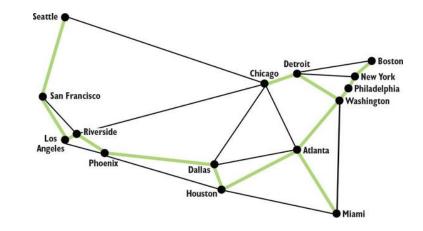
Minimum Spanning Trees

Lecture 05.03 by Marina Barsky

Motivation

 Connect all the computers in a new office building using the least amount of cable

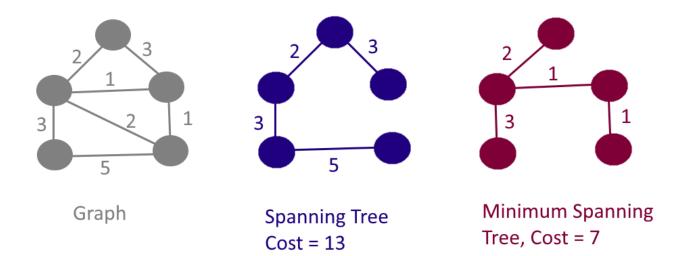


 Road repair: repair min-cost roads such that all the cities are still connected

 Airline: downsize operations but preserve connectivity

Definition

- A Spanning Tree of a graph G, is a subgraph of G which is a tree and contains all vertices of G
- A Minimum Spanning Tree (MST) of a weighted graph G is a spanning tree with the smallest weight



Problem: compute MST of Graph G

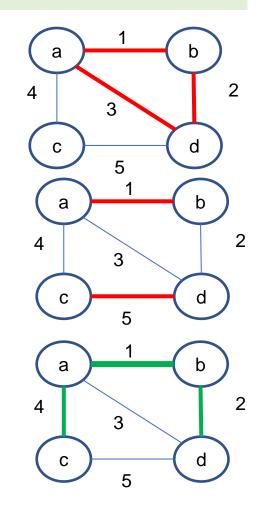
Input: undirected graph G=(V, E) and the weight w_e for each edge **Output:** minimum-cost tree $T \in E$ that spans all the vertices V

```
Assumptions: 

Input graph G is connected
```

Tree means:

- □ T has no cycles
- □ T has exactly n-1 edges
- T is connected (for any two nodes u, v, ∃ path u ~>v (and v ~> u, undirected graph)

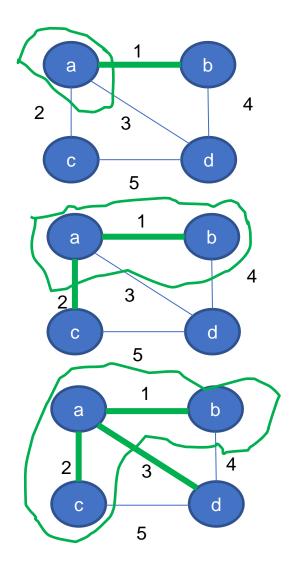


Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest Path algorithm

Grows a tree from a single vertex

- Start from an arbitrary vertex
- Span another vertex by choosing the edge with the min cost
- Now have a tree of 2 vertices
- Check all edges out of this tree and choose the one with min-cost ...

