25.2 The Floyd-Warshall algorithm 693

25.1-10
Give an efficient algorithm to find the length (number of edges) of a minimum-
length negative-weight cycle in a graph.

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph G = (V, E). The result-
ing algorithm, known as the Floyd-Warshall algorithm, runs in ©(V?) time. As
before, negative-weight edges may be present, but we assume that there are no
negative-weight cycles. As in Section 25.1, we follow the dynamic-programming
process to develop the algorithm. After studying the resulting algorithm, we
present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a shortest path
differently from how we characterized it in Section 25.1. The Floyd-Warshall algo-
rithm considers the intermediate vertices of a shortest path, where an intermediate
vertex of a simple path p = (v, v,,...,v;) is any vertex of p other than v, or vy,
that is, any vertex in the set {v,, V3,...,V;_1}.

The Floyd-Warshall algorithm relies on the following observation. Under our
assumption that the vertices of G are V = {1,2,...,n}, let us consider a subset
{1,2,...,k} of vertices for some k. For any pair of vertices i, j € V, consider all
paths from i to j whose intermediate vertices are all drawn from {1,2,...,k}, and
let p be a minimum-weight path from among them. (Path p is simple.) The Floyd-
Warshall algorithm exploits a relationship between path p and shortest paths from i
to j with all intermediate vertices in the set {1,2,...,k — 1}. The relationship
depends on whether or not k is an intermediate vertex of path p.

* If k is not an intermediate vertex of path p, then all intermediate vertices of
path p are in the set {1,2,...,k —1}. Thus, a shortest path from vertex i
to vertex j with all intermediate vertices in the set {1,2,...,k — 1} is also a
shortest path from i to j with all intermediate vertices in the set {1,2,...,k}.

e If k is an intermediate vertex of path p, then we decompose p into i Lk &5 Js
as Figure 25.3 illustrates. By Lemma 24.1, p; is a shortest path from i to k
with all intermediate vertices in the set {1,2,...,k}. In fact, we can make a
slightly stronger statement. Because vertex k is not an intermediate vertex of
path p, all intermediate vertices of p; are in the set {1,2,...,k — 1}. There-

694

Chapter 25 All-Pairs Shortest Paths

all intermediate vertices in {1,2, ...,k — 1} all intermediate vertices in {1,2,...,k — 1}

— T T
D1 e D2
@
O,
R/—/

p: all intermediate vertices in {1,2,...,k}

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered
intermediate vertex of p. Path p1, the portion of path p from vertex i to vertex k, has all intermediate
vertices in the set {1,2, ...,k — 1}. The same holds for path p, from vertex k to vertex j.

fore, p; is a shortest path from i to k with all intermediate vertices in the set
{1,2,...,k — 1}. Similarly, p, is a shortest path from vertex k to vertex j with
all intermediate vertices in the set {1,2,...,k — 1}.

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortest-
path estimates that differs from the one in Section 25.1. Let dl.(jk) be the weight
of a shortest path from vertex i to vertex j for which all intermediate vertices
are in the set {1,2,...,k}. When k = 0, a path from vertex i to vertex j with
no intermediate vertex numbered higher than O has no intermediate vertices at all.
Such a path has at most one edge, and hence dl.(jo) = w;;. Following the above

discussion, we define d,.(jk) recursively by

Wi ifk=0
a® =) " B B B ’ 25.5
=) min (@&, 4%0 £ d%) itk > 1. (25:3)
Because for any path, all intermediate vertices are in the set {1,2,...,n}, the ma-

trix D™ = (di(;')) gives the final answer: di(;’) =68(i,j) foralli,j € V.

Computing the shortest-path weights bottom up

Based on recurrence (25.5), we can use the following bottom-up procedure to com-
pute the values diS-k) in order of increasing values of k. Its input is an n xn matrix W
defined as in equation (25.1). The procedure returns the matrix D® of shortest-
path weights.

