
Tractable and Intractable 

Problems

Lecture 08.01
by Marina Barsky



Design and analysis of algorithms

Main focus: practical algorithms + supporting theory for solving 

fundamental computational problems:

• Sorting

• Searching

• Shortest paths

• Sequence alignment

• Spanning trees

• …

You might feel that now you can solve any problem efficiently, and 

always can do better



Design and analysis of algorithms

Main focus: practical algorithms + supporting theory for solving 

fundamental computational problems:

• Sorting

• Searching

• Shortest paths

• Sequence alignment

• Spanning trees

• …

You might feel that now you can solve any problem efficiently, and 

always can do better

Bad news: many important practical problems that you will 

encounter in your projects do not have known efficient 

solutions 



New tools
• Classifying problems by hardness

• Identifying intractable problems

• Strategies for dealing with such problems



Complexity class P

We say that the problem is tractable if there is an algorithm which 

solves it in time O(nk) for some constant k, and where n represents the 

input size [More precisely – the number of bits or keystrokes needed to 

describe the input]

Tractable:

O(n), O(n2), O(n1000), O(n10,000,000) 

Class P: set of all problems solvable in polynomial time

All the algorithms we developed so far are in class P



Traveling Salesperson Problem (TSP)
Input: complete undirected graph with non-negative  

edge costs

Output: a min-cost tour – a cycle that visits each vertex 

exactly once

1

2

6

53 4

TSP path: 13

Solution:

Try all permutations of vertices and select the sequence with the 

cheapest cost

We solved shortest paths, min spanning trees, why not TSP?

60 years of research – and there is no polynomial-time algorithm?

Not in P?



Min Vertex Cover
Input: graph G (V, E)

Output: a minimum-size subset C of vertices such that 

for each edge (v,w), we have v ∈ C or w ∈ C (C covers

all the edges)

Vertex Cover of 
size 4

Solution:

Try every subset of V and for each subset check if it covers all the 

edges. 

Keep subset of a minimum size

Not in P?



Knapsack 01 without repetitions
Input: set of n items with their weights and values and 

the knapsack capacity W

Output: maximum value of knapsack filled with items 

that fit into W (each item can be used only once)

Solution:

check 2n =16 knapsacks

Each verification takes O(n)

Time complexity O(n2n) = 4*8 = 32

[exponential in n]

Not in P?
subset total 

weight
total 
value

Ø 0 $0

{1} 7 $42

{2} 3 $12

{3} 4 $40

{4} 5 $25

{1,2} 10 $54

{1,3} 11 -

{1,4} 12 -

{2,3} 7 $52

{2,4} 8 $37

etc. ...

Example:

items = {(7 lbs, $42), 

(3 lbs, $12), 

(4 lbs, $40), 

(5 lbs, $25)} 

n=4 (4 items)

W = 10

What about DP solution?



KnapsackDP(W, n items)
initialize all maxvalue [0, i ] ← 0  
initialize all maxvalue [w, 0]  ← 0  
for i from 1 to n:

for w from 1 to W :  
maxvalue [w, i] ← maxvalue [w, i -1]   
if wi ≤ w :

val ← maxvalue [w − wi, i − 1] + vi

if val > maxvalue [w, i]:
maxvalue [w, i] ← val

return maxvalue [W, N]

Exhaustive – running time: O(n2n) = 4*8 = 32

DP – running time O (nW ) = 10*4 = 40

1,2,3,….W



Running Time of DP Knapsack: 

closer look
• The running time is O (nW )

• W is not the size of the input - after all, the input consists 

of a single number (total knapsack capacity) - not W

knapsacks

• We loop over all possible values between 0 and W, and the 

time is not proportional to the size of the input, which is 

n+1 (n items and 1 number W)

• For example for W=1,125,899,906,842,624 we will perform 

1,125,899,906,842,624 loop iterations, while the input 

still consists of a single number W.



DP Knapsack is not polynomial! 