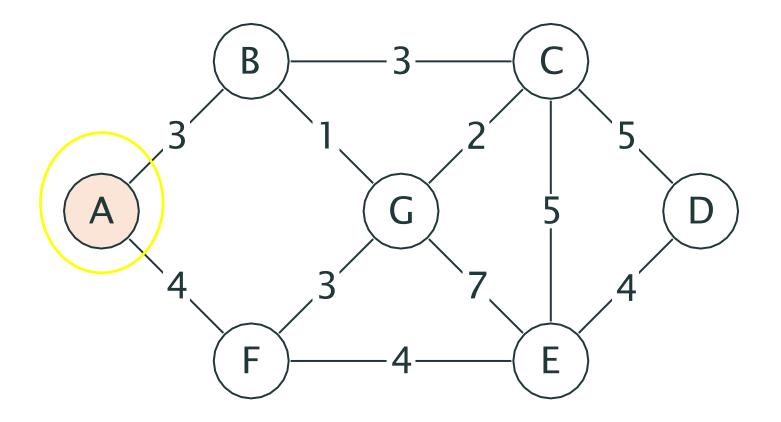


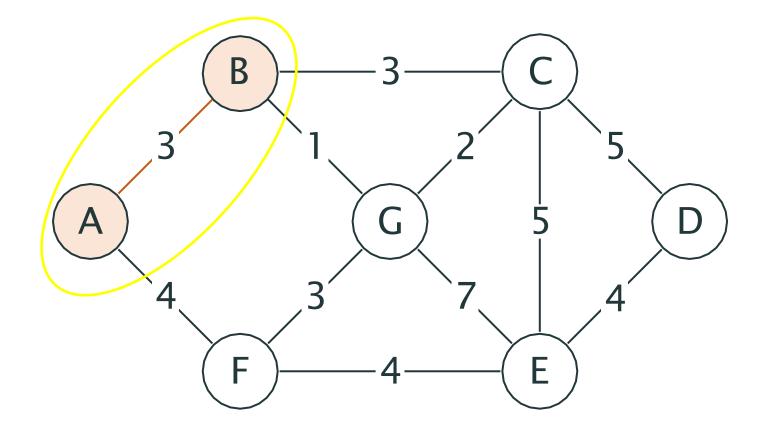
Algorithm Prim_MST (graph G(V,E))

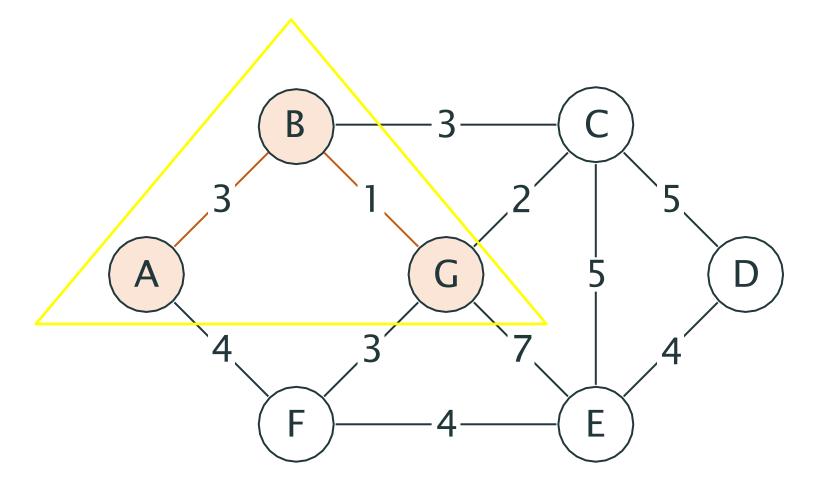
initialize tree T: = \emptyset # set of tree edgesX: = {vertex s}# s \in V, chosen arbitrarily

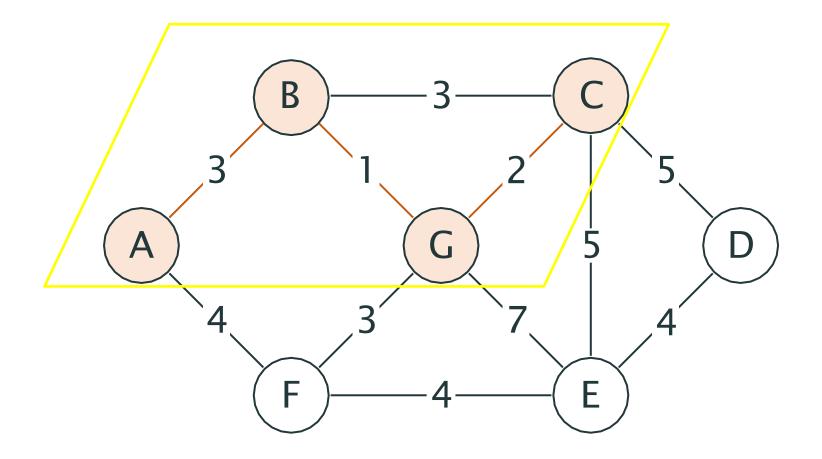
X contains vertices spanned by the tree-so-far

