25.1-10

Give an efficient algorithm to find the length (number of edges) of a minimumlength negative-weight cycle in a graph.

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph $G=(V, E)$. The resulting algorithm, known as the Floyd-Warshall algorithm, runs in $\Theta\left(V^{3}\right)$ time. As before, negative-weight edges may be present, but we assume that there are no negative-weight cycles. As in Section 25.1, we follow the dynamic-programming process to develop the algorithm. After studying the resulting algorithm, we present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a shortest path differently from how we characterized it in Section 25.1. The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a simple path $p=\left\langle v_{1}, v_{2}, \ldots, v_{l}\right\rangle$ is any vertex of p other than ν_{1} or ν_{l}, that is, any vertex in the set $\left\{v_{2}, v_{3}, \ldots, v_{l-1}\right\}$.

The Floyd-Warshall algorithm relies on the following observation. Under our assumption that the vertices of G are $V=\{1,2, \ldots, n\}$, let us consider a subset $\{1,2, \ldots, k\}$ of vertices for some k. For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1,2, \ldots, k\}$, and let p be a minimum-weight path from among them. (Path p is simple.) The FloydWarshall algorithm exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. The relationship depends on whether or not k is an intermediate vertex of path p.

- If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set $\{1,2, \ldots, k-1\}$. Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$ is also a shortest path from i to j with all intermediate vertices in the set $\{1,2, \ldots, k\}$.
- If k is an intermediate vertex of path p, then we decompose p into $i \stackrel{p_{1}}{\sim} k \stackrel{p_{2}}{\sim} j$, as Figure 25.3 illustrates. By Lemma 24.1, p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k\}$. In fact, we can make a slightly stronger statement. Because vertex k is not an intermediate vertex of path p_{1}, all intermediate vertices of p_{1} are in the set $\{1,2, \ldots, k-1\}$. There-

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p_{1}, the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. The same holds for path p_{2} from vertex k to vertex j.
fore, p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Similarly, p_{2} is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortestpath estimates that differs from the one in Section 25.1. Let $d_{i j}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$. When $k=0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all. Such a path has at most one edge, and hence $d_{i j}^{(0)}=w_{i j}$. Following the above discussion, we define $d_{i j}^{(k)}$ recursively by
$d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .\end{cases}$
Because for any path, all intermediate vertices are in the set $\{1,2, \ldots, n\}$, the matrix $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives the final answer: $d_{i j}^{(n)}=\delta(i, j)$ for all $i, j \in V$.

Computing the shortest-path weights bottom up

Based on recurrence (25.5), we can use the following bottom-up procedure to compute the values $d_{i j}^{(k)}$ in order of increasing values of k. Its input is an $n \times n$ matrix W defined as in equation (25.1). The procedure returns the matrix $D^{(n)}$ of shortestpath weights.

```
Floyd-Warshall \((W)\)
\(n=W\). rows
\(D^{(0)}=W\)
for \(k=1\) to \(n\)
    let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                \(d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
return \(D^{(n)}\)
```

Figure 25.4 shows the matrices $D^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply nested for loops of lines $3-7$. Because each execution of line 7 takes $O(1)$ time, the algorithm runs in time $\Theta\left(n^{3}\right)$. As in the final algorithm in Section 25.1, the code is tight, with no elaborate data structures, and so the constant hidden in the Θ-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the FloydWarshall algorithm. One way is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix. Exercise 25.1-6 asks you to implement this method so that it runs in $O\left(n^{3}\right)$ time. Given the predecessor matrix Π, the Print-All-Pairs-Shortest-Path procedure will print the vertices on a given shortest path.

Alternatively, we can compute the predecessor matrix Π while the algorithm computes the matrices $D^{(k)}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\Pi=\Pi^{(n)}$ and we define $\pi_{i j}^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2, \ldots, k\}$.

We can give a recursive formulation of $\pi_{i j}^{(k)}$. When $k=0$, a shortest path from i to j has no intermediate vertices at all. Thus,
$\pi_{i j}^{(0)}= \begin{cases}\text { NIL } & \text { if } i=j \text { or } w_{i j}=\infty, \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty .\end{cases}$
For $k \geq 1$, if we take the path $i \leadsto k \leadsto j$, where $k \neq j$, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Otherwise, we

$$
\begin{aligned}
& D^{(0)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right) \\
& D^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

Figure 25.4 The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.
choose the same predecessor of j that we chose on a shortest path from i with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. Formally, for $k \geq 1$,
$\pi_{i j}^{(k)}=\left\{\begin{array}{ll}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{array}\right.$,
We leave the incorporation of the $\Pi^{(k)}$ matrix computations into the FloydWARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of $\Pi^{(k)}$ matrices that the resulting algorithm computes for the graph of Figure 25.1. The exercise also asks for the more difficult task of proving that the predecessor subgraph $G_{\pi, i}$ is a shortest-paths tree with root i. Exercise 25.2-7 asks for yet another way to reconstruct shortest paths.