• The running time of an algorithm is defined as a function of the input 

size

• In normal O(n) complexity we assume that reading each of n input 

numbers can be done in constant time (each number is using a constant 

number of bits)

• Say, we use m bits to represent number W. If we were just reading this 

number once, then the complexity would be proportional to m

• But instead we need to loop from 0 to 2m

• The complexity is O(n2m): we need to check 2m imaginary knapsacks

• The algorithm is exponential in number of bits used to represent the 

capacity: if we add just one more bit – we double W and double the run 

time



Pseudo-polynomial running time

• The complexity of an algorithm refers to the number of input 

elements, not a value of a single element in the input 

• More precisely, the input size n is a number of keystrokes 

(alternatively number of bits) needed to describe the input

• Thus the complexity of the knapsack remains exponential in input 

size even with dynamic programming 

• The DP knapsack algorithm is pseudo-polynomial

• NP-hard problems with pseudo-polynomial solutions are called 

weakly NP-complete

wikipedia link

DP knapsack is exponential:

O(n2m)
Input size: number 
of bits to represent 

number W

https://en.wikipedia.org/wiki/Knapsack_problem#Computational_complexity


Polynomial or pseudo-polynomial?

• Is prime (num)

• Naïve GCD (a,b)

• Money change (target)

• Subset sum (A of size n, target sum)

• Edit distance (S1 of size m, S2 of size n)

• Bellman-Ford (G(V,E), source s)



Polynomial or pseudo-polynomial?

• Is prime (num) – pseudo-polynomial

• Naïve GCD (a,b) – pseudo-polynomial

• Money change (target) – pseudo-polynomial

• Subset sum (A of size n, target sum) – pseudo-polynomial

• Edit distance (S1 of size m, S2 of size n) –polynomial

• Bellman-Ford (G(V,E), source s) – polynomial



Intractable problems

Not all problems are tractable=can be solved in polynomial time

What is common to all the above problems: they can be solved 

via exhaustive search



Problem types

Most existing computational problems belong to one of three types:

• Decision problems: return Boolean answer Yes/No

• Optimization problems: return min/max of some function [subject 

to constraints]

• Construction problems: return a structure with desired properties



Problem types: examples

• Decision problems: return Boolean answer Yes/No

• Is there a subset with sum = k? Yes or no?

• Is there a cycle in the graph which passes through all vertices and 
visits every edge exactly once?

• Optimization problems: return min/max of some function

• What is the value of the min-cost path from s to t?

• What is the max possible value in a knapsack?

• Construction problems: return a structure with desired 

properties

• Produce a shortest path from s to t

• Produce a sequence of items in knapsack of maximum value



Complexity theory considers

decision problems only
Decision problems: return Boolean answer Yes/No

Problem of any type can be reduced to a decision problem or a 

sequence of decision problems

Example 1: Optimization

Problem p1: Max value of knapsack

Problem p2: Is there a knapsack of value at least k

Reduction of p1 to p2:

• We ask: is there a knapsack with value V = (vi+v2+v3+…vn)?
• If the answer is yes, this is the max value – we fit all the available items
• If the answer is no, next decision problem: is there knapsack with value at 

least V/2?
• Binary search until we find the max value

• Not always can do a binary search, but nevertheless we can reduce an 

optimization problem to polynomial number of invocations of some 

decision problem.



Complexity theory considers

decision problems only
Decision problems: return Boolean answer Yes/No

Problem of any type can be reduced to a decision problem or a 

sequence of decision problems

Example 2: Construction

Problem p1: Sequence of items in max-valued knapsack

Problem p2: Max value of knapsack

Problem p3: Is there a knapsack of value at least k

Reduction of p1 to p2 (which in turn reduces to p3)

• After we found max value Vmax (see previous slide), we start removing 

one item i at a time and ask: is there still knapsack with value Vmax?

• If the answer is no, the solution has to include item i

• We check for all n items in turn



Reductions

• Reduction from one problem to another is a routine approach in 

algorithm design

• For any new problem we ask: maybe I already know how to solve it? 

Maybe I can rephrase it as a shortest-path problem? Maybe I can 

invoke a known algorithm multiple times?