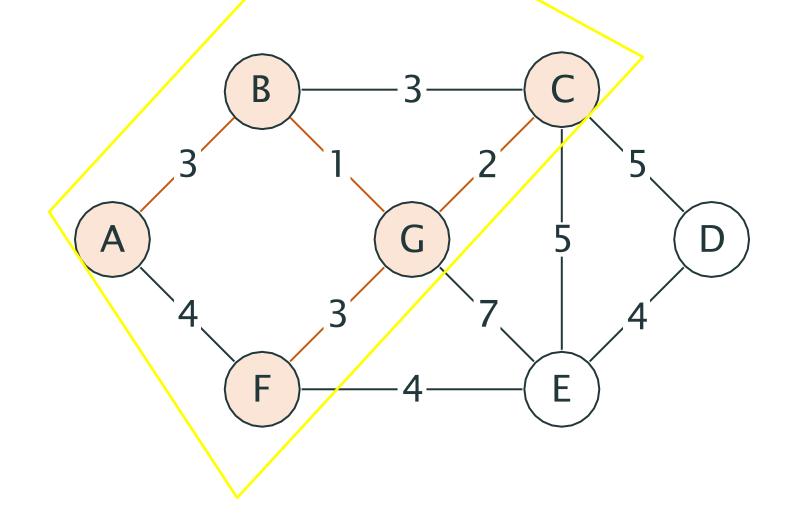
```
while |X|!=|V|:
    let e=(u,v) the cheapest edge of G with u ∈ X and v ∉ X
    add e to T
    add v to X
    # that increases the number of spanned vertices
```

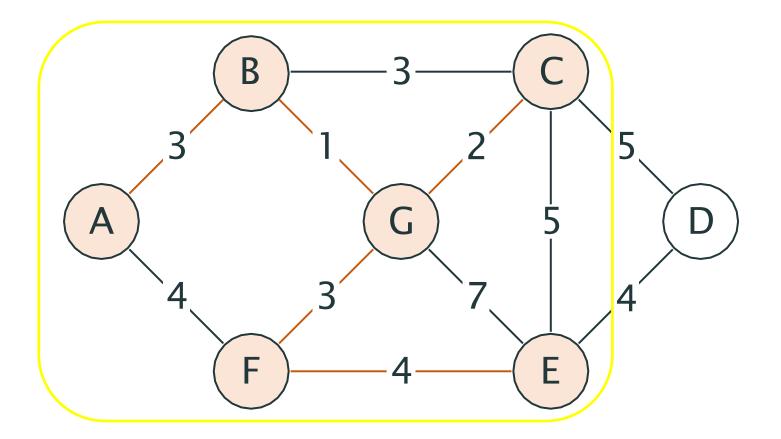


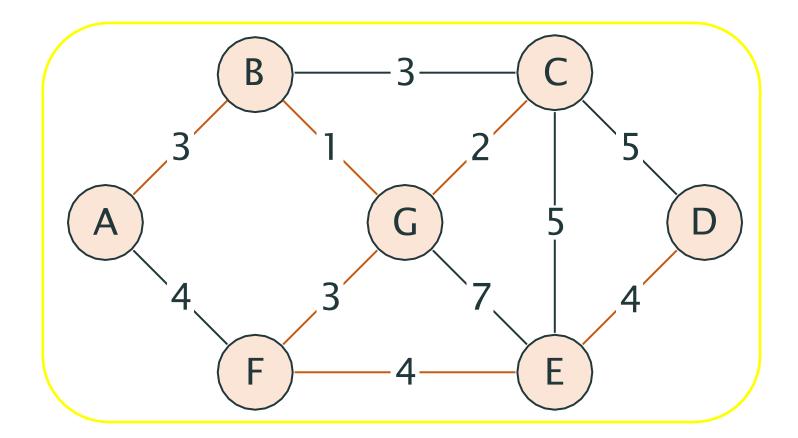












MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17

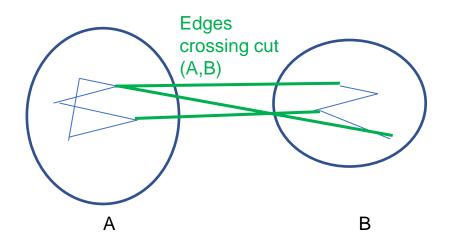
Correctness

We need to prove:

- 1. Prim computes a spanning tree T*
- 2. T* is a MST

Cuts

- A *cut* is a partition (A, B) of G into 2 non-empty subsets (proper subsets)
- How many different cuts can be in a G with n vertices? (n, n², 2ⁿ)?