Transitive closure of a directed graph

Given a directed graph $G=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, we might wish to determine whether G contains a path from i to j for all vertex pairs $i, j \in V$. We define the transitive closure of G as the graph $G^{*}=\left(V, E^{*}\right)$, where $E^{*}=\{(i, j):$ there is a path from vertex i to vertex j in $G\}$.

One way to compute the transitive closure of a graph in $\Theta\left(n^{3}\right)$ time is to assign a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a path from vertex i to vertex j, we get $d_{i j}<n$. Otherwise, we get $d_{i j}=\infty$.

There is another, similar way to compute the transitive closure of G in $\Theta\left(n^{3}\right)$ time that can save time and space in practice. This method substitutes the logical operations \vee (logical OR) and \wedge (logical AND) for the arithmetic operations min and + in the Floyd-Warshall algorithm. For $i, j, k=1,2, \ldots, n$, we define $t_{i j}^{(k)}$ to be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k\}$, and 0 otherwise. We construct the transitive closure $G^{*}=\left(V, E^{*}\right)$ by putting edge (i, j) into E^{*} if and only if $t_{i j}^{(n)}=1$. A recursive definition of $t_{i j}^{(k)}$, analogous to recurrence (25.5), is
$t_{i j}^{(0)}= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \notin E, \\ 1 & \text { if } i=j \text { or }(i, j) \in E,\end{cases}$
and for $k \geq 1$,
$t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)$.
As in the Floyd-Warshall algorithm, we compute the matrices $T^{(k)}=\left(t_{i j}^{(k)}\right)$ in order of increasing k.

$T^{(0)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right) \quad T^{(1)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right) \quad T^{(2)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right)$
$T^{(3)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad T^{(4)}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$

Figure 25.5 A directed graph and the matrices $T^{(k)}$ computed by the transitive-closure algorithm.

```
Transitive-Closure (G)
\(n=|G . V|\)
let \(T^{(0)}=\left(t_{i j}^{(0)}\right)\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
    for \(j=1\) to \(n\)
            if \(i==j\) or \((i, j) \in G . E\)
            \(t_{i j}^{(0)}=1\)
            else \(t_{i j}^{(0)}=0\)
for \(k=1\) to \(n\)
        let \(T^{(k)}=\left(t_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
        for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                \(t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)\)
return \(T^{(n)}\)
```

Figure 25.5 shows the matrices $T^{(k)}$ computed by the Transitive-Closure procedure on a sample graph. The Transitive-Closure procedure, like the Floyd-Warshall algorithm, runs in $\Theta\left(n^{3}\right)$ time. On some computers, though, logical operations on single-bit values execute faster than arithmetic operations on integer words of data. Moreover, because the direct transitive-closure algorithm uses only boolean values rather than integer values, its space requirement is less
than the Floyd-Warshall algorithm's by a factor corresponding to the size of a word of computer storage.

Exercises

25.2-1

Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2. Show the matrix $D^{(k)}$ that results for each iteration of the outer loop.

25.2-2

Show how to compute the transitive closure using the technique of Section 25.1.

25.2-3

Modify the FLOYD-WARSHALL procedure to compute the $\Pi^{(k)}$ matrices according to equations (25.6) and (25.7). Prove rigorously that for all $i \in V$, the predecessor subgraph $G_{\pi, i}$ is a shortest-paths tree with root i. (Hint: To show that $G_{\pi, i}$ is acyclic, first show that $\pi_{i j}^{(k)}=l$ implies $d_{i j}^{(k)} \geq d_{i l}^{(k)}+w_{l j}$, according to the definition of $\pi_{i j}^{(k)}$. Then, adapt the proof of Lemma 24.16.)

25.2-4

As it appears above, the Floyd-Warshall algorithm requires $\Theta\left(n^{3}\right)$ space, since we compute $d_{i j}^{(k)}$ for $i, j, k=1,2, \ldots, n$. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta\left(n^{2}\right)$ space is required.

