Recursive algorithms Separate and conquer

Lecture 06.01 by Marina Barsky

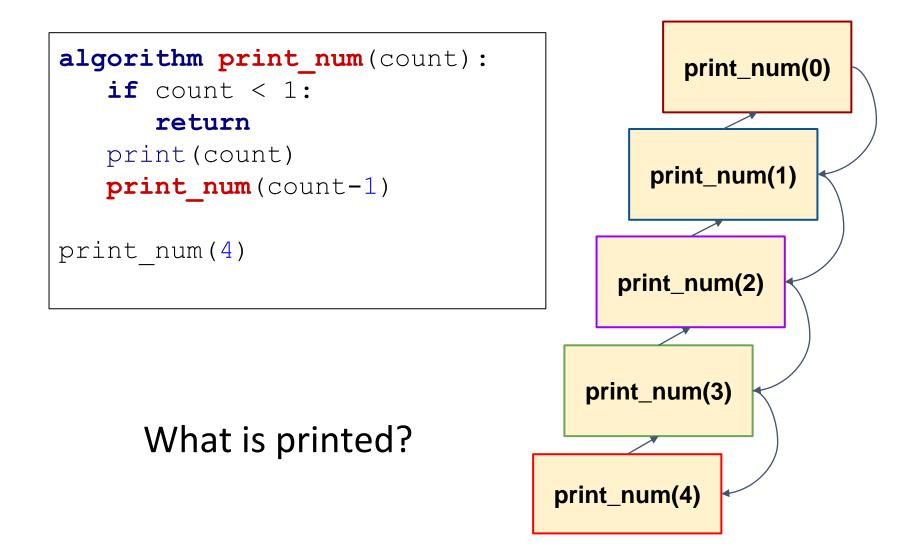
Recap: recursion

```
algorithm print_num(count):
    if count < 1:
        return
    print(count)
    print_num(count-1)

print_num(4)</pre>
```

What is printed?

Recap: recursion



Recap: recursion

```
algorithm print_num(count):
    if count < 1:
        return
    print_num(count-1)
    print(count)

print_num(4)</pre>
```

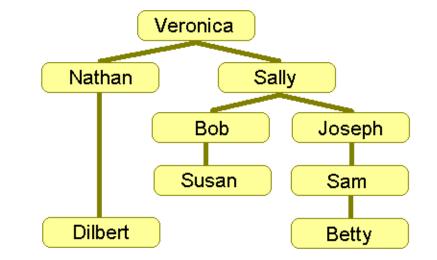
What is printed now?

Solve problems recursively: when?

- 1. The structure is defined recursively
- 2. The problem is defined recursively

1. Recursively defined structure: tree

Name	Manager
Betty	Sam
Bob	Sally
Dilbert	Nathan
Joseph	Sally
Nathan	Veronica
Sally	Veronica
Sam	Joseph
Susan	Bob
Veronica	



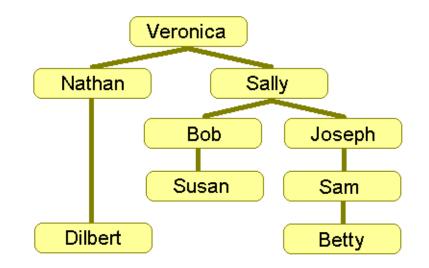
Employee names are stored as pairs of names in list A

They represent a hierarchical organizational structure: *X* reports to *Y*

Count Under Problem

Input: list A of pairs (x,y) meaning x reports directly to y, and an employee name S.

Output: count of all employees who report to *S* (directly or indirectly)



Designing solution

Name	Manager
Betty	Sam
Bob	Sally
Dilbert	Nathan
Joseph	Sally
Nathan	Veronica
Sally	Veronica
Sam	Joseph
Susan	Bob
Veronica	

- We want to find all people who work under Sally
- We can iterate over list A and count the pairs where Sally is a manager
 - But then we also need to iterate over A again and count and collect people working under Bob and Joseph
 - Then all people who work under Sam
- It seems that we need to have several nested loops but how many levels?

The easiest solution: use *recursion*!