Empty Crossing Lemma

A graph is not connected \Leftrightarrow exists cut (A,B) with no crossing edges

Proof

<=

 Assume RHS. Pick any u ∈ A and v ∈ B. Since no edges cross the cut, there is no path from u to v => G is not connected

=>

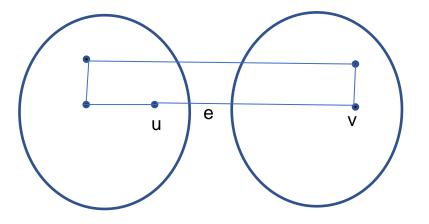
Assume LHS. Define A = {all vertices reachable from u}, u's connected component, and B={all the remaining vertices in G}. No edges cross from A to B, otherwise A would absorb B into a single connected component

Cycle Crossing Lemma

If two vertices u and v are part of a cycle, then for a cut (A,B) such that $u \in A$ and $v \in B$ there must be at least two crossing edges.

Proof

If there is a path from u to v that includes one crossing edge e, then it must also be a different path from v to u to close the cycle. The only way to reach u from v is through crossing edges, thus we need at least one more crossing edge to return to A.



Lonely Edge Corollary

If there is a single crossing edge e in cut (A,B), e is not a part of any cycle

Theorem 1. Prim outputs a Spanning Tree

Proof

- Consider a cut of G into (X, V-X) at some step of the algorithm.
- Next, we add a single crossing edge to T, and the vertex on the opposite end of this edge gets added to X.
- By the Lonely Edge Corollary addition of the first crossing edge does not create a cycle in T, and we never explore other crossing edges for this cut again.
- Thus the produced T is acyclic.
 (1)
- T is also connected. According to the Empty Crossing Lemma there must be at least one edge from X to V-X, if G is connected.
 (2)
- Hence the algorithm adds n-1 edges and spans all n nodes of G: (1) acyclic, (2) connected graph with all n vertices and n-1 edges is a Spanning Tree

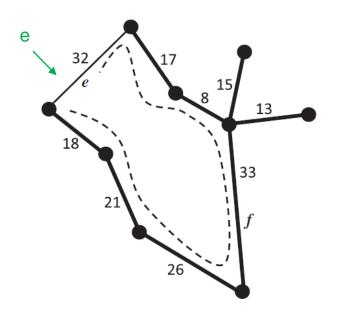
The MST Cycle Lemma

Let G be a weighted connected graph, and let T be a minimum spanning tree for G.

If e is an edge of G that is not in T, then if we add e to the tree this will create a cycle.

Proof

Because any spanning tree already contains a unique path between any pair of vertices, if we add one more edge this will create an alternative path – a cycle.



The Non-MST Edge Cost Lemma

Let G be a weighted connected graph, and let T be a minimum spanning tree for G. If e is an edge of G that is not in T, the weight of e >= the weight of any edge in the cycle created by adding e to T.

Proof

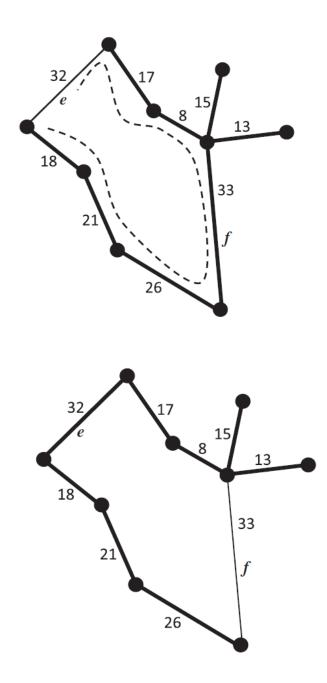
If e is not in T, then adding e to T creates a cycle, C. Suppose, for the sake of contradiction, that there is an edge f on this cycle, whose weight is: w(f) > w(e).

