
Randomized approaches.
Quick sort

Lecture 06.05
by Marina Barsky

Back to sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Quicksort: overview

❏ Divide array A into 2 subarrays

❏ Recursively sort each subarray

❏ Combine the sorted subarrays by a simple
concatenation

Main idea

Select an element
called pivot

1. Divide elements into
2 groups L (less or
equal), and G
(greater than pivot)

2. Conquer: recursively
sort L and G

3. Combine:
concatenate
L→E→R

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Rearrange elements with respect to
x = A[1]

≤ 6 > 6

1 4 2 3 4 6 6 9 7 8 9

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

6 is in its final position

sort the two parts recursively

1 4 2 3 4 6 6 9 7 8 9

1 2 3 4 4 6 6 7 8 9 9

QuickSort(A, ℓ, r)

if ℓ ≥ r :

return

m ← Partition(A, ℓ, r)
A[m] is in the final position

QuickSort(A, ℓ, m − 1)

QuickSort(A, m + 1, r)

❏ the pivot is x = A[ℓ]

❏ loop i from ℓ+1 to r maintaining the
following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j

❏ A[k] > x for all j + 1 ≤ k ≤ i

Partitioning: example

6 4 2 3 9 8 9 4 7 6 1

ℓ r

j i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 9 8 9 4 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 9 9 7 8 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 9 9 7 8 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:

swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

1 4 2 3 4 6 6 9 7 8 9

i

Partition(A, ℓ, r)

x ← A[ℓ] # pivot

j ← ℓ
for i from ℓ + 1 to r :

if A[i] ≤ x :

j ← j + 1

swap A[j] and A[i]

swap A[ℓ] and A[j]

return j

A[ℓ + 1 . . . j] ≤ x , A[j + 1 . . . i] > x

Quick Sort: summary

❏ Simple

❏ Comparison-based

❏ Very fast in practice

Running time of Quick Sort

T (n) = 2T (n/2) + n

T (n) = O(n log n)

If we happen to choose the pivot x in such a way
that after the partitioning the array A is split into
even halves:

Unlucky choice of pivot

If we choose a pivot in such a way that all values
are greater than it, then we decrement a size of
the problem only by 1:

1 4 2 3 4 6 5 9 7 8 9

1 4 2 3 4 6 5 9 7 8 9

Unlucky choices of pivot

T (n) = n + T (n − 5) + T(4):

T (n) = n+(n−5)+(n−10)+· · · = O(n2
)

T (n) = n + T (n − 1)

T (n) = n+(n−1)+(n−2)+· · · = O(n2
)

If n is decreasing by a constant number at each step:

Worst-case running time of Quick Sort

T (n) = O(n2
)

1 2 4 5 6 6 8 9 9 9 9

It requires O(n2) time to process the already
sorted array which seems unnecessary since the
array is already sorted!

Pathological case

Goal: Balanced Partitions

❏ The QuickSort algorithm so far seems like a bad
imitation of MergeSort

❏ If we only could choose a good “splitter” x that
breaks an array into two equal parts!

❏ To achieve O(n log n) running time, it is not
actually necessary to find a perfectly equal
(50/50) split

❏ The algorithm will achieve O(n log n) running
time even if {<=m} and {>m} are both at least
n/4 (or n/c at each step).

Balanced Partition

T (n) = T (n/4) + T (3n/4) + O(n)

log3 n

log4/3 n
The largest

number of steps

to go from

problem size n to

problem size 1

The running time is still O(n log n), as long as we can guarantee
that the input is split into at least n/c + (n – n/c)

❏ It implies that of n possible choices of pivot at
least 3n/4-n/4 = n/2 of them make good
splitters!

❏ If we choose x randomly there is at least 50%
chance that a good pivot will be chosen!

Choosing random pivot

Why Random?

Half of the elements of A guarantee a

balanced partition:

A

sorted A
n/4 n/2 n/4

RandomizedQuickSort(A, ℓ, r)

if ℓ ≥ r :

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

m ← Partition(A, ℓ, r)
A[m] is in the final position

RandomizedQuickSort(A, ℓ, m − 1)

RandomizedQuickSort(A, m + 1, r)

Theorem

Assume that all the elements of A[1 . . . n]

are distinct. Then the expected running

time of RandomizedQuickSort(A) is

O(n log n).