Floyd-Warshall ${ }^{\prime}(W)$

```
\(n=W . r o w s\)
\(D=W\)
for \(k=1\) to \(n\)
        for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                \(d_{i j}=\min \left(d_{i j}, d_{i k}+d_{k j}\right)\)
return \(D\)
```


25.2-5

Suppose that we modify the way in which equation (25.7) handles equality:
$\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}<d_{i k}^{(k-1)}+d_{k j}^{(k-1)}, \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \geq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} .\end{cases}$
Is this alternative definition of the predecessor matrix Π correct?

25.2-6

How can we use the output of the Floyd-Warshall algorithm to detect the presence of a negative-weight cycle?

25.2-7

Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses values $\phi_{i j}^{(k)}$ for $i, j, k=1,2, \ldots, n$, where $\phi_{i j}^{(k)}$ is the highest-numbered intermediate vertex of a shortest path from i to j in which all intermediate vertices are in the set $\{1,2, \ldots, k\}$. Give a recursive formulation for $\phi_{i j}^{(k)}$, modify the FLOYDWARSHALL procedure to compute the $\phi_{i j}^{(k)}$ values, and rewrite the PRINT-ALL-PAIRS-SHORTEST-PATH procedure to take the matrix $\Phi=\left(\phi_{i j}^{(n)}\right)$ as an input. How is the matrix Φ like the s table in the matrix-chain multiplication problem of Section 15.2?

25.2-8

Give an $O(V E)$-time algorithm for computing the transitive closure of a directed graph $G=(V, E)$.

25.2-9

Suppose that we can compute the transitive closure of a directed acyclic graph in $f(|V|,|E|)$ time, where f is a monotonically increasing function of $|V|$ and $|E|$. Show that the time to compute the transitive closure $G^{*}=\left(V, E^{*}\right)$ of a general directed graph $G=(V, E)$ is then $f(|V|,|E|)+O\left(V+E^{*}\right)$.

25.3 Johnson's algorithm for sparse graphs

Johnson's algorithm finds shortest paths between all pairs in $O\left(V^{2} \lg V+V E\right)$ time. For sparse graphs, it is asymptotically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm. The algorithm either returns a matrix of shortest-path weights for all pairs of vertices or reports that the input graph contains a negative-weight cycle. Johnson's algorithm uses as subroutines both Dijkstra's algorithm and the Bellman-Ford algorithm, which Chapter 24 describes.

Johnson's algorithm uses the technique of reweighting, which works as follows. If all edge weights w in a graph $G=(V, E)$ are nonnegative, we can find shortest paths between all pairs of vertices by running Dijkstra's algorithm once from each vertex; with the Fibonacci-heap min-priority queue, the running time of this all-pairs algorithm is $O\left(V^{2} \lg V+V E\right)$. If G has negative-weight edges but no negative-weight cycles, we simply compute a new set of nonnegative edge weights
that allows us to use the same method. The new set of edge weights \widehat{w} must satisfy two important properties:

1. For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to v using weight function \widehat{w}.
2. For all edges (u, v), the new weight $\widehat{w}(u, v)$ is nonnegative.

As we shall see in a moment, we can preprocess G to determine the new weight function \widehat{w} in $O(V E)$ time.

Preserving shortest paths by reweighting

The following lemma shows how easily we can reweight the edges to satisfy the first property above. We use δ to denote shortest-path weights derived from weight function w and $\widehat{\delta}$ to denote shortest-path weights derived from weight function \widehat{w}.

Lemma 25.1 (Reweighting does not change shortest paths)

Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, \nu) \in E$, define
$\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$.
Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex ν_{0} to vertex v_{k}. Then p is a shortest path from v_{0} to v_{k} with weight function w if and only if it is a shortest path with weight function \widehat{w}. That is, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$. Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}.

Proof We start by showing that

$$
\begin{equation*}
\widehat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right) . \tag{25.10}
\end{equation*}
$$

We have

$$
\begin{aligned}
\widehat{w}(p) & =\sum_{i=1}^{k} \widehat{w}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{0}\right)-h\left(v_{k}\right) \quad \text { (because the sum telescopes) } \\
& =w(p)+h\left(v_{0}\right)-h\left(v_{k}\right) .
\end{aligned}
$$

Therefore, any path p from v_{0} to v_{k} has $\hat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$. Because $h\left(v_{0}\right)$ and $h\left(v_{k}\right)$ do not depend on the path, if one path from v_{0} to v_{k} is shorter than another using weight function w, then it is also shorter using \widehat{w}. Thus, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.