Recursive solution

Algorithm *count_under*(list A of pairs, name S)

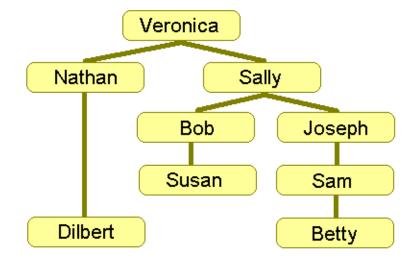
count: = 0

for each pair (name, manager) in A:

if manager = S:

count: += 1 + *count_under*(name)

return count



2. Recursively defined problem: factorial

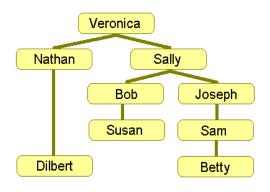
Definition factorial(1) = 1 factorial(n) = n*factorial(n-1)

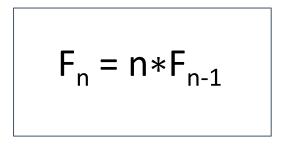
Problem: compute factorial Input: *n* Output: *factorial*(*n*)

Algorithm factorial(n) if n = 1 return 1 return n*factorial(n -1) $F_n = n * F_{n-1}$

When recursion feels natural

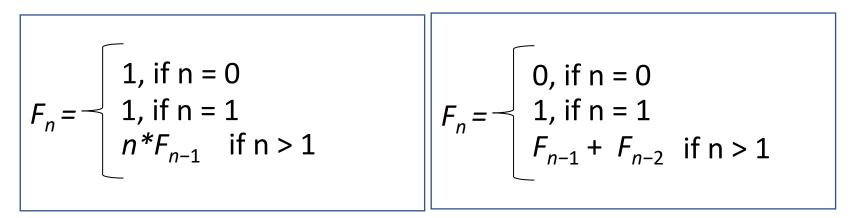
Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms





Definition

A *recurrence relation* is an equation recursively defining a sequence of values



1, 1, 2, 6, 24, 120... 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

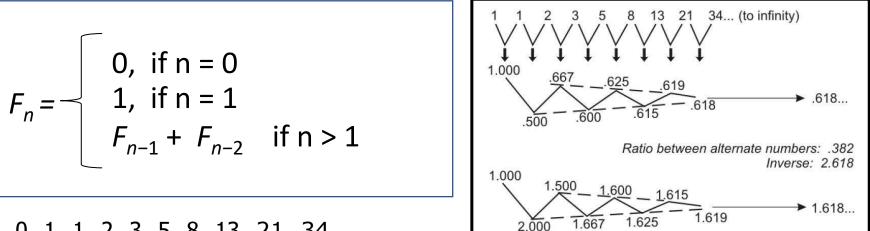
Note how the function F(n) is defined through F(n-1)

Fibonacci numbers

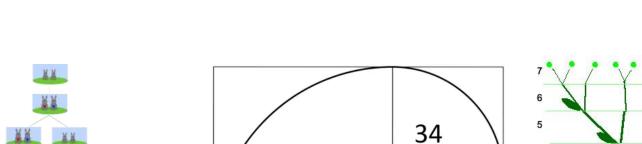
Natural recursive solution?

