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Back to sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms


Quicksort: overview

❏ Divide array A into 2 subarrays

❏ Recursively sort each subarray

❏ Combine the sorted subarrays by a simple 
concatenation



Main idea

Select an element 
called pivot

1. Divide elements into 
2 groups L (less or 
equal), and G 
(greater than pivot)

2. Conquer: recursively 
sort L and G

3. Combine: 
concatenate 
L→E→R



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Rearrange elements with respect to 
x = A[1]

≤ 6 > 6

1 4 2 3 4 6 6 9 7 8 9



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

6 is in its final position

sort the two parts recursively

1 4 2 3 4 6 6 9 7 8 9

1 2 3 4 4 6 6 7 8 9 9



QuickSort(A, ℓ, r )

if ℓ ≥ r :  

return

m ← Partition(A, ℓ, r )
# A[m] is in the final position  

QuickSort(A, ℓ, m − 1)  

QuickSort(A, m + 1, r )



❏ the pivot is x = A[ℓ]

❏ loop i from ℓ+1 to r maintaining the  
following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j

❏ A[k] > x for all j + 1 ≤ k ≤ i

Partitioning: example

6 4 2 3 9 8 9 4 7 6 1

ℓ r

j i



❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element: 

swap A[i] with A[j+1]
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❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i
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❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  
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Partition(A, ℓ, r )

x ← A[ℓ] # pivot

j ← ℓ
for i from ℓ + 1 to r :  

if A[i ] ≤ x :

j ← j + 1

swap A[j] and A[i ]

swap A[ℓ] and A[j]

return j

# A[ℓ + 1 . . . j] ≤ x , A[j + 1 . . . i ] > x 



Quick Sort: summary

❏ Simple

❏ Comparison-based 

❏ Very fast in practice



Running time of Quick Sort

T (n) = 2T (n/2) + n

T (n) = O(n log n)

If we happen to choose the pivot x in such a way 
that after the partitioning the array A is split into 
even halves: 



Unlucky choice of pivot

If we choose a pivot in such a way that all values 
are greater than it, then we decrement a size of 
the problem only by 1:

1 4 2 3 4 6 5 9 7 8 9

1 4 2 3 4 6 5 9 7 8 9



Unlucky choices of pivot

T (n) = n + T (n − 5) + T(4):

T (n) = n+(n−5)+(n−10)+· · · = O(n2
)

T (n) = n + T (n − 1) 

T (n) = n+(n−1)+(n−2)+· · · = O(n2
)

If n is decreasing by a constant number at each step:



Worst-case running time of Quick Sort

T (n) = O(n2
)

1 2 4 5 6 6 8 9 9 9 9

It requires O(n2) time to process the already 
sorted array which seems unnecessary since the 
array is already sorted! 

Pathological case



Goal: Balanced Partitions

❏ The QuickSort algorithm so far seems like a bad 
imitation of  MergeSort

❏ If we only could choose a good “splitter” x that 
breaks an array into two equal parts!

❏ To achieve O(n log n) running time, it is not 
actually necessary to find a perfectly equal 
(50/50) split

❏ The algorithm will achieve O(n log n) running 
time even if {<=m} and  {>m} are both at least 
n/4 (or n/c at each step).



Balanced Partition

T (n) = T (n/4) + T (3n/4) + O(n)

log3 n

log4/3 n
The largest 

number of steps 

to go from 

problem size n to 

problem size 1

The running time is still O(n log n), as long as we can guarantee 
that the input is split into at least n/c + (n – n/c)



❏ It implies that of n possible choices of pivot at 
least 3n/4-n/4 = n/2 of them make good 
splitters!

❏ If we choose x randomly there is at least 50% 
chance that a good pivot will be chosen!

Choosing random pivot



Why Random?

Half of the elements of A guarantee a  

balanced partition:

A

sorted A
n/4 n/2 n/4



RandomizedQuickSort(A, ℓ, r )

if ℓ ≥ r :  

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

m ← Partition(A, ℓ, r )
# A[m] is in the final position  

RandomizedQuickSort(A, ℓ, m − 1)  

RandomizedQuickSort(A, m + 1, r )



Theorem

Assume that all the elements of A[1 . . . n] 

are distinct. Then the expected running  

time of RandomizedQuickSort(A) is

O(n log n).