Finally, we show that G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}. Consider any cycle $c=\left\langle\nu_{0}, \nu_{1}, \ldots, v_{k}\right\rangle$, where $\nu_{0}=v_{k}$. By equation (25.10),

$$
\begin{aligned}
\hat{w}(c) & =w(c)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(c),
\end{aligned}
$$

and thus c has negative weight using w if and only if it has negative weight using \widehat{w}.

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: we want $\widehat{w}(u, v)$ to be nonnegative for all edges $(u, v) \in E$. Given a weighted, directed graph $G=$ (V, E) with weight function $w: E \rightarrow \mathbb{R}$, we make a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V \cup\{s\}$ for some new vertex $s \notin V$ and $E^{\prime}=E \cup\{(s, v): v \in V\}$. We extend the weight function w so that $w(s, v)=0$ for all $v \in V$. Note that because s has no edges that enter it, no shortest paths in G^{\prime}, other than those with source s, contain s. Moreover, G^{\prime} has no negative-weight cycles if and only if G has no negative-weight cycles. Figure 25.6(a) shows the graph G^{\prime} corresponding to the graph G of Figure 25.1.

Now suppose that G and G^{\prime} have no negative-weight cycles. Let us define $h(v)=\delta(s, v)$ for all $v \in V^{\prime}$. By the triangle inequality (Lemma 24.10), we have $h(v) \leq h(u)+w(u, v)$ for all edges $(u, v) \in E^{\prime}$. Thus, if we define the new weights \widehat{w} by reweighting according to equation (25.9), we have $\widehat{w}(u, v)=w(u, \nu)+h(u)-h(\nu) \geq 0$, and we have satisfied the second property. Figure 25.6(b) shows the graph G^{\prime} from Figure 25.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson's algorithm to compute all-pairs shortest paths uses the Bellman-Ford algorithm (Section 24.1) and Dijkstra's algorithm (Section 24.3) as subroutines. It assumes implicitly that the edges are stored in adjacency lists. The algorithm returns the usual $|V| \times|V|$ matrix $D=d_{i j}$, where $d_{i j}=\delta(i, j)$, or it reports that the input graph contains a negative-weight cycle. As is typical for an all-pairs shortest-paths algorithm, we assume that the vertices are numbered from 1 to $|V|$.

Figure 25.6 Johnson's all-pairs shortest-paths algorithm run on the graph of Figure 25.1. Vertex numbers appear outside the vertices. (a) The graph G^{\prime} with the original weight function w. The new vertex s is black. Within each vertex v is $h(v)=\delta(s, v)$. (b) After reweighting each edge (u, v) with weight function $\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$. (c)-(g) The result of running Dijkstra's algorithm on each vertex of G using weight function \widehat{w}. In each part, the source vertex u is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each vertex v are the values $\widehat{\delta}(u, v)$ and $\delta(u, v)$, separated by a slash. The value $d_{u v}=\delta(u, v)$ is equal to $\hat{\delta}(u, v)+h(v)-h(u)$.

```
\(\operatorname{Johnson}(G, w)\)
    compute \(G^{\prime}\), where \(G^{\prime} . V=G . V \cup\{s\}\),
        \(G^{\prime} . E=G \cdot E \cup\{(s, v): v \in G . V\}\), and
        \(w(s, v)=0\) for all \(v \in G . V\)
    if \(\operatorname{BELLMAN-FORD}\left(G^{\prime}, w, s\right)==\operatorname{FALSE}\)
    print "the input graph contains a negative-weight cycle"
else for each vertex \(v \in G^{\prime}\). \(V\)
            set \(h(v)\) to the value of \(\delta(s, v)\)
            computed by the Bellman-Ford algorithm
    for each edge \((u, v) \in G^{\prime} . E\)
        \(\widehat{w}(u, v)=w(u, v)+h(u)-h(v)\)
        let \(D=\left(d_{u v}\right)\) be a new \(n \times n\) matrix
    for each vertex \(u \in G . V\)
        run DiJKStra \((G, \widehat{w}, u)\) to compute \(\hat{\delta}(u, v)\) for all \(v \in G . V\)
        for each vertex \(v \in G . V\)
            \(d_{u v}=\widehat{\delta}(u, v)+h(v)-h(u)\)
    return \(D\)
```