Informally: 

Problem p1 reduces to p2 if given a poly-time algorithm for solving 

p2, we can use this algorithm as a subroutine for solving p1:

p1≤ pp2

Examples:

• Computing median reduces to sorting

• All pair shortest paths reduces to n invocations of the single-source 

shortest path



Polynomial-time reductions

Formal definition: Decision problem X is (polynomial-time) reducible to decision 

problem Y if we can convert any instance of X into an instance of Y and the 

following three conditions hold:

• The new converted input for Y has size polynomial in the original input for X

• The conversion and invocation of solution for Y is done in polynomial number of 

steps

• For any instance of problem X the algorithm for Y returns exactly the same 

decision

Notation: X ≤ p Y

Instance of X Instance of Y

y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

x



Complexity class NP

The complexity class NP is defined to include all the decision 

problems from class P but allow for the inclusion of problems that 

may not be in P

Every problem in NP can be solved in exponential time via 

Exhaustive Search

The solution must be efficiently verifiable: 

• Solutions (certificates) always have length polynomial in input 

size

• Proposed solution can be verified in polynomial time

Checking a given solution is polynomial, 

number of candidates can be exponential



Checking solution to Sudoku can be done in 

polynomial time. So sudoku is in NP

Class NP—example



Class NP—example

Checking the total value of a proposed knapsack can 

be done in polynomial time. So knapsack is in NP

Problem: is there a knapsack with value $40?

• {3, 4} has value $40 (and weight 11)

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance 

(weight limit W = 11)



Classic problem in NP: Satisfiability

Given a logical expression, can we assign “True” and “False” to the variables to 

satisfy the equation (make the expression True)?

SAT. Given a CNF formula ϕ, does it have a satisfying truth assignment?

3-SAT. A SAT formula where each clause contains exactly 3 literals (corresponding to 

different variables)

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Satisfying instance: x1 = 1, x2 = 1, x3 = 0, x4 =  0

SAT  ,3-SAT ∈ 𝖭𝖯

• Certificate: truth assignment to variables (poly-size)

• Poly-time verifier: check if assignment makes ϕ true



Which problems in NP are tractable?

The definitions seem very similar…

Min vertex coverSpanning tree

Hamiltonian Cycle

Shortest path Longest path

Eulerian cycle



Defining Intractability

• Complexity class NP contains different problems: some of them 

we call tractable and others intractable

• For the latter we do not know if a polynomial solution exists 

• Problems in NP are still decidable (solvable): if only we could 

magically guess the right solution, we could then quickly test it

• How do we formally define intractability?

• Evidence of intractability: relative difficulty

TSP is “at least as hard as” the list of really hard problems



Completeness, or relative hardness

• Suppose p1 reduces to p2: p1 ≤ p p2

• If we know that p1 cannot be solved efficiently in poly-time, 

then p2 cannot be solved in poly-time either

• Contrapositive use of reductions:

If p1 is not in P then neither is p2

• p2 is at least as hard as p1

• To use this, we need to have at least one problem that is not 

in P: this is the hardest problem in NP, and we call it NP-

complete



NP-completeness

• By definition: solving 1 NP-complete problem in poly-time will 

provide a solution to all NP problems [P=NP]

• Interpretation: an NP-complete problem encodes simultaneously all 

problems for which the solution can be efficiently recognized (a 

“universal problem”)

• Can such problems really exist? 



Cook-Levin theorem

NP-complete problems exist

Any computer program can be represented by a circuit-SAT.

Circuit-SAT is NP-complete

(Cook 71, Levin 73)

You’ll see the proof in CSCI 361



The logic of reductions

Suppose we can reduce problem A to problem X in polynomial time

• If A is in P then nothing is known about X – we can always encode the 

easy instance into a hard one

• If X is in P then A is also in P: solve X in poly time + poly time of 

reduction

• If A is not in P then X is not in P (contrapositive): suppose X is in P then A 

should also be in P – but it is not

• If X is not in P then nothing known about A – A might have a poly solution 

– we just encoded an easy problem into a  hard problem 

A ≤ p X
Known 
problem

New 
problem

To prove that a new problem X is NP-complete,

reduce a known NP complete problem A to X



Decision tree
Decision problems can be expressed as a tree of decisions or choices

x2

x1

x2

x3 x3 x3 x3

Alternative definition of class NP:

The decision tree may have exponential number of leaves

The height of the decision tree must be polynomial in input size

Each node of the tree must be encoded in polynomial number of bits

Each leaf represents a solution (certificate) and can be reached in polynomial 

number of steps

0 1

ϕ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)



Class NP: Non-deterministic Polynomial

• When searching for a satisfying assignment, we allow to use function 

choose(b) which randomly (non-deterministically) chooses the next 

decision

• Once all the selections have been made – the solution can be easily 

verified

• We allow a random “guess”. If we are lucky – we found the satisfying 

assignment

ϕ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

x2

x1

x2

x3 x3 x3 x3

0 1

Vast majority of natural computational problems are in NP



P vs NP

We know that every problem in P is also in NP

What about the reverse?