Then we can remove f from T and replace it with e, and this will result in a spanning tree, T', whose total weight is less than the total weight of T.

But the existence of such a better tree, T', would contradict the fact that T is a minimum spanning tree. So no such edge, f, can exist.

Example

- Any nontree edge must have weight that is ≥ every edge in the cycle created by that edge and a minimum spanning tree.
- Suppose edge e has weight 32 and edge f in the same cycle has weight 33. Edge f is a part of MST (shown with bold edges), and edge e is not.
- But then we could replace f by e and get a spanning tree with lower total weight, which would contradict the fact that we started with a minimum spanning tree.

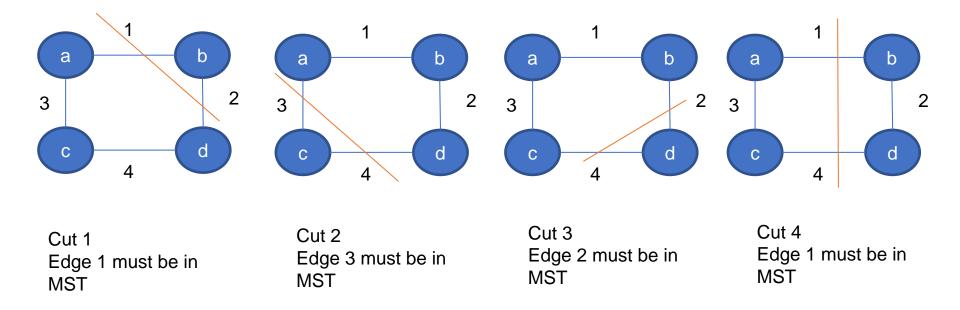


Cut Crossing Theorem

- Let G be a weighted connected graph, and let (A, B) be some possible cut of G.
- If *e* is the cheapest edge crossing cut (A, B), then *e* must be a part of some MST

What we are trying to prove

If we have an edge in a graph and you can find just a single cut for which this edge has the min cost among all edges crossing this cut, then this edge **must** belong to the MST (or one of MSTs in case when the weights are not unique)



Note that edge 4 is never min of all crossing edges, no matter how we cut – so edge 4 is not in MST

Proof

- Let T be a minimum spanning tree of G. If T does not contain edge e, the addition of e to T must create a cycle.
- Therefore, there is some edge f of this cycle that has one endpoint in partition A and the other in partition B. Moreover, w(e) ≤ w(f).
- If we remove f from T U {e}, we obtain a spanning tree whose total weight is no more than before.
- Since T was a minimum spanning tree, this new tree must also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is unique

Theorem 2. Prim outputs a Minimum Spanning Tree

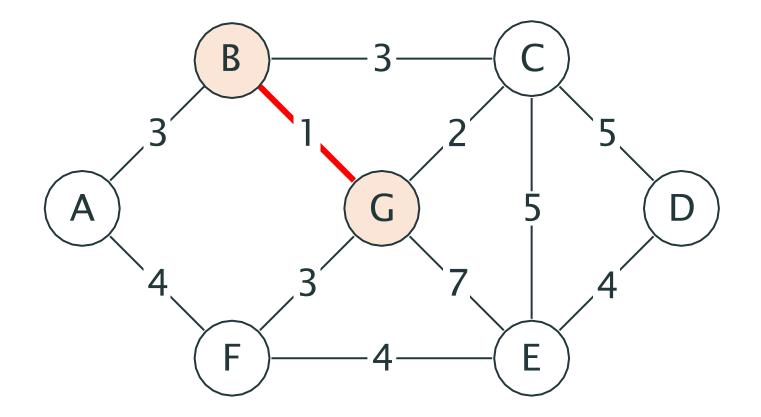
- If we consider a cut of G into X (MST so far) and V-X (remaining graph), then according to the Cut Crossing Theorem the cheapest edge for this cut must be a part of some MST
- Therefore, choosing the crossing edge with the minimum weight is a **safe move.**
- Because Prim's algorithm always adds a crossing edge of min-weight, the spanning tree produced by this algorithm is a Minimum Spanning Tree