25.2 The Floyd-Warshall algorithm 695

FLOYD-WARSHALL (W)

1 n = W.rows
2 DO =w
3 fork =1ton
4 let DX = (di(jk)) be a new n X n matrix
5 fori = 1ton
6 for j =1ton
k . k-1 k-1 k-1
7 dig') = min (dig' Ly dlgj)
8 return D™

Figure 25.4 shows the matrices D*) computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3—7. Because each execution of line 7 takes O(1) time,
the algorithm runs in time ®(n3). As in the final algorithm in Section 25.1, the
code is tight, with no elaborate data structures, and so the constant hidden in the
®-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the Floyd-
Warshall algorithm. One way is to compute the matrix D of shortest-path weights
and then construct the predecessor matrix IT from the D matrix. Exercise 25.1-6
asks you to implement this method so that it runs in O(n?) time. Given the pre-
decessor matrix IT, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure will print
the vertices on a given shortest path.

Alternatively, we can compute the predecessor matrix IT while the algorithm
computes the matrices D®. Specifically, we compute a sequence of matrices
OO I® . TI®™, where IT = "™ and we define ni(f) as the predecessor of
vertex j on a shortest path from vertex i with all intermediate vertices in the set
{1,2,...,k}.

We can give a recursive formulation of ni(jk)
to j has no intermediate vertices at all. Thus,

. When k = 0, a shortest path from i

o) _ NIL ifi:jorw,-_,-:oo,
Ty =

. e (25.6)
i ifi # jandw;; <oo.

For k > 1, if we take the path i ~ k ~» j, where k # j, then the predecessor
of j we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set {1,2,...,k — 1}. Otherwise, we

696

Chapter 25 All-Pairs Shortest Paths

0

00

DO = o0
(2

00

0

00

pW = 00
2

00

0

00

D@ =|
(2

00

0

00

DB = 00
(2

00

0

3

DW=\ 7
(2

8

DO —

0N NWwWo

Figure 25.4 The sequence of matrices D® and &) computed by the Floyd-Warshall algorithm

|
- koW

3

B - K~ O W

No— O =

caown— &
DN = s Qe = aocd —38 aocd —8

AN O =N

for the graph in Figure 25.1.

NIL
NIL

no = [N

NIL

NIL
NIL

om =1 N

NIL

NIL

NIL

n® = N
4

NIL

(NIL

NIL

n® = | N

NIL

NIL

o =

~ B B s

n® =

4;4;4;4;3
—

NIL

NIL
NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

W W W

wwwzw
=

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL

NIL
NIL

NIL

NIL
NIL

mél\)l\)l\) 9] [\SIN S \S)

9] [NSIN ST S

NSRS

NIL

NIL
NIL
NIL

[\

NIL

NIL

—_ N N =

E»—‘l\)l\)b—‘
=

NIL

— =

NIL

—_

NIL

25.2 The Floyd-Warshall algorithm 697

choose the same predecessor of j that we chose on a shortest path from i with all

intermediate vertices in the set {1,2, ...,k — 1}. Formally, for k > 1,
k—1 . k—1 k—1 k—1
z® = ”{;C 1; it d{'k 1; = d{f; 1; + d'%fk' 1; ’ (25.7)
1 —_ . —_ p— — .
/ T itd; 7 >dy 7 +d; .

We leave the incorporation of the TT*) matrix computations into the FLOYD-
WARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of 1%
matrices that the resulting algorithm computes for the graph of Figure 25.1. The
exercise also asks for the more difficult task of proving that the predecessor sub-
graph G ; is a shortest-paths tree with root i. Exercise 25.2-7 asks for yet another
way to reconstruct shortest paths.

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set V = {1,2,...,n}, we might
wish to determine whether G contains a path from i to j for all vertex pairs
i,] € V. We define the transitive closure of G as the graph G* = (V, E*), where

E* = {(i, J) : there is a path from vertex i to vertex j in G} .

One way to compute the transitive closure of a graph in ®(n?) time is to assign
a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a
path from vertex i to vertex j, we get d;; < n. Otherwise, we get d;; = oo.