• If a problem can be efficiently verified, does that mean it

can be efficiently solved in the first place?

• Or, do there exist problems that can be verified quickly 

that are provably impossible to solve quickly?

The answer: we do not know



Million Dollar Question: 

P vs NP

https://medium.com/@mpreziuso/

https://medium.com/%40mpreziuso/


Is P=NP?

Widely believed: P≠ NP

But this has not been proved!

Arguments:

1. P≠ NP (psychological). Many smart people tried to solve at least 

one NP-complete problem and never succeeded 

2. P≠ NP (philosophical). To prove something is much more difficult 

than to verify somebody else’s proof. Verifying in poly-time does 

not imply that we can solve in poly-time. Can mathematical 

creativity be automated?

3. P=NP (mathematical). There are surprisingly efficient polynomial-

time algorithms (i.e. Number of inversions, Matrix multiplication) 

which seem count-intuitive and difficult to discover. So maybe we 

just need to try harder?



NP: name

Non-deterministic Polynomial (Knuth, Terminological Proposal, 1974)

Alternative name:

PET
Possibly Exponential Time (currently)

Provably Exponential Time (if proven that P ≠ NP)

Previously Exponential Time (if proven that P = NP)



23 NP-complete problems
(Karp, 72)

Reduction of Circuit-SAT to 3-SAT

Some of NP-complete problems discovered by using reductions from Circuit-SAT



Proving NP-completeness

The new problem X is NP-complete if:

1. X is in NP (solution is verifiable in polynomial time)

2. A known NP-complete problem is polynomial-time reducible to X



Example 1. Vertex cover

So if we can show that A≤pX AND we know that A is hard (NP-complete), 

then X must be NP-complete. 

As an example, we will prove that Vertex-Cover is NP-complete

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover 

Input: undirected graph G(V,E) and an integer k

Output: Yes, if there is a subset C of k vertices such that, for every 

edge (v,w) of G, v ∈ C or w ∈ C (possibly both). No, otherwise. 

VERTEX-COVER as a decision problem



1. Vertex-Cover is in NP

Let’s number vertices of G from 1 to N. 

If  somebody hands us a collection C of k numbers each in interval from 1 to 

N, we can verify if this is a vertex cover in polynomial time.

For this, we insert all the numbers of C into a dictionary, and then we 

examine each of the edges in G to make sure that, for each edge (v,w) in G, v 

is in C or w is in C. 

• If we ever find an edge with neither of its end-vertices in G, then we 

output “no.”

• If we run through all the edges of G so that each has an end-vertex in C, 

then we output “yes.” 

Such a verification runs in polynomial time O(m) = O(n2). 

Thus, VERTEX-COVER is in NP.



2. Reduction of 3-SAT to Vertex-Cover

We take a general instance of 3-SAT problem

Each 3-SAT instance contains n literals x1, x2, … xn and m clauses 

𝜙 = (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

4 literals

3 clauses

We convert the instance into a graph as following:

For each literal i, we create 2 nodes 𝑥𝑖 and ഥ𝑥𝑖 with an edge between 

them: truth-setting component

For each clause we create 3 nodes connected into a triangle. Each node 

has an additional edge to the corresponding literal: clause-satisfying 

component



For each literal, create a pair of nodes

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑



For each clause, create a triangle

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑



Connect each variable in the clause to the 

corresponding literal

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This construction clearly runs in polynomial time



Connect each variable in the clause to the 

corresponding literal

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This construction clearly runs in polynomial time



Connect each variable in the clause to the 

corresponding literal

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Example graph G as an instance of the VERTEX-COVER problem 
constructed from the formula 𝜙

Truth-
setting 

component

Clause-
satisfying 

component



If we can find a vertex cover of size at most k=n + 2m (n-

number of literals, m-number of clauses), then this vertex cover 

represents a truth assignment for 3-SAT problem 

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑



Proof: 1/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain two vertices from each clause-satisfying 
component (to cover all edges of a triangle). 



