Kruskal Algorithm for creating Minimum Spanning Trees

Lecture 05.04
by Marina Barsky

Kruskal MST algorithm

Algorithm Kruskal_MST (graph G(V,E))
E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
\# collects edges of the future MST
for i from 1 to m :
if $\mathbf{T} \mathbf{U}\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
return T

Repeatedly add a minimum-cost edge that does not create a cycle

Kruskal MST algorithm

Algorithm Kruskal_MST (graph G(V,E))
E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
\# collects edges of the future MST
for i from 1 to m :
if $T \mathrm{U}\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
if $|\mathbf{T}|=|\mathbf{V}|-1: \quad$ \# we can stop once we have a tree break
return T
Stop when
N -1 edges have been selected

Running time

Kruskal_MST (graph G(V,E))
E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
for i from 1 to m :
if $T \mathrm{U}\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles
add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
if $|\mathrm{T}|=|\mathrm{V}|-1$:
break
return T

Line 1: sorting m edges by weight. $\mathrm{O}(\mathrm{m} \log \mathrm{m})$. This is the same as $\mathrm{O}(\mathrm{m}$ $\log n$) Why?

Line 3: outer for loop. O(m). We check all m edges in the worst case. Line 4: need to find if edge $E^{\prime}[i]=$ (u, v) creates a cycle.
Find out if there is already a path from u to v in T by any graph traversal (DFS or BFS). DFS of T with n vertices and $n-1$ edges is $O(n+n)$ $=O(n)$.

Thus, total time of the for loop is $\mathrm{O}(\mathrm{m})^{*} \mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{mn}) \quad\left[\mathrm{O}\left(\mathrm{n}^{3}\right)\right.$ for dense graphs]
Kruskal MST runs in time $O(m \log n)+O(m n)=\mathbf{O}(m n)$

Running time

Kruskal MST runs in time \mathbf{O} (mn)

Can we do better?

Kruskal as union of sets

We can look at Kruskal from a Set point of view

- First we have n sets: each vertex i is in its own set S_{i} - we need operation MAKE-SET for a single element
- Next we combine two sets of vertices S_{i} and S_{j} into one set: UNION (S_{i} and S_{j}) adding an edge (u, v) such that $\mathrm{u} \in \mathrm{S}_{\mathrm{i}}$, and $v \in S_{j}$
- We do this only if $\mathrm{S}_{\mathrm{i}} \neq \mathrm{S}_{\mathrm{j}}$. We need to know if u and v are already in the same set, in the same connected component, we need to know set names for u and for v and compare them: $\operatorname{FIND}(\mathrm{x})$

Note that all the sets are disjoint: each node belongs to a single set during the execution of the algorithm

Kruskal as union of sets

Set spanning all vertices of G with selected edges:
MST of G

New ADT: UNION-FIND (= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the following operations:

- MAKESET(x): Creates a new set X containing a single element x.
- $\operatorname{UNION}(X, Y)$: Creates a new set containing the elements of sets X and Y in their union and deletes the previous sets X and Y.
- $\operatorname{FIND}(x)$: Returns the name of the set to which element x belongs.

UNION-FIND fits all our needs

- Initially, the vertices are a collection of n sets, each with one element. We can use MAKE-SET n times. Each set has a different element, so that $S_{i} \cap S_{j}=\emptyset$. This makes the sets disjoint.
- To introduce a new relationship between S_{i} and S_{j} using edge (x, y), we first check whether x and y are already connected: perform FIND(x) and FIND(y) and check if they already belong to the same set.
- If they are not, then we apply UNION. This operation merges the two sets containing x and y into a new set $S_{k}=$ $S_{i} \cup S_{j}$.

Implementing UNION-FIND: Array

- We can implement UNION-FIND using a physical array.
- We can number every vertex from 1 to n, and assume that the name of the set to which vertex i belongs is stored at position i of this array.

Array implementation: MAKE-SET

- For n elements, we can generate single-element sets in time O(n)
- The name of each set initially is set to the name of the element itself: which corresponds to its position in the array

Index in this array uniquely identifies each of n graph vertices

Array implementation: fast FIND

- With this representation FIND(x) takes $\mathrm{O}(1)$ since for any element we can find the set name by accessing its array location in time O(1).

Array implementation: slow UNION

- In this representation, to perform UNION(u, v) [assuming that $u \in S_{i}$ and $v \in S_{j}$] we need to scan the complete array and change all i 's to j . This takes $\mathrm{O}(\mathrm{n})$.
- A sequence of $n-1$ unions required by the algorithm takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time in the worst case.

