part of some MST

What we are trying to prove

If we have an edge in a graph and you can find just a single
cut for which this edge has the min cost among all edges
crossing this cut, then this edge must belong to the MST (or
one of MSTs in case when the weights are not unique)

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

Cut 1

Edge 1 must be in

MST

Cut 2

Edge 3 must be in

MST

Cut 3

Edge 2 must be in

MST

Cut 4

Edge 1 must be in

MST

Note that edge 4 is never min of all crossing edges, no matter how we cut – so edge 4 is not in MST

Proof

• Let T be a minimum spanning tree of G. If T does not
contain edge e, the addition of e to T must create a cycle.

• Therefore, there is some edge f of this cycle that has one
endpoint in partition A and the other in partition B.
Moreover, w(e) ≤ w(f).

• If we remove f from T ∪ {e}, we obtain a spanning tree
whose total weight is no more than before.

• Since T was a minimum spanning tree, this new tree must
also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum
spanning tree is unique

Theorem 2. Prim outputs a
Minimum Spanning Tree

• If we consider a cut of G into X (MST so far) and V-X
(remaining graph), then according to the Cut Crossing
Theorem the cheapest edge for this cut must be a part of
some MST

• Therefore, choosing the crossing edge with the minimum
weight is a safe move.

• Because Prim’s algorithm always adds a crossing edge of
min-weight, the spanning tree produced by this algorithm
is a Minimum Spanning Tree

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Note that at this point T is not even a spanning tree

(not connected)

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17

Kruskal correctness (sketch)

Part I. Kruskal outputs Spanning Tree

• We explicitly check not to introduce cycles, and we add
total n-1 edges connecting n nodes. Thus Kruskal
produces a Spanning Tree of G

Part II. The tree is MST

• At each step, the algorithm adds a cheapest edge which
does not create a cycle. This means that this is the first of
crossing edges if we consider a cut of G into a connected
component and remaining nodes

• By the Cut Crossing Theorem, this edge must be a part of
some MST

Algorithm Baruvka_MST (graph G(V,E))

T: = ∅

We create n clusters, each with a single node

assign each vertex vi to cluster Ci

while length(clusters) != 1:

for each cluster A in clusters:

select min-cost of all edges (u,v)

such that u ∈ A and v ∉ A (v ∈ B)

add edge (u,v) to T

merge A and B into a single cluster A

return T

Baruvka illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Each node as a single cluster, no edges

Baruvka illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

For each cluster – add an edge which is the

cheapest from this cluster

After first iteration: only 2 clusters remain

Baruvka illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

After second iteration – 1 cluster:

MST cost: (3 + 1 + 2 + 3) + (4) + (4) = 17

MST algorithms: summary

Algorithm MST (graph G(V,E))

T : = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1:

select next edge e from E # safe greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.

Correctness proofs are all based on the

Cut Crossing Theorem

