Minimum Spanning Trees

Lecture 05.03
by Marina Barsky

Motivation

- Connect all the computers in a new office building using the least amount of cable

- Road repair: repair min-cost roads such that all the cities are still connected
- Airline: downsize operations but preserve connectivity

Definition

- A Spanning Tree of a graph G, is a subgraph of G which is a tree and contains all vertices of G
- A Minimum Spanning Tree (MST) of a weighted graph G is a spanning tree with the smallest weight

Graph

Spanning Tree Cost $=13$

Minimum Spanning
Tree, Cost = 7

Problem: compute MST of Graph G

Input: undirected graph $G=(\mathrm{V}, \mathrm{E})$ and the weight w_{e} for each edge Output: minimum-cost tree $T \in \mathrm{E}$ that spans all the vertices V

Assumptions:

- Input graph G is connected

Tree means:

- T has no cycles
[T has exactly $n-1$ edges

Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest Path algorithm

Grows a tree from a single vertex

- Start from an arbitrary vertex
- Span another vertex by choosing the edge with the min cost
- Now have a tree of 2 vertices
- Check all edges out of this tree and choose the one with min-cost ...

Algorithm Prim_MST (graph G(V,E))

initialize tree $\mathrm{T}:=\varnothing \quad \#$ set of tree edges
X: = \{vertex s\}
\# X contains vertices spanned by the tree-so-far
while |X|!=|V|:
let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ the cheapest edge of G with $\mathrm{u} \in \mathrm{X}$ and $\mathrm{v} \notin \mathrm{X}$ add e to T
add v to X
\# that increases the number of spanned vertices

Prim: illustration

MST cost: $3+1+2+3+4+4=17$

Correctness

We need to prove:

1. Prim computes a spanning tree T^{*}
2. T^{*} is a MST

Cuts

- A cut is a partition (A, B) of G into 2 non-empty subsets (proper subsets)
- How many different cuts can be in a G with n vertices? (n, $\mathrm{n}^{2}, 2^{\mathrm{n}}$)?

Empty Crossing Lemma

A graph is not connected \Leftrightarrow exists cut (A, B) with no crossing edges

Proof
<=

- Assume RHS. Pick any $u \in A$ and $v \in B$. Since no edges cross the cut, there is no path from u to $v=>G$ is not connected
=>
- Assume LHS. Define A = \{all vertices reachable from u\}, u's connected component, and $B=\{$ all the remaining vertices in G\}. No edges cross from A to B, otherwise A would absorb B into a single connected component

Cycle Crossing Lemma

If two vertices u and v are part of a cycle, then for a cut (A,B) such that $u \in A$ and $v \in B$ there must be at least two crossing edges.

Proof

If there is a path from u to v that includes one crossing edge e, then it must also be a different path from v to u to close the cycle. The only way to reach u from v is through crossing edges, thus we need at least one more crossing edge to return to A.

Lonely Edge Corollary

If there is a single crossing edge e in cut (A, B), e is not a part of any cycle

Theorem 1. Prim outputs a Spanning Tree

Proof

- Consider a cut of G into ($X, V-X$) at some step of the algorithm.
- Next, we add a single crossing edge to T, and the vertex on the opposite end of this edge gets added to X .
- By the Lonely Edge Corollary addition of the first crossing edge does not create a cycle in T , and we never explore other crossing edges for this cut again.
- Thus the produced T is acyclic.
- T is also connected. According to the Empty Crossing Lemma there must be at least one edge from X to $V-X$, if G is connected.
(2)
- Hence the algorithm adds n -1 edges and spans all n nodes of G: (1) acyclic, (2) connected graph with all n vertices and $n-1$ edges is a Spanning Tree

The MST Cycle Lemma

Let G be a weighted connected graph, and let T be a minimum spanning tree for G.

If e is an edge of G that is not in T, then if we add e to the tree this will create a cycle.

Proof

Because any spanning tree already contains a unique path between any pair of vertices, if we add one more edge this will create an alternative path - a cycle.

MST

The Non-MST Edge Cost Lemma

Let G be a weighted connected graph, and let T be a minimum spanning tree for G. If e is an edge of G that is not in T, the weight of $e>=$ the weight of any edge in the cycle created by adding e to T.