Fibonacci numbers

Golden ratio



0, 1, 1, 2, 3, 5, 8, 13, 21, 34

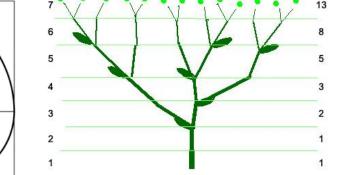


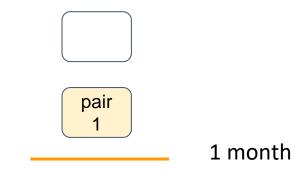
55

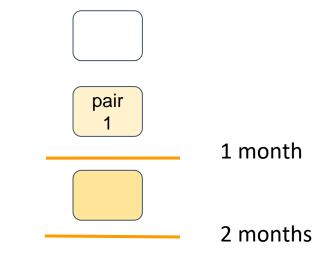
8

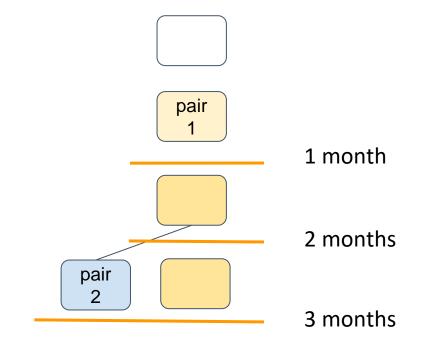
13

21

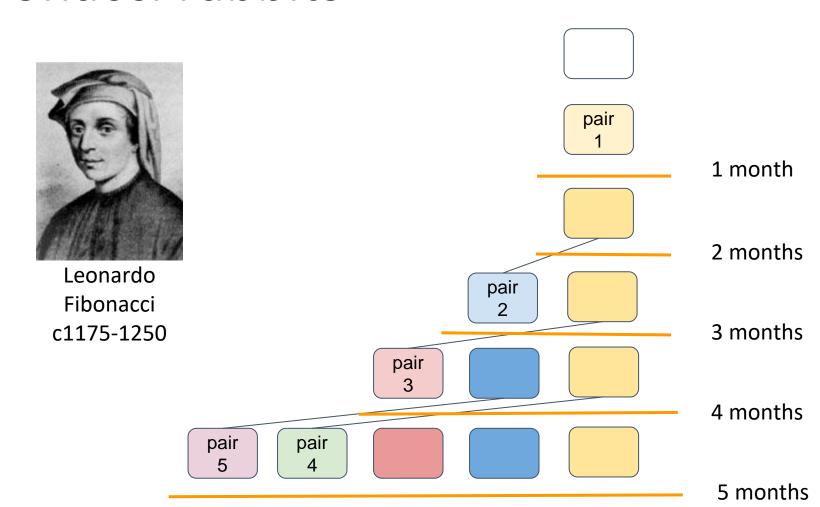


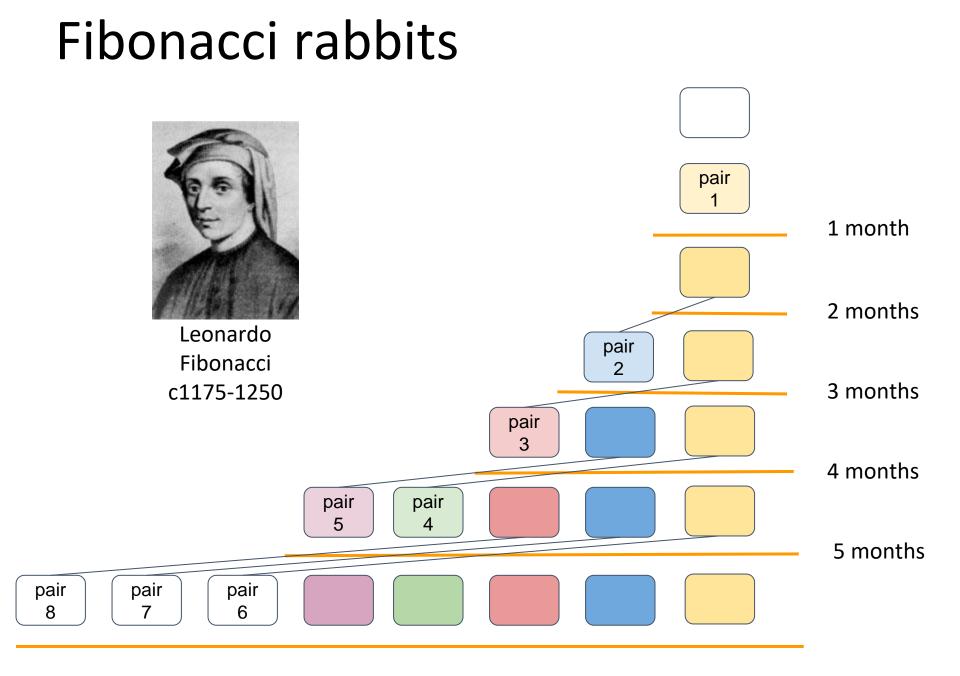












It all started with a single pair...

University of Victoria, BC, Canada, 2010

Fibonacci numbers grow exponentially

Lemma

 $F_n \ge 2^{n/2}$ for $n \ge 6$

Proof: By induction Base case: n = 6, 7 (by direct computation).

Inductive step: Assume that it is true for F_{n-1} : $F_{n-1} >= 2^{(n-1)/2}$.

