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Real-time systems are computational platforms that have real-time constraints,

where computations must complete in a given amount of time. Examples include

antilock braking systems on cars, video and audio processing systems, operating

systems kernels, and web applications. In these real-time applications, if a soft-

ware component takes too much time to finish, then the entire system can crash

(sometimes literally).

Suppose, then, that you are designing a real-time web application for users to

find A-list celebrities who are closest to them in age. In other words, your system

should maintain a set of celebrities, sorted by their birth dates. In addition, it should

allow for celebrities to be added to your set (namely, when they become popular

enough to be added to the A-list) and removed from your set (say, when they fall

off the A-list).

Most importantly, your system should support a nearest-neighbor query, where
a user specifies their birth date and your system then returns the ten A-list stars

closest in age to the user. The real-time constraint for your system is that it has to

respond in at most a few hundred milliseconds or users will notice the delay and

go to your competitor. Of course, if users would simply be looking up celebrities

with a specific birth date, you could use a lookup table, indexed by birth date, to

implement your database. But such schemes don’t support fast nearest neighbor

queries.

Note that a binary search tree, T , provides almost everything you need in or-

der to implement your system, since it can maintain a sorted set of items so as to

perform insertions and removals based on their keys (which in this case are birth

dates). It also supports nearest-neighbor queries, in that, for any key k, we can

perform a search in T for the smallest key that is greater than or equal to k, or,
alternatively, for the largest key that is less than or equal to k. Given either of the

nodes in T storing such a key, we can then perform a forward or backward inorder

traversal of T starting from that point to list neighboring smaller or larger keys.

The problem is that without some way of limiting the height of T , the worst-
case running time for performing searches and updates in T can be linear in the

number of items it stores. Indeed, this worst-case behavior occurs if we insert and

delete keys in T in a somewhat sorted order, which is likely for your database, since

celebrities are typically added to the A-list when they are in their mid-twenties and

removed when they are in their mid-fifties. Without a way to restructure T while

you are using it, this kind of updating will result in T becoming unbalanced, which

will result in poor performance for searches and updates in your system.

Fortunately, there is a solution. Namely, as we discuss in this chapter, there are

ways of restructuring a binary search tree while it is being used so that it can guar-

antee logarithmic-time performance for searches and updates. These restructuring

methods result in a class of data structures known as balanced binary search trees.
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4.1 Ranks and Rotations

Recall that a binary search tree stores elements at the internal nodes of a proper

binary tree so that the key at each left child is not greater than its parent’s key and

the key at each right child is not less than its parent’s key. Searching in a binary

search tree can be described as a recursive procedure, as we did in the previous

chapter (in Algorithm 3.5), or as an iterative method, as we show in Algorithm 4.1.

Algorithm IterativeTreeSearch(k, T ):
Input: A search key k and a binary search tree, T
Output: A node in T that is either an internal node storing key k or the external

node where an item with key k would belong in T if it existed

v ← T.root()
while v is not an external node do

if k = key(v) then
return v

else if k < key(v) then
v ← T.leftChild(v)

else
v ← T.rightChild(v)

return v
Algorithm 4.1: Searching a binary search tree iteratively.

As mentioned above, the worst-case performance of searching in a binary

search tree can be as bad as linear time, since the time to perform a search is pro-

portional to the height of the search tree. Such a performance is no better than that

of looking through all the elements in a set to find an item of interest. In order to

avoid this poor performance, we need ways of maintaining the height of a search

tree to be logarithmic in the number of nodes it has.

Balanced Binary Search Trees

The primary way to achieve logarithmic running times for search and update oper-

ations in a binary search tree, T , is to perform restructuring actions on T based on

specific rules that maintain some notion of “balance” between sibling subtrees in

T . We refer to a binary search tree that can maintain a height of O(logn) through
such balancing rules and actions as a balanced binary search tree. Intuitively, the
reason balance is so important is that when a binary search tree T is balanced, the

number of nodes in the tree increases exponentially as one moves down the levels

of T . Such an exponential increase in size implies that if T stores n items, then it

will have height O(logn).
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In this chapter, we discuss several kinds of balanced binary search trees. Three

of these search trees—AVL trees, red-black trees, and weak AVL trees—are rank-
balanced trees, where we define an integer rank, r(v), for each node, v, in a binary
search tree, T , where r(v) is either the height of v or a value related to the height

of v. Balance in such a tree, T , is enforced by maintaining certain rules on the

relative ranks of children and sibling nodes in T . These three rank-balanced trees

have slightly different rules guaranteeing that the height of a binary search tree

satisfying these rules has logarithmic height. The final type of balanced binary

search tree we discuss in this chapter is the splay tree, which achieves its balance

in an amortized way by blindly performing a certain kind of restructuring action,

called splaying, after every access and update operation.