Proof

If e is not in T, then adding e to T creates a cycle, C. Suppose, for the sake of contradiction, that there is an edge f on this cycle, whose weight is: $w(f)>w(e)$.

Then we can remove f from T and replace it with e, and this will result in a spanning tree, T^{\prime}, whose total weight is less than the total weight of T .

But the existence of such a better tree, T^{\prime}, would contradict the fact that T is a minimum spanning tree. So no such edge, f , can exist.

Example

- Any nontree edge must have weight that is \geq every edge in the cycle created by that edge and a minimum spanning tree.
- Suppose edge e has weight 32 and edge f in the same cycle has weight
 33. Edge f is a part of MST (shown with bold edges), and edge e is not.
- But then we could replace f by e and get a spanning tree with lower total weight, which would contradict the fact that we started with a minimum spanning tree.

Cut Crossing Theorem

- Let G be a weighted connected graph, and let (A, B) be some possible cut of G.
- If e is the cheapest edge crossing cut (A, B), then e must be a part of some MST

What we are trying to prove

If we have an edge in a graph and you can find just a single cut for which this edge has the min cost among all edges crossing this cut, then this edge must belong to the MST (or one of MSTs in case when the weights are not unique)

Cut 1
Edge 1 must be in MST

Cut 2
Edge 3 must be in MST

Cut 3
Edge 2 must be in MST

Cut 4
Edge 1 must be in MST

Proof

- Let T be a minimum spanning tree of G. If T does not contain edge e, the addition of e to T must create a cycle.
- Therefore, there is some edge f of this cycle that has one endpoint in partition A and the other in partition B. Moreover, $w(e) \leq w(f)$.
- If we remove from $T \cup\{e\}$, we obtain a spanning tree whose total weight is no more than before.
- Since T was a minimum spanning tree, this new tree must also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is unique

Theorem 2. Prim outputs a Minimum Spanning Tree

- If we consider a cut of G into X (MST so far) and V-X (remaining graph), then according to the Cut Crossing Theorem the cheapest edge for this cut must be a part of some MST
- Therefore, choosing the crossing edge with the minimum weight is a safe move.
- Because Prim's algorithm always adds a crossing edge of min-weight, the spanning tree produced by this algorithm is a Minimum Spanning Tree

Algorithm Kruskal_MST (graph G(V,E))

E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
for ifrom 1 to m:
if T U $\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
return T

Kruskal illustration

Note that at this point T is not even a spanning tree (not connected)

Kruskal illustration

MST cost: $1+2+3+3+4+4=17$

Kruskal correctness (sketch)

Part I. Kruskal outputs Spanning Tree

- We explicitly check not to introduce cycles, and we add total n-1 edges connecting n nodes. Thus Kruskal produces a Spanning Tree of G

Part II. The tree is MST

- At each step, the algorithm adds a cheapest edge which does not create a cycle. This means that this is the first of crossing edges if we consider a cut of G into a connected component and remaining nodes
- By the Cut Crossing Theorem, this edge must be a part of some MST

Algorithm Baruvka_MST (graph G(V,E))

$\mathrm{T}:=\varnothing$
\# We create n clusters, each with a single node assign each vertex v_{i} to cluster C_{i}
while length(clusters) != 1 :
for each cluster A in clusters: select min-cost of all edges (u, v) such that $u \in A$ and $v \notin A(v \in B)$ add edge (u, v) to T merge A and B into a single cluster A return T

Baruvka illustration

Each node as a single cluster, no edges

Baruvka illustration

For each cluster - add an edge which is the cheapest from this cluster
After first iteration: only 2 clusters remain

Baruvka illustration

After second iteration - 1 cluster:
MST cost: $(3+1+2+3)+(4)+(4)=17$

MST algorithms: summary

All the algorithms follow some greedy strategy.

Algorithm MST (graph G(V,E))
 $\mathrm{T}:=\varnothing \quad$ \# collects edges of the future MST

while $|\mathrm{T}| \leq|\mathrm{V}|-1$: select next edge e from E \# safe greedy move $\mathrm{T}:=\mathrm{T} \cup e$
return T

Correctness proofs are all based on the Cut Crossing Theorem

