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Motivation

• Connect all the 
computers in a new 
office building using 
the least amount of 
cable

• Road repair: repair 
min-cost roads such 
that all the cities are 
still connected

• Airline: downsize 
operations but preserve 
connectivity



Definition
• A Spanning Tree of a graph G, is a subgraph of G 

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a 

weighted graph G is a spanning tree with the 

smallest weight



Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G
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Tree means:

❑ T has no cycles

❑ T has exactly n-1 edges

❑ T is connected (for any two nodes u, v, 

∃ path u ~>v (and v ~> u, undirected 

graph)
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Assumptions:

❑ Input graph G is connected



Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest 
Path algorithm

Grows a tree from a single vertex

• Start from an arbitrary vertex

• Span another vertex by choosing 
the edge with the min cost

• Now have a tree of 2 vertices

• Check all edges out of this tree and 
choose the one with min-cost …
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Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges 

X: = {vertex s} # s ∈ V, chosen arbitrarily

# X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) the cheapest edge of G with u ∈ X and v ∉  X

add e to T

add v to X 

# that increases the number of spanned vertices



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73



Prim: illustration
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MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17



Correctness

We need to prove:

1. Prim computes a spanning tree T* 

2. T* is a MST



Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets 

(proper subsets)

• How many different cuts can be in a G with n vertices? (n, 
n2, 2n)?

A B

Edges 

crossing cut 

(A,B)



Empty Crossing Lemma

A graph is not connected  exists cut (A,B) with no crossing 
edges

Proof

<=

• Assume RHS. Pick any u ∈ A and v ∈ B. Since no edges 
cross the cut, there is no path from u to v => G is not 
connected

=>

• Assume LHS. Define A = {all vertices reachable from u}, u’s 
connected component, and B={all the remaining vertices 
in G}. No edges cross from A to B, otherwise A would 
absorb B into a single connected component



Cycle Crossing Lemma
If two vertices u and v are part of a cycle, then for a cut (A,B) 
such that u ∈ A and v ∈ B there must be at least two crossing 
edges. 

Lonely Edge Corollary
If there is a single crossing edge e in cut (A,B), e is not a part 
of any cycle

Proof
If there is a path from u to v that includes one 
crossing edge e, then it must also be a 
different path from v to u to close the cycle. 
The only way to reach u from v is through 
crossing edges, thus we need at least one 
more crossing edge to return to A.

u ve



Theorem 1. Prim outputs a Spanning Tree
Proof

• Consider a cut of G into (X, V-X) at some step of the 
algorithm. 

• Next, we add a single crossing edge to T, and the vertex on 
the opposite end of this edge gets added to X.

• By the Lonely Edge Corollary addition of the first crossing 
edge does not create a cycle in T, and we never explore 
other crossing edges for this cut again. 

• Thus the produced T is acyclic. (1)

• T is also connected. According to the Empty Crossing Lemma 
there must be at least one edge from X to V-X, if G is 
connected. (2)

• Hence the algorithm adds n-1 edges and spans all n nodes of 
G: (1) acyclic, (2) connected graph with all n vertices and n-1 
edges is a Spanning Tree



The MST Cycle Lemma
Let G be a weighted connected graph, 
and let T be a minimum spanning tree for 
G. 

If e is an edge of G that is not in T, then if 
we add e to the tree this will create a 
cycle.

Proof

Because any spanning tree already 
contains a unique path between any pair 
of vertices, if we add one more edge this 
will create an alternative path – a cycle.

e

MST



The Non-MST Edge Cost Lemma
Let G be a weighted connected graph, and let T be a 
minimum spanning tree for G. If e is an edge of G that is not 
in T, the weight of e >= the weight of any edge in the cycle 
created by adding e to T.

Proof
If e is not in T, then adding e to T creates a cycle, C. Suppose, for the 
sake of contradiction, that there is an edge f on this cycle, whose weight 
is: w(f) > w(e). 