One restructuring operation, which is used in all of the balanced binary search

trees we discuss is known as a rotation, of which there are four types. Here, we

describe a unified restructuring operation, called trinode restructuring, which com-

bines the four types of rotations into one action. The trinode restructuring opera-

tion involves a node, x, which has a parent, y, and a grandparent, z. This operation,
restructure(x), is described in detail in Algorithm 4.2 and illustrated in Figure 4.3.

At a high level, a trinode restructure temporarily renames the nodes x, y, and z as

a, b, and c, so that a precedes b and b precedes c in an inorder traversal of T . There
are four possible ways of mapping x, y, and z to a, b, and c, as shown in Figure 4.3,
which are unified into one case by our relabeling. The trinode restructure then re-

places z with the node called b, makes the children of this node be a and c, and
makes the children of a and c be the four previous children of x, y, and z (other

than x and y) while maintaining the inorder relationships of all the nodes in T .

Algorithm restructure(x):

Input: A node x of a binary search tree T that has both a parent y and a grand-
parent z

Output: Tree T after a trinode restructuring (which corresponds to a single or

double rotation) involving nodes x, y, and z

1: Let (a, b, c) be a left-to-right (inorder) listing of the nodes x, y, and z, and let

(T0, T1, T2, T3) be a left-to-right (inorder) listing of the four subtrees of x, y,
and z that are not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b.
3: Let a be the left child of b and let T0 and T1 be the left and right subtrees of a,

respectively.

4: Let c be the right child of b and let T2 and T3 be the left and right subtrees of

c, respectively.
5: Recalculate the heights of a, b, and c, (or a “standin” function for height), from

the corresponding values stored at their children, and return b.

Algorithm 4.2: The trinode restructure operation for a binary search tree.
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Figure 4.3: Schematic illustration of a trinode restructure operation (Algorithm 4.2).

Parts (a) and (b) show a single rotation, and parts (c) and (d) show a double rotation.

The modification of a tree T caused by a trinode restructure operation is often

called a rotation, because of the geometric way we can visualize the way it changes

T . If b = y (see Algorithm 4.2), the trinode restructure method is called a single
rotation, for it can be visualized as “rotating” y over z. (See Figure 4.3a and b.)

Otherwise, if b = x, the trinode restructure operation is a double rotation, for it can
be visualized as first “rotating” x over y and then over z. (See Figure 4.3c and d.)
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4.2 AVL Trees
The first rank-balanced search tree we discuss is the AVL tree, which is named after

its inventors, Adel’son-Vel’skii and Landis, and is also the oldest known balanced

search tree, having been invented in 1962. In this case, we define the rank, r(v), of
a node, v, in a binary tree, T , simply to be the height of v in T . The rank-balancing
rule for AVL trees is then defined as follows:

Height-balance Property: For every internal node, v, in T , the heights of the chil-
dren of v may differ by at most 1. That is, if a node, v, in T has children, x
and y, then |r(x)− r(y)| ≤ 1.

(See Figure 4.4.)
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Figure 4.4: An AVL tree. Heights are shown next to the nodes.

An immediate consequence of the height-balance property is that any subtree

of an AVL tree is itself an AVL tree. The height-balance property has also the im-

portant consequence of keeping the height small, as shown in the following propo-

sition.

Theorem 4.1: The height of an AVL tree, T , storing n items is O(logn).

Proof: Instead of trying to find an upper bound for the height of an AVL tree

directly, let us instead concentrate on the “inverse problem” of characterizing the

minimum number of internal nodes, nh, of an AVL tree with height h. As base

cases for a recursive definition, notice that n1 = 1, because an AVL tree of height

1 must have at least one internal node, and n2 = 2, because an AVL tree of height

2 must have at least two internal nodes. Now, for the general case of an AVL tree,

T , with the minimum number of nodes for height, h, note that the root of such a

tree will have as its children’s subtrees an AVL tree with the minimum number of

nodes for height h − 1 and an AVL tree with the minimum number of nodes for

height h − 2. Taking the root itself into account, we obtain the following formula
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for the general case, h ≥ 3:

nh = 1 + nh−1 + nh−2.