Intuitive idea 1: total comparisons

❏ The running time is proportional to the

number of comparisons made

❏ Balanced partitions are better since they

reduce the number of comparisons

needed:

5 1 2 4 7 3 6

1 5 4 3 6 7 2 3 1 2 4 6 5 7

1 is min 3, 1, 2 < 6, 5, 7

The relative order of
elements in left and right
sub-array is unknown

The numbers from the left
and right part are never
compared with each other

Still need to compare
every pair on the right

Intuitive idea 2: probability of comparisons

5 1 8 9 2 4 7 3 6

1 2 3 4 5 6 7 8 9

A

A′

Prob (1 and 9 are compared) = 2/9

Prob (3 and 4 are compared) = 1

The probability that 2 numbers are compared
through the entire algorithm depends on how
close are these numbers in their sorted order A’

Probability recap: random variable

A random variable is a numerical description of the
outcome of a statistical experiment.

Example: Let 𝜒 be the random variable that equals the

number of heads that appear when the unbiased coin is
flipped 3 times.

Then 𝜒 takes on the following values:

TTT → 0

HTT, THT, TTH → 1

HHT, THH, HTH → 2

HHH → 3

Expected value

The expected value of a random variable is the sum
over all outcome values of the product of the
probability of this outcome and the value of this
outcome.

In other words, the expected value is a weighted
average of the values of a random variable.

Example continued:
E(𝜒) = 0*1/8 + 1*3/8 + 2*3/8 + 3*1/8 = 1.5

The expected number of heads in 3 tosses is 1.5 heads

TTT → 0
HTT, THT, TTH → 1
HHT, THH, HTH → 2
HHH → 3

Expected value in algorithm analysis

Many questions can be formulated in terms of the expected value
of a random variable - which is its average value when an
experiment is performed a large number of times.

For algorithms:

• What is the expected number of comparisons used to find an
element in a list using a linear search?

• What is the expected number of collisions produced by a
particular hash function

• …

Another example: expected value of a die
Let X be the number that comes up when a fair die is rolled.
What is the expected value of X?

The random variable X takes values 1, 2, 3, 4, 5, or 6, each with probability 1/6.

E(X) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = 3.5

𝜒 =

Back to Randomized Quicksort

❏ let, for i < j, random variable 𝜒 be defined as:

ij

1 A′
[i] and A′

[j] are compared

0 otherwise

❏ for all intervals [i : j], A′
[i] and A′

[j] are either

compared exactly once or not compared at

all (as we compare with a pivot)

5 1 8 9 2 4 7 3 6

1 2 3 4 5 6 7 8 9

A

A′

𝜒 =

Expected # comparisons for 2 numbers

❏ let, for i < j, random variable 𝜒 be defined as:

ij

1 A′
[i] and A′

[j] are compared

0 otherwise

❏ for all i < j, A′
[i] and A′

[j] are either

compared exactly once or not compared at

all

❏ crucial observation: 𝜒ij = 1 iff the first

selected pivot in A′
[i : j] is A′

[i] or A′
[j]

ij

1 A′
[i] and A′

[j] are compared

0 otherwise

❏ crucial observation: 𝜒ij = 1 iff the first selected

pivot in A′
[i : j] is A′

[i] or A′
[j] (2 cases out of (j –

i +1) total cases

❏ then Prob(𝜒ij) = 2/(j - i +1)

❏ and for each pair i,j:

E (𝜒
ij

) = 1*2/(j - i + 1) + 0*(i – j)

E (𝜒
ij

) = 2/(j - i + 1)

𝜒 =

Expected # comparisons for 2 numbers

≤ 2n · (1/2 + 1/3 … 1/n)

Expected total number of comparisons

ijE=

Then (the expected value of) the running

time over all combinations of i and j is:

i =1 j=i+1

2∑︁
i<j

1/(j - i +1)

O(n log n)

∑︁ ∑
n n

𝜒

i =1 j=i+1

∑︁ ∑
n n

ijE (𝜒)=

=

=

n

Harmonic series!

sum: = 0
for i from 1 to n

for j from i+1 to n
sum: += 2/(j – i + 1)

sum = (1/2 + 1/3 + 1/4 + … + 1/n)

+ 1/3 + 1/4 + … + 1/n

+ … 1/n

Repeated
at most n
times

Theorem

Assume that all the elements of A[1 . . . n]

are distinct. Then the expected running

time of RandomizedQuickSort(A) is

O(n log n).

Proven

Problem: Equal Elements

❏What if all the elements of the given
array are equal to each other?