This code simply performs the actions we specified earlier. Line 1 produces G^{\prime}. Line 2 runs the Bellman-Ford algorithm on G^{\prime} with weight function w and source vertex s. If G^{\prime}, and hence G, contains a negative-weight cycle, line 3 reports the problem. Lines 4-12 assume that G^{\prime} contains no negative-weight cycles. Lines 4-5 set $h(v)$ to the shortest-path weight $\delta(s, v)$ computed by the Bellman-Ford algorithm for all $\nu \in V^{\prime}$. Lines 6-7 compute the new weights \widehat{w}. For each pair of vertices $u, v \in V$, the for loop of lines $9-12$ computes the shortest-path weight $\widehat{\delta}(u, v)$ by calling Dijkstra's algorithm once from each vertex in V. Line 12 stores in matrix entry $d_{u v}$ the correct shortest-path weight $\delta(u, v)$, calculated using equation (25.10). Finally, line 13 returns the completed D matrix. Figure 25.6 depicts the execution of Johnson's algorithm.

If we implement the min-priority queue in Dijkstra's algorithm by a Fibonacci heap, Johnson's algorithm runs in $O\left(V^{2} \lg V+V E\right)$ time. The simpler binary minheap implementation yields a running time of $O(V E \lg V)$, which is still asymptotically faster than the Floyd-Warshall algorithm if the graph is sparse.

Exercises

25.3-1

Use Johnson's algorithm to find the shortest paths between all pairs of vertices in the graph of Figure 25.2. Show the values of h and \hat{w} computed by the algorithm.

25.3-2

What is the purpose of adding the new vertex s to V, yielding V^{\prime} ?

25.3-3

Suppose that $w(u, v) \geq 0$ for all edges $(u, v) \in E$. What is the relationship between the weight functions w and \widehat{w} ?

25.3-4

Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting $w^{*}=\min _{(u, v) \in E}\{w(u, v)\}$, just define $\widehat{w}(u, v)=w(u, v)-w^{*}$ for all edges $(u, v) \in E$. What is wrong with the professor's method of reweighting?

25.3-5

Suppose that we run Johnson's algorithm on a directed graph G with weight function w. Show that if G contains a 0 -weight cycle c, then $\widehat{w}(u, v)=0$ for every edge (u, v) in c.

25.3-6

Professor Michener claims that there is no need to create a new source vertex in line 1 of Johnson. He claims that instead we can just use $G^{\prime}=G$ and let s be any vertex. Give an example of a weighted, directed graph G for which incorporating the professor's idea into Johnson causes incorrect answers. Then show that if G is strongly connected (every vertex is reachable from every other vertex), the results returned by JOHNSON with the professor's modification are correct.

Problems

25-1 Transitive closure of a dynamic graph

Suppose that we wish to maintain the transitive closure of a directed graph $G=$ (V, E) as we insert edges into E. That is, after each edge has been inserted, we want to update the transitive closure of the edges inserted so far. Assume that the graph G has no edges initially and that we represent the transitive closure as a boolean matrix.
a. Show how to update the transitive closure $G^{*}=\left(V, E^{*}\right)$ of a graph $G=(V, E)$ in $O\left(V^{2}\right)$ time when a new edge is added to G.
b. Give an example of a graph G and an edge e such that $\Omega\left(V^{2}\right)$ time is required to update the transitive closure after the insertion of e into G, no matter what algorithm is used.
c. Describe an efficient algorithm for updating the transitive closure as edges are inserted into the graph. For any sequence of n insertions, your algorithm should run in total time $\sum_{i=1}^{n} t_{i}=O\left(V^{3}\right)$, where t_{i} is the time to update the transitive closure upon inserting the i th edge. Prove that your algorithm attains this time bound.

25-2 Shortest paths in ϵ-dense graphs

A graph $G=(V, E)$ is ϵ-dense if $|E|=\Theta\left(V^{1+\epsilon}\right)$ for some constant ϵ in the range $0<\epsilon \leq 1$. By using d-ary min-heaps (see Problem 6-2) in shortest-paths algorithms on ϵ-dense graphs, we can match the running times of Fibonacci-heapbased algorithms without using as complicated a data structure.
a. What are the asymptotic running times for Insert, Extract-Min, and Decrease-Key, as a function of d and the number n of elements in a d-ary min-heap? What are these running times if we choose $d=\Theta\left(n^{\alpha}\right)$ for some constant $0<\alpha \leq 1$? Compare these running times to the amortized costs of these operations for a Fibonacci heap.
b. Show how to compute shortest paths from a single source on an ϵ-dense directed graph $G=(V, E)$ with no negative-weight edges in $O(E)$ time. (Hint: Pick d as a function of ϵ.)
c. Show how to solve the all-pairs shortest-paths problem on an ϵ-dense directed graph $G=(V, E)$ with no negative-weight edges in $O(V E)$ time.
d. Show how to solve the all-pairs shortest-paths problem in $O(V E)$ time on an ϵ-dense directed graph $G=(V, E)$ that may have negative-weight edges but has no negative-weight cycles.