Proof: 2/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain two vertices from each clause-satisfying 
component (to cover all edges of a triangle). 

Now all the outgoing edges from yellow vertices are covered too.



Proof: 3/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This leaves one edge incident to a clause-satisfying component that is not 
covered by a vertex in the clause-satisfying component (colored red).
Hence, each red edge must be covered by the other endpoint, which is labeled 
with a literal. This literal node will also cover an edge in the Truth-setting 
component



Proof: 4/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Thus, if we assign the literal in 𝜙 associated with this node 1, then each clause in 
𝜙 will be satisfied (because each clause is a disjunction, and it is enough that at 
least one of the literals is True). 

Assignment: x1=1, x2=1, x3=0, x4=1.

Hence, all of 𝜙 becomes satisfied. 

x1=1

x2=1
x3=0



Conclusion

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Thus, if we can find a vertex cover of size at most k=n+2m in this graph, then we 
can find a set of variables that satisfy the entire 3-SAT formula.

If we knew how to solve vertex-cover, we would be able to solve 3-SAT.

x1=1

x2=1
x3=0



We have shown that:

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover 

VERTEX-COVER is NP-complete

This reduction uses gadgets (components)

Constructing them is a skill which requires a lot of practice.
You will get this practice in the course on the Theory of Computation



Example 2. CLIQUE

Intuitively, a clique is a subset of vertices that are all connected by a 

direct edge. 

We will prove that CLIQUE is NP-complete

1. CLIQUE is in NP

2. VERTEX-COVER ≤p CLIQUE

Input: undirected graph G(V,E) and an integer k.

Output: Yes, if there is a subset C of k vertices such that, for every pair 

of vertices u,v in C, there is an edge (u,v) ∈ E. No, otherwise. 

CLIQUE as a decision problem



1. CLIQUE is in NP

Can we check the solution to CLIQUE in polynomial time? 

We are given an input graph G (V, E),|V| = n, and an integer k, and 

we have a proposed solution: subset C.

1. We check whether the size of C is k

2. Then for every pair of vertices u,v in C  we check whether edge 

(u,v) ∈ E. 

The first check can be completed in O(n) steps. 

The second check in O(n2) steps.

Thus the entire verification can be completed in poly-time O(n2). 

CLIQUE is in NP



2. Reduction of Vertex-Cover to CLIQUE

Given an undirected graph G (V,E), we define the complement of G 

as G’ = (V,E’), where E’ contains all edges (u,v) such that (u,v) ∉ E

Essentially, G’ has the same set of vertices as G, none of the edges 

in G, and all the edges that do not exist in G. 

Observation: if there is a Vertex-Cover C of size k in G, then V – C is 

a Clique of G’ of size n - k.

𝑧

𝑦

𝑥

𝑢

𝑣

𝑤 𝑧

𝑦

𝑥

𝑢

𝑣

𝑤

G G’



VERTEX-COVER ≤p CLIQUE: Proof 1/3 

Observation: if there is a Vertex-Cover C of size k in G, then V – C is a 

Clique of G’ of size n - k.

Let (u,v) be an arbitrary edge in E. 

Then, by construction, (u,v) ∉ E’, which implies that at least one of v or u 

does not belong to Clique in G’ (both cannot be a part of a clique because 

there is no edge between them).

𝑢
𝑣

G

𝑢
𝑣

G’

Both u and v cannot be part of a 
clique – not connected by an edge



Let’s assume, without lost of generality, that the vertex which does not 

belong to Clique is vertex v. Then v must belong to a Vertex-Cover of G to 

cover the edge (u,v) in E.

Since we have chosen the edge (u,v) from E arbitrarily, every such edge 

must be covered by one of vertices in C. 

𝑢
𝑣

G

𝑢
𝑣

G’

If u is a part of clique C in G’, then v must be part of a vertex cover in G 

VERTEX-COVER ≤p CLIQUE: Proof 2/3 



Therefore, each vertex that not a part of clique in G’, must be in a vertex 

cover of G to cover its adjacent edge.