❏ The array is always split into two parts of
size 0 and n − 1

T (n) = n + T (n − 1) + T (0) and hence

T (n) = Θ(n2
)!

To handle equal elements, we replace the
line

m ← Partition(A, ℓ, r)

with the line

(m1, m2) ← Partition3(A, ℓ, r)

such that

❏ for all ℓ ≤ k ≤ m1 − 1, A[k] < x

❏ for all m1 ≤ k ≤ m2, A[k] = x

❏ for all m2 + 1 ≤ k ≤ r , A[k] > x

RandomizedQuickSort3(A, ℓ, r)

if ℓ ≥ r :

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

(m1, m2) ← Partition3(A, ℓ, r)
A[m1 . . . m2] are in final position

RandomizedQuickSort3(A, ℓ, m1 − 1)

RandomizedQuickSort3(A, m2 + 1, r)

Ternary quicksort

Quick sort: Summary

❏ Quick sort is a comparison-based algorithm
based on random partitioning

❏ Expected running time: O(n log n)

❏O(n2
) in the worst case

❏ Very fast in practice

Quicksort:
randomized running time,
not the results

❏ The key advantages of randomized algorithms:
performance and simplicity

❏ Note that RandomizedQuickSort, despite making
random decisions, always returns the correct
solution of the sorting problem

❏ The only variable from one run to another is its
running time, not the result

Two types of randomized algorithms:

❏ A Las Vegas algorithm is a
randomized algorithm that
always gives the correct
result but gambles with
resources

❏ It always returns the correct
answer, but its runtime
bounds hold only in
expectation

Las Vegas

❏ A Monte Carlo algorithm is a
randomized algorithm
whose output may be
incorrect with a certain,
typically small, probability.

❏ A Monte Carlo algorithm
may fail or return incorrect
answers, but has runtime
independent of the
randomness.

Monte Carlo

Two types of randomized algorithms:

Monte Carlo: example

count:=0

repeat n times:

generate random point (x, y)

where -1 < x < 1 and -1 < y < 1

if x2 + y2 ≤ 1

increment count

return 4*count/n

Compute value of 𝛑
Square area: S=(2r)2 (total number of points)
Circle area: C=𝛑r2(number of points inside circle)
C/S = 𝛑/4
𝛑 = 4*C/S

Median
Activity 10

The Median problem

The median of a list of numbers is its 50th
percentile:

● Half the numbers are bigger than it, and half
are smaller

● It is a middle element when the numbers are
arranged in order

[45, 1, 10, 30, 25] → [1, 10, 25, 30, 45]

median: 25 If the list has even length, there are two choices, in
which case we pick the smaller of the two, say.

Input: array A of n elements
Output: Median - the middle value of
elements in A

Median problem

Motivation:
❏ The purpose of the median is to summarize a set of

numbers by a single, typical value
❏ The mean, or average, is also very commonly used for this,

but the median is more typical of the data - it is always
one of the data values and it is less sensitive to outliers

[1,1,1,1,1,1,1,1,1,1,100]
What is the mean? And what is the median?

Computing the median via sorting

• Computing the median of n numbers is easy: just
sort them and pick A[⌊n/2⌋]

O(n log n) time

Can we do better?

• We have hope, because sorting is doing far more
work than we really need - we just want the middle
element and don’t care about the relative ordering
of the rest of them

Divide-and-conquer approach

For some number x, split array A into two categories:
elements <= x, and those > x.

For instance, if the array

A = [2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1]

is split on x = 5, the two subarrays generated are

AL = [2, 5, 4, 1]

x = [5]

AG= [36, 21, 8, 13, 11, 20]

Narrow the search for the n/2-th
smallest element

A = [2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1]

AL = [2, 5, 4, 1]

x = [5]

AG = [36, 21, 8, 13, 11, 20]

❏ The search can instantly be narrowed down to one
of these subarrays

❏ By checking ceiling(n/2) against the sizes of these
subarrays, we can quickly determine which of them
holds the desired element

How to choose a pivot v
❏ It should be picked quickly, and it should shrink the array

substantially, the ideal situation being |AL|, |AG| ≈ ½ |A|
❏ If we could always guarantee this situation, we would get

a running time of:

T (n) = T (n/2) + O(n)

BTW, What is big-Oh of this recurrence?

To get this running time, we need to pick the
median element!
But we do not know it - finding median is our
ultimate goal! What to do?

Readings

Chapter 9 of the textbook