Current set affiliations

1	2	2	1	1	2	1	2
1	2	3	4	5	6	7	8

Next edge to be added: $(3,4)$
We check that FIND(3) \neq FIND(4)
UNION(1,2) will need to iterate over the array and replace all 2 with 1

1	1	1	1	1	1	1	1
1	2	3	4	5	6	7	8

Now vertices 3 and 4 belong to the same set, they are connected

Implementing UNION-FIND: Tree

- We can implement each set as a tree, because in the tree each element has only one root, and that is where we will store the name of the set to which all elements in this tree belong.
- The tree idea is rather conceptual. We do not have to create a physical tree: we can use a parent array where for each node i we store the name of its parent in the tree.

Tree implementation: MAKE-SET

- To differentiate the root of the tree, let us assume that if the parent in position i is i, then node i is a root of the tree - and it also serves as a set name for all nodes in its subtrees.
- MAKE-SET creates n sets containing a single element i and in the array sets the parent of i as i. That means root (set name) of i is i.

Create a collection of tiny trees, but still store them in the array

Tree implementation: fast UNION

- To replace the two sets containing u and v by their union - update a parent of u to node v

| Parent array | \begin{tabular}{rl\|l|l|l|}
\hline
\end{tabular} | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

Tree implementation: fast UNION

- To replace the two sets containing u and v by their union - update a parent of u to node v

Tree implementation: fast UNION

- To replace the two sets containing u and v by their union - update a parent of v to node u.
- Important to note: UNION operation is changing the root's parent only, but not the parent for all the elements in the second set.
- Therefore, the time complexity of UNION is O(1).

Tree implementation: slow FIND

- $A \operatorname{FIND}(x)$ on node x is performed by returning the root of the tree containing x.
- The time to perform this operation is proportional to the depth of the node representing x.
- It is possible to create a tree of depth $\mathrm{n}-1$ (Skewed Tree).
- The worst-case running time of a FIND is $O(n)$ and m consecutive FIND operations take $\mathrm{O}(\mathrm{mn})$ time in the worst case. (not an improvement comparing to $O(n)$ path algorithm to check for a cycle that we had before)

Fast UNION + Quick FIND

- The main problem with the previous approach is that we might get skewed trees and as a result the FIND operation takes $\mathrm{O}(\mathrm{n})$ time.
- We want to keep the height of each tree at most $\log n$

UNION by Size

Simple heuristic:

- Always make the smaller tree a subtree of the larger tree

We use the same parent array

- We identify the root element of each tree by storing a negative integer representing the size of the tree rooted at node i

After n calls to MAKE-SET

Parent array | -1 | -1 | -1 | -1 | -1 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

\square After UNION $(1,6)$

UNION by size: quick FIND

- With UNION by size, the depth of any node is never more than log n. This is because a node is initially at depth 0 . When its depth increases as a result of a UNION, it is placed in a tree that is at least twice as large as before.
- That means that the depth of each node can be increased at most log n times (there are at most log n UNIONs per each node).
- This gives the running time for a FIND operation as $\mathbf{O}(\log n)$
- A sequence of m FINDs and UNIONs takes $O(m \log n)$.

There are other methods that achieve the same and even better performance

- UNION by Height (UNION by Rank)
- Path Compression

You do not have to know all of them for this course

Running time of UNION-FIND ADT implemented as a Tree (parent array)

Operation	
$\operatorname{MAKE}-\operatorname{SET}(x)$	$O(1)$
$\operatorname{FIND}(x)$	$O(\log n)$
UNION (x, y)	$O(1)$

Fast UNION - Quick FIND

Kruskal running time with UNION-FIND

Kruskal_MST (graph G(V,E))

E^{\prime} := edges of G sorted by weights $\mathrm{T}:=\varnothing$
for i from 1 to n :
MAKE-SET (node i)
for each edge (u, v) in E^{\prime} :
if $\operatorname{FIND}(u) \neq \operatorname{FIND}(v):$
$\mathrm{T}:=\mathrm{T} U(\mathrm{u}, \mathrm{v})$
UNION(u, v)

$$
\text { if }|\mathrm{T}|=|\mathrm{V}|-1:
$$

break
return T

Line 1: sorting m edges by weight. $O(m \log n)$.

Line 3: Making an array of size n : $O(n)$.

Line 5: $O(m)$ edges in the worst case. For each edge: perform FIND O(log n) and
sometimes UNION in time O(1)
Thus, total time of the for loop is O(m $\log n)$

Kruskal MST with UNION-FIND runs in time $O(m \log n)+O(n)+O(m \log n)$
$=0(m \log n)$