Intuitive idea 1: total comparisons

❏ The running time is proportional to the 

number of comparisons made

❏ Balanced partitions are better since they  

reduce the number of comparisons  

needed:

5 1 2 4 7 3 6

1 5 4 3 6 7 2 3 1 2 4 6 5 7

1 is min 3, 1, 2 < 6, 5, 7

The relative order of 
elements in left and right 
sub-array is unknown

The numbers from the left 
and right part are never 
compared with each other

Still need to compare 
every pair on the right



Intuitive idea 2: probability of comparisons

5 1 8 9 2 4 7 3 6

1 2 3 4 5 6 7 8 9

A

A′

Prob (1 and 9 are compared) = 2/9

Prob (3 and 4 are compared) = 1

The probability that 2 numbers are compared 
through the entire algorithm depends on how 
close are these numbers in their sorted order A’



Probability recap: random variable

A random variable is a numerical description of the 
outcome of a statistical experiment. 

Example: Let 𝜒 be the random variable that equals the 

number of heads that appear when the unbiased coin is 
flipped 3 times.

Then 𝜒 takes on the following values:

TTT → 0

HTT, THT, TTH → 1

HHT, THH, HTH → 2

HHH → 3



Expected value

The expected value of a random variable is the sum 
over all outcome values of the product of the 
probability of this outcome and the value of this 
outcome.

In other words, the expected value is a weighted 
average of the values of a random variable.

Example continued:
E(𝜒) = 0*1/8 + 1*3/8 + 2*3/8 + 3*1/8 = 1.5

The expected number of heads in 3 tosses is 1.5 heads

TTT → 0
HTT, THT, TTH → 1
HHT, THH, HTH → 2
HHH → 3



Expected value in algorithm analysis

Many questions can be formulated in terms of the expected value 
of a random variable  - which is its average value when an 
experiment is performed a large number of times. 

For algorithms:

• What is the expected number of comparisons used to find an 
element in a list using a linear search? 

• What is the expected number of collisions produced by a 
particular hash function

• …

Another example: expected value of a die 
Let X be the number that comes up when a fair die is rolled. 
What is the expected value of X?

The random variable X takes values 1, 2, 3, 4, 5, or 6, each with probability 1/6.

E(X) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = 3.5 



𝜒 =

Back to Randomized Quicksort

❏ let, for i < j, random variable 𝜒 be defined as:

ij

1 A′
[i ] and A′

[j] are compared

0 otherwise

❏ for all intervals [i : j], A′
[i ] and A′

[j] are either  

compared exactly once or not compared at 

all (as we compare with a pivot)

5 1 8 9 2 4 7 3 6

1 2 3 4 5 6 7 8 9

A

A′



𝜒 =

Expected # comparisons for 2 numbers

❏ let, for i < j, random variable 𝜒 be defined as:

ij

1 A′
[i ] and A′

[j] are compared

0 otherwise

❏ for all i < j, A′
[i ] and A′

[j] are either  

compared exactly once or not compared at 

all

❏ crucial observation: 𝜒ij = 1 iff the first  

selected pivot in A′
[i : j] is A′

[i] or A′
[j]



ij

1 A′
[i ] and A′

[j] are compared

0 otherwise

❏ crucial observation: 𝜒ij = 1 iff the first selected 

pivot in A′
[i : j] is A′

[i] or A′
[j] (2 cases out of (j –

i +1) total cases

❏ then Prob(𝜒ij ) = 2/(j - i +1) 

❏ and for each pair i,j:

E (𝜒
ij

) = 1*2/(j - i + 1) + 0*(i – j)

E (𝜒
ij

) = 2/(j - i + 1)

𝜒 =

Expected # comparisons for 2 numbers



≤ 2n · (1/2 + 1/3 … 1/n)

Expected total number of comparisons

ijE=

Then (the expected value of) the running  

time over all combinations of i and j is:

i =1 j=i+1

2∑︁
i<j

1/(j - i +1)

O(n log n)

∑︁ ∑
n n

𝜒

i =1 j=i+1

∑︁ ∑
n n

ijE (𝜒 )=

=

=

n

Harmonic series!

sum: = 0
for i from 1 to n

for j from i+1 to n
sum: += 2/(j – i + 1)

sum = (1/2 + 1/3 + 1/4  + … + 1/n)

+ 1/3 + 1/4 + … + 1/n

+ … 1/n

Repeated 
at most n 
times



Theorem

Assume that all the elements of A[1 . . . n] 

are distinct. Then the expected running  

time of RandomizedQuickSort(A) is

O(n log n).

Proven



Problem: Equal Elements

❏What if all the elements of the given  
array are equal to each other?

❏ The array is always split into two parts of  
size 0 and n − 1

T (n) = n + T (n − 1) + T (0) and hence

T (n) = Θ(n2
)!