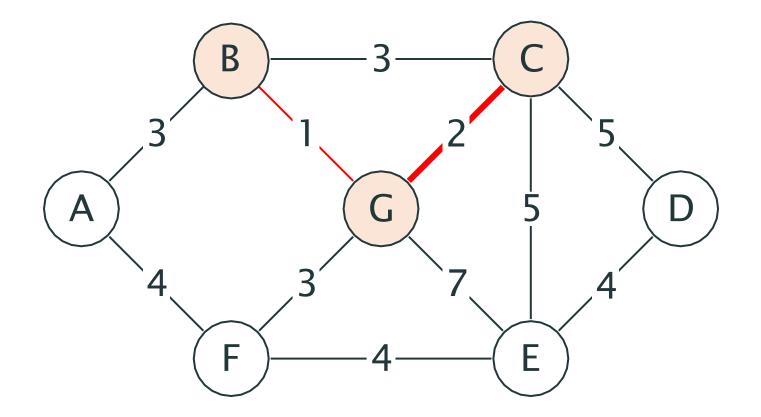
Algorithm Kruskal_MST (graph G(V,E))

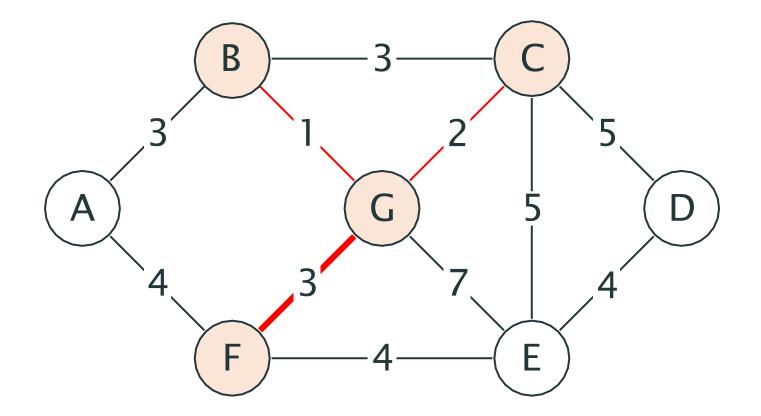
E' := edges of G sorted by weights T : = Ø

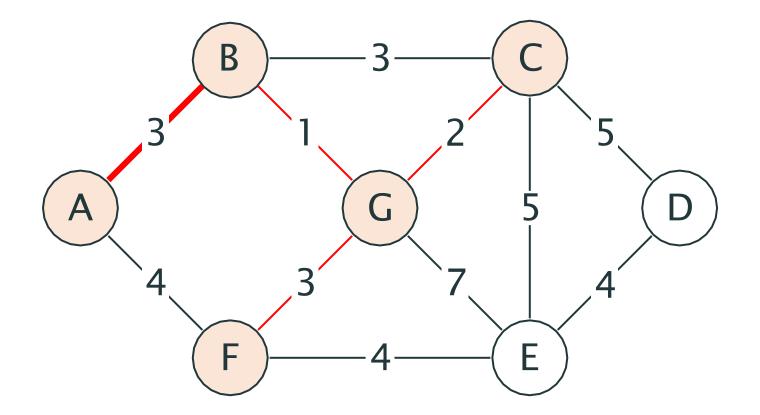
for i from 1 to m: if T U {E'[i]} has no cycles add E'[i] to T