Hence to obtain an answer whether a given graph G has a VERTEX-COVER 

of size k, it is enough to answer whether the complement graph G’ 

contains a CLIQUE of size n-k

Vertex–Cover of size 2 in G Clique of size 4 in G’

VERTEX-COVER ≤p CLIQUE: Proof 3/3 

𝑧

𝑦

𝑥

𝑢

𝑣

𝑤 𝑧

𝑦

𝑥

𝑢

𝑣

𝑤



We have shown that:

1. Clique is in NP

2. Vertex-Cover ≤p Clique (the reduction runs in poly-time)

CLIQUE is NP-complete

This reduction uses properties of graph complements.



User’s Guide for NP-complete problems

• If you suspect a problem you're looking at is NP-complete, the 

first step is to look for it in the catalogue of known NP-complete 

problems. 

• If it is not there - find as similar an NP-complete problem as you 

can, and prove a reduction showing that a similar NP-complete 

problem is reducible to the one you want to solve. 

• If neither of these works, you probably should continue to try to 

find an efficient algorithm…

https://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455


Example: Longest-Path

Suppose you want to solve the Longest path problem (unweighted 

version).

This problem can be formulated as a decision problem. If the path 

with k edges exists, then check if there is a path with (k+1) edges 

etc., until you find the max number of edges between vertices s 

and t. 

Input: Undirected graph G(V,E), integer k and two vertices s and t.

Output: Yes, if there is a (simple) path of length k (edges) from s to t. 

No, otherwise. 

Longest (unweighted) path between 2 vertices

Is this problem NP-complete?

https://en.wikipedia.org/wiki/Longest_path_problem


Look at known NP-complete problems

Reduction of Circuit-SAT to 3-SAT

Which problem seems most similar to the Longest-Path?



Look at known NP-complete problems

Reduction of Circuit-SAT to 3-SAT

Which problem seems most similar to the Longest-Path?



Reduce HAMILTONIAN-CYCLE to LONGEST-PATH

Hamiltonian-Cycle problem:

Does a given graph have a cycle visiting each vertex exactly once? 

Here's a solution, using longest path as a subroutine:

Algorithm hamiltonian_cycle (G)
for each edge (u,v) of G:

if longest_path (G, k=n-1, u , v):
return Yes      # path + edge form a cycle

return No

We have shown that if we had a poly-time solution to the Longest-Path 

problem, then we could solve the Hamiltonian-Path problem with m 

invocations of this solution (in total polynomial time).

This is however impossible, because we know that Hamiltonian-Path is NP-

complete.

Conclusion: Longest-Path must also be NP-complete.



Dealing with NP-complete problems

• Choose a better abstraction. Maybe the real-life problem you are 

trying to solve can be modeled differently. 

Example: sequence assembly problem which uses Eulerian 

path instead of a Hamiltonian path

• Solve the problem approximately instead of exactly. A lot of the 

time it is possible to come up with a provably fast algorithm, 

that doesn't solve the problem exactly but comes up with a 

solution you can prove is close to right. 

• Use an exponential time solution anyway. If you really have to 

solve the problem exactly, you can implement an exponential 

algorithm. In many cases you can design an exponential 

algorithm which is still better than the Brute-Force.



Sample algorithms for NP-complete 

problems
• Solve the problem approximately. 

Example: approximate solution to knapsack problem using greedy and 

dynamic programming heuristics: 

video links (Stanford course):
• https://youtu.be/FE413JeEBts
• https://youtu.be/QFZ7E3qgNwM
• https://youtu.be/KB-ueY1VNTU
• https://youtu.be/GVrltG08knU
• https://youtu.be/tOuAvsCvPvg
• https://youtu.be/5heXe_tMSi8

• Improve exponential-time solution. 

Example: better algorithm for Vertex Cover:

video links (Stanford course): 
• https://youtu.be/9eLvyM0gTWo
• https://youtu.be/aj7WT49y-qE
• https://youtu.be/yy3meMHpk10

https://youtu.be/FE413JeEBts
https://youtu.be/QFZ7E3qgNwM
https://youtu.be/KB-ueY1VNTU
https://youtu.be/GVrltG08knU
https://youtu.be/tOuAvsCvPvg
https://youtu.be/5heXe_tMSi8
https://youtu.be/9eLvyM0gTWo
https://youtu.be/aj7WT49y-qE
https://youtu.be/yy3meMHpk10