To handle equal elements, we replace the 
line

m ← Partition(A, ℓ, r )

with the line

(m1, m2) ← Partition3(A, ℓ, r )

such that

❏ for all ℓ ≤ k ≤ m1 − 1, A[k] < x  

❏ for all m1 ≤ k ≤ m2, A[k] = x  

❏ for all m2 + 1 ≤ k ≤ r , A[k] > x



RandomizedQuickSort3(A, ℓ, r )

if ℓ ≥ r :  

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

(m1, m2) ← Partition3(A, ℓ, r )
# A[m1 . . . m2] are in final position  

RandomizedQuickSort3(A, ℓ, m1 − 1)  

RandomizedQuickSort3(A, m2 + 1, r )

Ternary quicksort



Quick sort: Summary

❏ Quick sort is a comparison-based algorithm 
based on random partitioning

❏ Expected running time: O(n log n)

❏O(n2
) in the worst case

❏ Very fast in practice



Quicksort:
randomized running time, 
not the results

❏ The key advantages of randomized algorithms:  
performance and simplicity

❏ Note that RandomizedQuickSort, despite making 
random decisions, always returns the correct 
solution of the sorting problem

❏ The only variable from one run to another is its 
running time, not the result



Two types of randomized algorithms:

❏ A Las Vegas algorithm is a 
randomized algorithm that 
always gives the correct 
result but gambles with 
resources

❏ It always returns the correct 
answer, but its runtime 
bounds hold only in 
expectation

Las Vegas



❏ A Monte Carlo algorithm is a 
randomized algorithm 
whose output may be 
incorrect with a certain, 
typically small, probability.

❏ A Monte Carlo algorithm 
may fail or return incorrect 
answers, but has runtime 
independent of the 
randomness.

Monte Carlo

Two types of randomized algorithms:



Monte Carlo: example

count:=0

repeat n times:

generate random point (x, y) 

where -1 < x < 1 and -1 < y < 1 

if x2 + y2 ≤ 1

increment  count

return 4*count/n

Compute value of 𝛑
Square area: S=(2r)2 (total number of points)
Circle area: C=𝛑r2(number of points inside circle)
C/S = 𝛑/4
𝛑 = 4*C/S



Median
Activity 10



The Median problem

The median of a list of numbers is its 50th 
percentile: 

● Half the numbers are bigger than it, and half 
are smaller 

● It is a middle element when the numbers are 
arranged in order

[45, 1, 10, 30, 25] → [1, 10, 25, 30, 45] 

median: 25 If the list has even length, there are two  choices, in 
which case we pick the smaller of the two,  say.



Input: array A of n elements
Output: Median - the middle value of 
elements in A

Median problem

Motivation:
❏ The purpose of the median is to summarize a set of 

numbers by a single, typical value 
❏ The mean, or average, is also very commonly used for this, 

but the median is more  typical of the data - it is always 
one of the data values and it is less sensitive  to outliers

[1,1,1,1,1,1,1,1,1,1,100]
What is the mean?  And what is the median?



Computing the median via sorting

• Computing the median of n numbers is easy: just 
sort them and pick A[⌊n/2⌋] 

O(n log n) time

Can we do better?

• We have hope, because sorting is doing far more 
work than we really need - we just want the middle  
element and don’t care about the relative ordering 
of the rest of them



Divide-and-conquer approach

For some number x, split array A into two categories: 
elements <= x, and those > x. 

For instance, if the array

A = [2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1]

is split on x = 5, the two subarrays generated are

AL = [2, 5, 4, 1]

x  = [5]

AG= [36, 21, 8, 13, 11, 20]



Narrow the search for the n/2-th 
smallest element

A = [2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1]

AL = [2, 5, 4, 1]

x   = [5]

AG = [36, 21, 8, 13, 11, 20]

❏ The search  can  instantly be narrowed down to one 
of these subarrays   

❏ By checking ceiling(n/2) against the sizes of these 
subarrays, we can quickly determine which of them 
holds the desired  element



How to choose a pivot v
❏ It should be picked quickly, and it should shrink the array 

substantially, the ideal situation being |AL|, |AG| ≈ ½ |A|
❏ If we could always guarantee this situation, we would get 

a running time of:

T (n) = T (n/2) + O(n)

BTW, What is big-Oh of this recurrence?

To get this running time, we need to pick the 
median element!
But we do not know it - finding median is our 
ultimate  goal! What to do?



Readings

Chapter 9 of the textbook