Let's show that it is true for F_n $F_n = F_{n-1} + F_{n-2}$

 $\geq 2^{(n-1)/2} + 2^{(n-2)/2} \geq 2 \cdot 2^{(n-2)/2} = 2^{n/2}$

Theorem:

$$F_{n} = \frac{\Phi^{n} - (1 - \Phi)^{n}}{\sqrt{5}}$$

$$\Phi = \frac{1 + \sqrt{5}}{2}$$

$$\Phi = 1.618034...$$

 $F_{20} = 6765$ $F_{50} = 12586269025$ $F_{100} = 354224848179261915075$ $F_{500} = 1394232245616978801397243828$ 7040728395007025658769730726 4108962948325571622863290691 557658876222521294125

Recursive algorithm for computing the *n*-th Fibonacci number

$$F_n = -\begin{cases} 0, \text{ if } n = 0\\ 1, \text{ if } n = 1\\ F_{n-1} + F_{n-2} & \text{ if } n > 1 \end{cases}$$

Problem: Compute F_n

Input: integer n >= 0 **Output**: F_n

Algorithm Fib_recurs(*n*)

if $n \le 1$: return nreturn Fib_recurs(n - 1) + Fib_recurs(n - 2)

What is the running time?

Recursive Fibonacci: running time

Algorithm Fib_recurs(*n*)

if *n* ≤ 1:

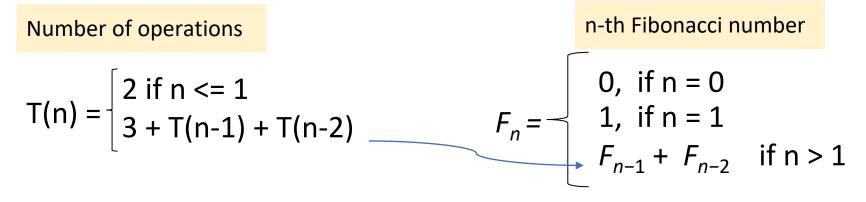
return n

else:

return Fib_recurs(n - 1) + Fib_recurs(n - 2)

Let *T*(*n*) denote the count of lines of code executed by Fib_recurs(*n*).

if
$$n \le 1$$
: $T(n) = 2$
if $n \ge 2$: $T(n) = 3 + T(n-1) + T(n-2)$



Therefore $T(n) \ge F_n$

Recursive algorithm: running time

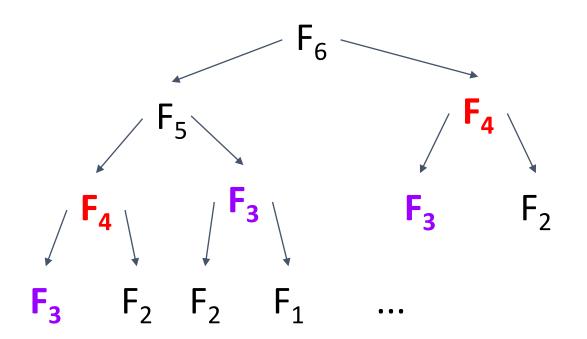
Let *T*(*n*) denote the count of lines of code executed by Fib_recurs(*n*).

Algorithm Fib_recurs(*n*) if $n \leq 1$: return *n* else: return Fib_recurs(n - 1) + Fib_recurs(n - 2) $T(n) = \begin{cases} 2 \text{ if } n <= 1 \\ 3 + T(n-1) + T(n-2) \end{cases}$ $T(n) \ge F_n$ but $F_n \ge 2^{n/2}$ for $n \ge 6$!!! Running time $\Omega(2^n)$

T (100) ≈ $1.77 \cdot 10^{21}$ (1.77 sextillion)

Takes 56,000 years at 1GHz

Why so slow?



Recursion tree

Note the repeating calls with the same arguments

Efficient iterative algorithm

```
Algorithm Fib_list(n)

create an array F [0 \dots n]

F [0] \leftarrow 0

F [1] \leftarrow 1

for i from 2 to n:

F [i] \leftarrow F [i - 1] + F [i - 2]

return F [n]
```

Running time T(n) = 2n + 2So T(100) = 202

Recursion or not recursion?

Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms

- Such recursive definitions do not guarantee that a recursive algorithm is the best way to solve the problem
- The use of recursive algorithms by inappropriate examples created apprehension and antipathy toward the use of recursion in programming:

```
recursion = inefficiency
```

Recursion vs. iteration

→ Recursion

- Each recursive call requires extra space on the stack
- If we get infinite recursion, the program will eventually run out of memory, cause stack overflow, and the program will terminate
- ◆ Solutions to some problems are easier to formulate recursively
- →Iteration
 - Each iteration does not require extra space
 - An infinite loop could loop forever since there is no extra memory being created
 - Iterative solutions to a problem may not always be as obvious as a recursive solution

Generally, recursive solutions are less efficient than iterative solutions due to the overhead of function calls

Recursive algorithms: running time

Steps:

- □ Draw recursion tree
- □ Estimate the depth of the tree
- Estimate work done at each level of the tree
- □ Add all level work together

Example: recursive max

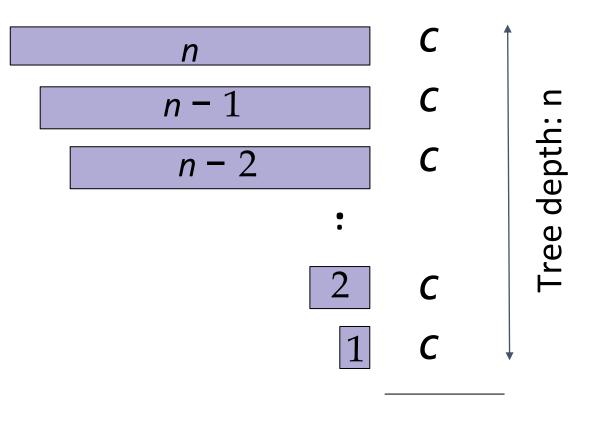
Algorithm Recurs_max (non-empty linked list A)

```
if len(A) = 1:
    return A[1]
else:
    if A[1] < A[2]:
        remove A[1] from A
        else:
            remove A[2] from A
        return Recurs_max (A)</pre>
```

What is time complexity?

Recursive Max: time complexity

Work at each level



Total: cn = O(n)

Searching Sorted Data

Separate and conquer

https://www.khanacademy.org/computing/computer-science/algorithms/binarysearch/a/binary-search

Warm-up: find the fake coin

- There are 8 identical-looking coins
- One of these coins is counterfeit and is known to be lighter than the genuine coins
- What is the minimum number of weighings needed to identify the fake coin with a two-pan balance scale without weights?

Problem: Searching in a sorted array

Input:A sorted array A[low . . . high] $(\forall low \leq i < high : A[i] \leq A[i + 1]).$ A value key to search for.

Output:An index, i , (low $\leq i \leq high$) whereA[i] = key.Otherwise, return -1 (NOT_FOUND).

binary_search(A, low, high, key)

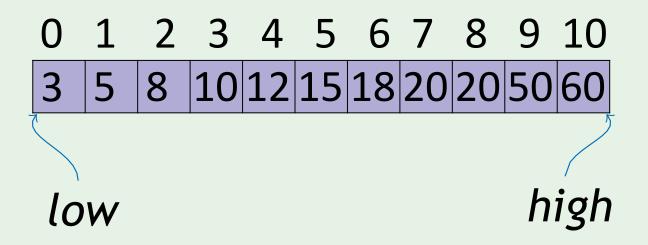
if high < low : return -1 $mid \leftarrow low + \lfloor \frac{high-low}{2} \rfloor$ if key = A[mid]: return *mid* else if *key* < *A*[*mid*]: return binary search(A, low, mid – 1, key) else:

return binary_search(A, mid + 1, high, key)

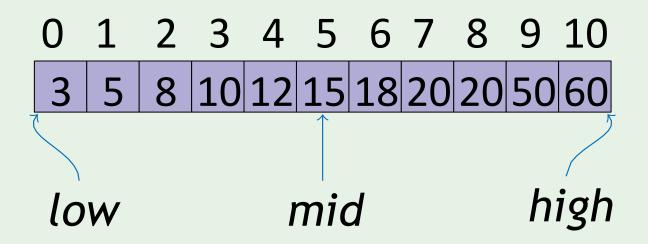
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 3
 5
 8
 10
 12
 15
 18
 20
 20
 50
 60

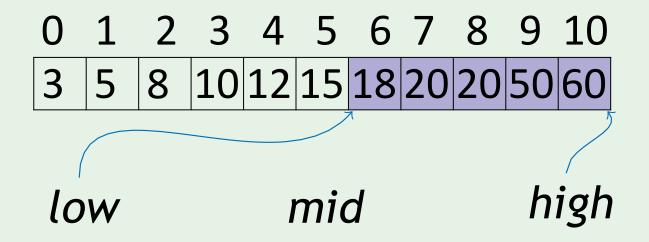
binary_search(*A*, 0, 10, 50)