Chapter notes

Lawler [224] has a good discussion of the all-pairs shortest-paths problem, although he does not analyze solutions for sparse graphs. He attributes the matrixmultiplication algorithm to the folklore. The Floyd-Warshall algorithm is due to Floyd [105], who based it on a theorem of Warshall [349] that describes how to compute the transitive closure of boolean matrices. Johnson's algorithm is taken from [192].

Several researchers have given improved algorithms for computing shortest paths via matrix multiplication. Fredman [111] shows how to solve the allpairs shortest paths problem using $O\left(V^{5 / 2}\right)$ comparisons between sums of edge
weights and obtains an algorithm that runs in $O\left(V^{3}(\lg \lg V / \lg V)^{1 / 3}\right)$ time, which is slightly better than the running time of the Floyd-Warshall algorithm. Han [159] reduced the running time to $O\left(V^{3}(\lg \lg V / \lg V)^{5 / 4}\right)$. Another line of research demonstrates that we can apply algorithms for fast matrix multiplication (see the chapter notes for Chapter 4) to the all-pairs shortest paths problem. Let $O\left(n^{\omega}\right)$ be the running time of the fastest algorithm for multiplying $n \times n$ matrices; currently $\omega<2.376$ [78]. Galil and Margalit [123, 124] and Seidel [308] designed algorithms that solve the all-pairs shortest paths problem in undirected, unweighted graphs in $\left(V^{\omega} p(V)\right)$ time, where $p(n)$ denotes a particular function that is polylogarithmically bounded in n. In dense graphs, these algorithms are faster than the $O(V E)$ time needed to perform $|V|$ breadth-first searches. Several researchers have extended these results to give algorithms for solving the all-pairs shortest paths problem in undirected graphs in which the edge weights are integers in the range $\{1,2, \ldots, W\}$. The asymptotically fastest such algorithm, by Shoshan and Zwick [316], runs in time $O\left(W V^{\omega} p(V W)\right)$.

Karger, Koller, and Phillips [196] and independently McGeoch [247] have given a time bound that depends on E^{*}, the set of edges in E that participate in some shortest path. Given a graph with nonnegative edge weights, their algorithms run in $O\left(V E^{*}+V^{2} \lg V\right)$ time and improve upon running Dijkstra's algorithm $|V|$ times when $\left|E^{*}\right|=o(E)$.

Baswana, Hariharan, and Sen [33] examined decremental algorithms for maintaining all-pairs shortest paths and transitive-closure information. Decremental algorithms allow a sequence of intermixed edge deletions and queries; by comparison, Problem 25-1, in which edges are inserted, asks for an incremental algorithm. The algorithms by Baswana, Hariharan, and Sen are randomized and, when a path exists, their transitive-closure algorithm can fail to report it with probability $1 / n^{c}$ for an arbitrary $c>0$. The query times are $O(1)$ with high probability. For transitive closure, the amortized time for each update is $O\left(V^{4 / 3} \mathrm{lg}^{1 / 3} V\right)$. For all-pairs shortest paths, the update times depend on the queries. For queries just giving the shortest-path weights, the amortized time per update is $O\left(V^{3} / E \lg ^{2} V\right)$. To report the actual shortest path, the amortized update time is $\min \left(O\left(V^{3 / 2} \sqrt{\lg V}\right), O\left(V^{3} / E \lg ^{2} V\right)\right)$. Demetrescu and Italiano [84] showed how to handle update and query operations when edges are both inserted and deleted, as long as each given edge has a bounded range of possible values drawn from the real numbers.

Aho, Hopcroft, and Ullman [5] defined an algebraic structure known as a "closed semiring," which serves as a general framework for solving path problems in directed graphs. Both the Floyd-Warshall algorithm and the transitive-closure algorithm from Section 25.2 are instantiations of an all-pairs algorithm based on closed semirings. Maggs and Plotkin [240] showed how to find minimum spanning trees using a closed semiring.