Then we can remove f from T and replace it with e, and this will result in 
a spanning tree, T’, whose total weight is less than the total weight of T. 

But the existence of such a better tree, T’, would contradict the fact that 
T is a minimum spanning tree. So no such edge, f, can exist.



Example

• Any nontree edge must have weight 
that is ≥ every edge in the cycle 
created by that edge and a minimum 
spanning tree. 

• Suppose edge e has weight 32 and 
edge f in the same cycle has weight 
33. Edge f is a part of MST (shown 
with bold edges), and edge e is not.

• But then we could replace f by e and 
get a spanning tree with lower total 
weight, which would contradict the 
fact that we started with a minimum 
spanning tree.



Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A, 
B) be some possible cut of G.

• If e is the cheapest edge crossing cut (A, B), then e
must be a part of some MST



What we are trying to prove

If we have an edge in a graph and you can find just a single 
cut for which this edge has the min cost among all edges 
crossing this cut, then this edge must belong to the MST (or 
one of MSTs in case when the weights are not unique)
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Cut 1

Edge 1 must be in 

MST

Cut 2

Edge 3 must be in 

MST

Cut 3

Edge 2 must be in 

MST

Cut 4

Edge 1 must be in 

MST

Note that edge 4 is never min of all crossing edges, no matter how we cut – so edge 4 is not in MST



Proof

• Let T be a minimum spanning tree of G. If T does not 
contain edge e, the addition of e to T must create a cycle.

• Therefore, there is some edge f of this cycle that has one 
endpoint in partition A and the other in partition B. 
Moreover, w(e) ≤ w(f). 

• If we remove f from T ∪ {e}, we obtain a spanning tree 
whose total weight is no more than before. 

• Since T was a minimum spanning tree, this new tree must 
also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum 
spanning tree is unique



Theorem 2. Prim outputs a 
Minimum Spanning Tree

• If we consider a cut of G into X (MST so far) and V-X 
(remaining graph), then according to the Cut Crossing 
Theorem the cheapest edge for this cut must be a part of 
some MST

• Therefore, choosing the crossing edge with the minimum 
weight is a safe move. 

• Because Prim’s algorithm always adds a crossing edge of 
min-weight, the spanning tree produced by this algorithm 
is a Minimum Spanning Tree



Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T



Kruskal illustration
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Kruskal illustration
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Note that at this point T is not even a spanning tree 

(not connected)



Kruskal illustration
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MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17



Kruskal correctness (sketch)

Part I. Kruskal outputs Spanning Tree

• We explicitly check not to introduce cycles, and we add 
total n-1 edges connecting n nodes. Thus Kruskal 
produces a Spanning Tree of G

Part II. The tree is MST

• At each step, the algorithm adds a cheapest edge which 
does not create a cycle. This means that this is the first of 
crossing edges if we consider a cut of G into a connected 
component and remaining nodes

• By the Cut Crossing Theorem, this edge must be a part of 
some MST



Algorithm Baruvka_MST (graph G(V,E))

T: = ∅ 

# We create n clusters, each with a single node

assign each vertex vi to cluster Ci

while length(clusters) != 1:

for each cluster A in clusters:

select min-cost of all edges (u,v) 

such that u ∈ A and v ∉ A (v ∈ B)

add edge (u,v) to T

merge A and B into a single cluster A

return T



Baruvka illustration
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Each node as a single cluster, no edges



Baruvka illustration
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For each cluster – add an edge which is the 

cheapest from this cluster

After first iteration: only 2 clusters remain



Baruvka illustration
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After second iteration – 1 cluster: 

MST cost: (3 + 1 + 2 + 3) + (4) + (4) = 17



MST algorithms: summary

Algorithm MST (graph G(V,E))

T : = ∅ # collects edges of the future MST 

while |T| ≤ |V| - 1:

select next edge e from E  # safe greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.  

Correctness proofs are all based on the 

Cut Crossing Theorem