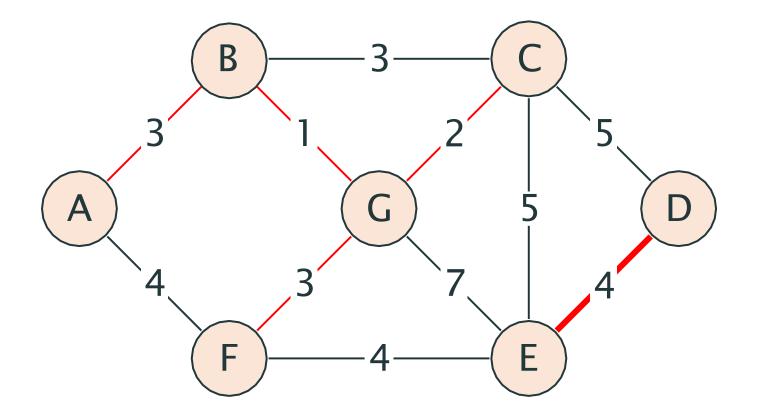
return T



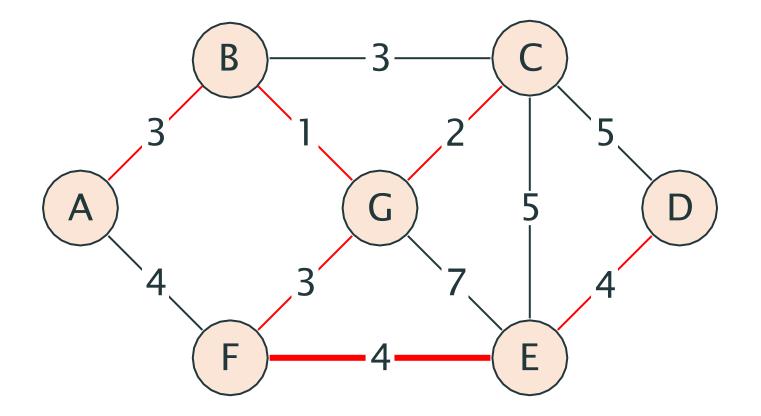








Note that at this point T is not even a spanning tree (not connected)



MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17

Kruskal correctness (sketch)

Part I. Kruskal outputs Spanning Tree

 We explicitly check not to introduce cycles, and we add total n-1 edges connecting n nodes. Thus Kruskal produces a Spanning Tree of G

Part II. The tree is MST

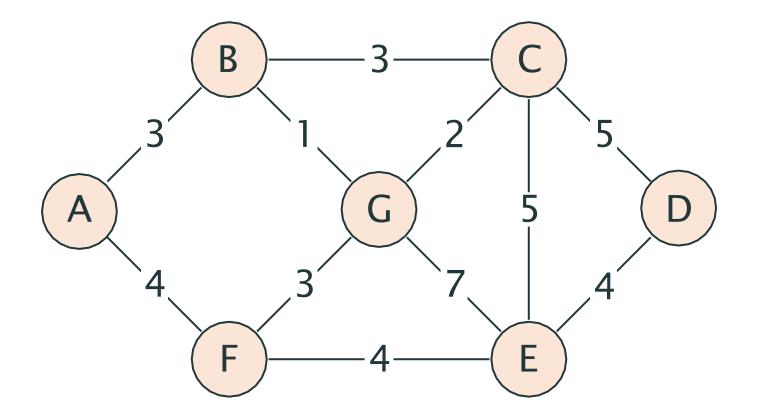
- At each step, the algorithm adds a cheapest edge which does not create a cycle. This means that this is the first of crossing edges if we consider a cut of G into a connected component and remaining nodes
- By the Cut Crossing Theorem, this edge must be a part of some MST

Algorithm Baruvka_MST (graph G(V,E))

 $T: = \emptyset$

We create n clusters, each with a single node assign each vertex v_i to cluster C_i while length(clusters) != 1: for each cluster A in clusters: select min-cost of all edges (u,v) such that $u \in A$ and $v \notin A$ ($v \in B$) add edge (u,v) to T merge A and B into a single cluster A return T

Baruvka illustration



Each node as a single cluster, no edges

Baruvka illustration

B

F

For each cluster – add an edge which is the cheapest from this cluster After first iteration: only 2 clusters remain

G

5

Baruvka illustration

B

F

After second iteration -1 cluster: MST cost: (3 + 1 + 2 + 3) + (4) + (4) = 17

G

5

MST algorithms: summary

All the algorithms follow some greedy strategy.

Algorithm MST (graph G(V,E))

 $T := \emptyset$ # collects edges of the future MST

```
while |T| \leq |V| - 1:
   select next edge e from E # safe greedy move
   T: = T \cup e
```

return T

Correctness proofs are all based on the Cut Crossing Theorem