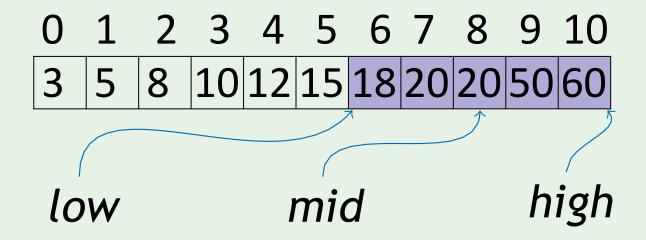
binary_search(*A*, 0, 10, 50)



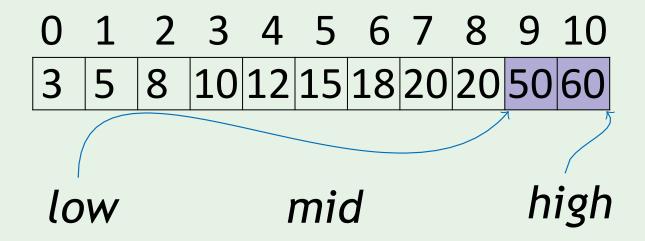
binary_search(*A*, 0, 10, 50) binary_search(*A*, 6, 10, 50)



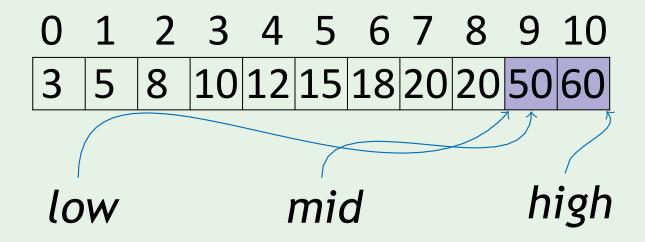
binary_search(*A*, 0, 10, 50) binary_search(*A*, 6, 10, 50)



binary_search(*A*, 0, 10, 50) binary_search(*A*, 6, 10, 50) binary_search(*A*, 9, 10, 50)



binary_search(*A*, 0, 10, 50) binary_search(*A*, 6, 10, 50) binary_search(*A*, 9, 10, 50)



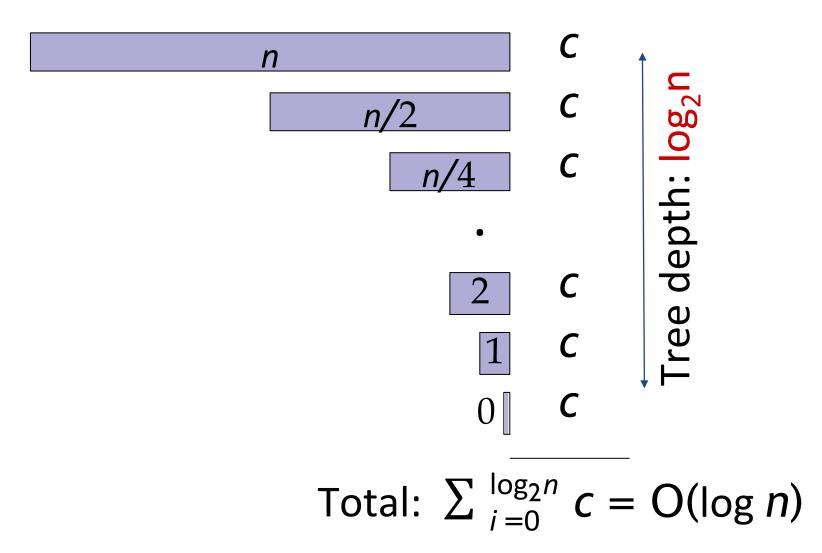
binary_search(A, 0, 10, 50) binary_search(A, 6, 10, 50) binary_search(A, 9, 10, 50) \rightarrow 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 3
 5
 8
 10
 12
 15
 18
 20
 20
 50
 60

Running time of Binary Search

Work at each level



Iterative Version binary_search_it(A, low, high, key) while *low* ≤ *high*: $mid \leftarrow low + \lfloor \frac{high - low}{2} \rfloor$ if key = A[mid]: return *mid* else if key < A[mid]: high = mid - 1else: low = mid + 1return -1

Linear search

Binary search

Calculating runtime of recursive algorithms is not always that easy