This formula implies that the nh values are strictly increasing as h increases, in a

way that corresponds to the Fibonacci sequence (e.g., see Exercise C-4.3). In other

words, nh−1 > nh−2, for h ≥ 3, which allows us to simplify the above formula as

nh > 2nh−2.

This simplified formula shows that nh at least doubles each time h increases by 2,
which intuitively means that nh grows exponentially. Formally, this simplified for-

mula implies that

nh > 2
h
2
−1. (4.1)

By taking logarithms of both sides of Equation (4.1), we obtain

lognh >
h

2
− 1,

from which we get

h < 2 log nh + 2, (4.2)

which implies that an AVL tree storing n keys has height at most 2 log n+ 2.

In fact, the bound of 2 log n+2, from Equation (4.2), for the height of an AVL

tree is an overestimate. It is possible, for instance, to show that the height of an

AVL tree storing n items is at most 1.441 log (n + 1), as is explored, for instance,
in Exercise C-4.4. In any case, by Theorem 4.1 and the analysis of binary search

trees given in Section 3.1.1, searching in an AVL tree runs in O(logn) time. The

important issue remaining is to show how to maintain the height-balance property

of an AVL tree after an insertion or removal.

Insertion

An insertion in an AVL tree T begins as in an insert operation described in Sec-

tion 3.1.3 for a (simple) binary search tree. Recall that this operation always inserts

the new item at a node w in T that was previously an external node, and it makes

w become an internal node with operation expandExternal. That is, it adds two
external-node children to w. This action may violate the height-balance property,

however, for some nodes increase their heights by one. In particular, node w, and
possibly some of its ancestors, increase their heights by one. Therefore, let us

describe how to restructure T to restore its height balance.

In the AVL tree approach to achieving balance, given a binary search tree, T , we
say that a node v of T is balanced if the absolute value of the difference between the
heights of the children of v is at most 1, and we say that it is unbalanced otherwise.
Thus, the height-balance property characterizing AVL trees is equivalent to saying

that every internal node is balanced.



122 Chapter 4. Balanced Binary Search Trees

Suppose that T satisfies the height-balance property, and hence is an AVL tree,

prior to our inserting the new item. As we have mentioned, after performing the

operation expandExternal(w) on T , the heights of some nodes of T , including w,
increase. All such nodes are on the path of T from w to the root of T , and these

are the only nodes of T that may have just become unbalanced. (See Figure 4.5a.)

Of course, if this happens, then T is no longer an AVL tree; hence, we need a

mechanism to fix the “unbalance” that we have just caused.
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Figure 4.5: An example insertion of an element with key 54 in the AVL tree of

Figure 4.4: (a) after adding a new node for key 54, the nodes storing keys 78
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance

property. We show the heights of nodes next to them, and we identify the nodes x,
y, and z.

We restore the balance of the nodes in the binary search tree T by a simple

“search-and-repair” strategy. In particular, let z be the first node we encounter in

going up from w toward the root of T such that z is unbalanced. (See Figure 4.5a.)
Also, let y denote the child of z with higher height (and note that y must be an

ancestor of w). Finally, let x be the child of y with higher height (and if there

is a tie, choose x to be an ancestor of w). Note that node x could be equal to w
and x is a grandchild of z. Since z became unbalanced because of an insertion in

the subtree rooted at its child y, the height of y is 2 greater than its sibling. We

now rebalance the subtree rooted at z by calling the trinode restructuring method,

restructure(x), described in Algorithm 4.2. (See Figure 4.5b.)

Thus, we restore the height-balance property locally at the nodes x, y, and z.
In addition, since after performing the new item insertion the subtree rooted at b
replaces the one formerly rooted at z, which was taller by one unit, all the ancestors
of z that were formerly unbalanced become balanced. (The justification of this fact

is left as Exercise C-4.9.) Therefore, this one restructuring also restores the height-

balance property globally. That is, one rotation (single or double) is sufficient to

restore the height-balance in an AVL tree after an insertion. Of course, we may

have to update the height values (ranks) of O(logn) nodes after an insertion, but

the amount of structural changes after an insertion in an AVL tree is O(1).
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Removal

We begin the implementation of the remove operation on an AVL tree T as in a

regular binary search tree. We may have some additional work, however, if this

update violates the height-balance property.

In particular, after removing an internal node with operation removeAboveEx-
ternal and elevating one of its children into its place, there may be an unbalanced

node in T on the path from the parent w of the previously removed node to the root

of T . (See Figure 4.6a.) In fact, there can be one such unbalanced node at most.

(The justification of this fact is left as Exercise C-4.8.)
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Figure 4.6: Removal of the element with key 32 from the AVL tree of Figure 4.4:

(a) after removing the node storing key 32, the root becomes unbalanced; (b) a

(single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .
In particular, let z be the first unbalanced node encountered going up fromw toward

the root of T . Also, let y be the child of z with larger height (note that node y is

the child of z that is not an ancestor of w). Finally, let x be the child of y defined

as follows:

• if one of the children of y is taller than the other, let x be the taller child of y;
• else (both children of y have the same height), let x be the child of y on the

same side as y (that is, if y is a left child, let x be the left child of y, else let
x be the right child of y).

In any case, we then perform a restructure(x) operation, which restores the

height-balance property locally, at the subtree that was formerly rooted at z and is

now rooted at the node we temporarily called b. (See Figure 4.6b.)
This trinode restructuring may reduce the height of the subtree rooted at b by 1,

which may cause in turn an ancestor of b to become unbalanced. Thus, a single

trinode restructuring may not restore the height-balance property globally after a

removal. So, after rebalancing z, we continue walking up T looking for unbalanced
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nodes. If we find another unbalanced node, we perform a restructure operation to

restore its balance, and continue marching up T looking for more, all the way to

the root.

Since the height of T is O(logn), where n is the number of items, by Theo-

rem 4.1, O(logn) trinode restructurings are sufficient to restore the height-balance
property.

Pseudo-code for AVL Trees

Pseudo-code descriptions of the metods for performing the insertion and removal

operations in an AVL tree are given in Algorithm 4.7.

We also include a common rebalancing method, rebalanceAVL, which re-

stores the balance to an AVL tree after performing either an insertion or a removal.

This method, in turn, makes use of the trinode restructure operation to restore

local balance to a node after an update. The rebalanceAVL method continues

testing for unbalance up the tree, and restoring balance to any unbalanced nodes it

finds, until it reaches the root.

Summarizing the Analysis of AVL Trees

We summarize the analysis of the performance of AVL trees as follows. (See Ta-

ble 4.8.) Operations find, insert, and remove visit the nodes along a root-to-leaf

path of T , plus, possibly their siblings, and spend O(1) time per node. The in-

sertion and removal methods perform this path traversal twice, actually, once down

this path to locate the node containing the update key and once up this path after the

update has occurred, to update height values (ranks) and do any necessary rotations

to restore balance. Thus, since the height of T is O(logn) by Theorem 4.1, each of

the above operations takes O(logn) time. That is, we have the following theorem.

Theorem 4.2: An AVL tree for n key-element items uses O(n) space and exe-
cutes the operations find, insert and remove to each take O(logn) time.

Operation Time Structural Changes
find O(logn) none

insert O(logn) O(1)
remove O(logn) O(logn)

Table 4.8: Performance of an n-element AVL tree. The space usage is O(n).
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Algorithm insertAVL(k, e, T ):
Input: A key-element pair, (k, e), and an AVL tree, T
Output: An update of T to now contain the item (k, e)
v ← IterativeTreeSearch(k, T )
if v is not an external node then

return “An item with key k is already in T ”
Expand v into an internal node with two external-node children
v.key← k
v.element← e
v.height← 1
rebalanceAVL(v, T )

Algorithm removeAVL(k, T ):
Input: A key, k, and an AVL tree, T
Output: An update of T to now have an item (k, e) removed

v ← IterativeTreeSearch(k, T )
if v is an external node then

return “There is no item with key k in T ”
if v has no external-node child then

Let u be the node in T with key nearest to k
Move u’s key-value pair to v
v ← u

Let w be v’s smallest-height child

Remove w and v from T , replacing v with w’s sibling, z
rebalanceAVL(z, T )

Algorithm rebalanceAVL(v, T ):
Input: A node, v, where an imbalance may have occurred in an AVL tree, T
Output: An update of T to now be balanced

v.height← 1 + max{v.leftChild().height, v.rightChild().height}
while v is not the root of T do

v ← v.parent()
if |v.leftChild().height− v.rightChild().height| > 1 then

Let y be the tallest child of v and let x be the tallest child of y
v ← restructure(x) // trinode restructure operation

v.height← 1 + max{v.leftChild().height, v.rightChild().height}

Algorithm 4.7: Methods for item insertion and removal in an AVL tree, as well

as the method for rebalancing an AVL tree. This version of the rebalance method

does not include the heuristic of stopping as soon as balance is restored, and instead

always performs any needed rebalancing operations all the way to the root.