There is another, similar way to compute the transitive closure of G in ©(n?)
time that can save time and space in practice. This method substitutes the logical
operations V (logical OR) and A (logical AND) for the arithmetic operations min
and + in the Floyd-Warshall algorithm. For i, j,k = 1,2,...,n, we define ti(jk) to
be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate
vertices in the set {1, 2, ..., k}, and 0 otherwise. We construct the transitive closure
G* = (V, E*) by putting edge (i, j) into E* if and only if tl.(j") = 1. A recursive

(0

definition of #;;’, analogous to recurrence (25.5), is

t(0)= 0 lfl#Jand(l,J)Q/E,

Y 1 ifi=jor(i,j)eE,
and fork > 1,
) =1y UV (T A Y) (25.8)

As in the Floyd-Warshall algorithm, we compute the matrices 7®) = (zl.(jk)) in
order of increasing k.

698

Chapter 25 All-Pairs Shortest Paths

100 0 100 0 1000
o_ [0 1 11 m_[0o 1 11 @_[0 1 11
T=lor1o0) T =lor1t0o)] 775 o1 11
1o 11 1o 11 1011
100 0 100 0
@_[0 1 11 @_[1 111
r o1 1 1] T I
111 I

Figure 25.5 A directed graph and the matrices T®) computed by the transitive-closure algorithm.

TRANSITIVE-CLOSURE(G)
1 n=|G.V]|

2 1etT® = ([i(jo)) be a new n X n matrix

3 fori =1ton

4 forj = 1ton

5 ifi==jor(i,j)eGE

6 (0 =1

7 else tl.(jo) =0

8 fork =1ton

9 let T® = (zi(jk)) be a new n X n matrix
10 fori = 1ton

11 for j = 1ton

12 (0 =V (Y A
13 return 7™

Figure 25.5 shows the matrices 7®) computed by the TRANSITIVE-CLOSURE
procedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the
Floyd-Warshall algorithm, runs in ©(n?) time. On some computers, though, log-
ical operations on single-bit values execute faster than arithmetic operations on
integer words of data. Moreover, because the direct transitive-closure algorithm
uses only boolean values rather than integer values, its space requirement is less

25.2 The Floyd-Warshall algorithm 699

than the Floyd-Warshall algorithm’s by a factor corresponding to the size of a word
of computer storage.

Exercises

25.2-1
Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2.
Show the matrix D® that results for each iteration of the outer loop.

25.2-2
Show how to compute the transitive closure using the technique of Section 25.1.

25.2-3

Modify the FLOYD-WARSHALL procedure to compute the T1%*) matrices according

to equations (25.6) and (25.7). Prove rigorously that for all i € V, the predecessor

subgraph G, is a shortest-paths tree with root i. (Hint: To show that G, ; is
(k)

acyclic, first show that T = [implies d,.(jk) > dl.(lk) + wy;, according to the

definition of ni(jk). Then, adapt the proof of Lemma 24.16.)
25.2-4
As it appears above, the Floyd-Warshall algorithm requires ®(n*) space, since we

compute d,.(jk) fori, j,k = 1,2,...,n. Show that the following procedure, which
simply drops all the superscripts, is correct, and thus only ®(n?) space is required.

FLOYD-WARSHALL' (W)

1 n = W.rows

2 D=W

3 fork =1ton

4 fori = 1ton

5 for j = 1ton

6 d,’j = min (dl'j,d,'k + dkj)
7 return D

25.2-5

Suppose that we modify the way in which equation (25.7) handles equality:

(k—=1) .¢ g(k—=1) (k—1) (k—1)
) _) Tj ifdy; " <dy " +d;

7T / - —_ . —_— —_— f—
7T a0 g glen 5 gy v

Is this alternative definition of the predecessor matrix IT correct?

700 Chapter 25 All-Pairs Shortest Paths

25.2-6
How can we use the output of the Floyd-Warshall algorithm to detect the presence
of a negative-weight cycle?

25.2-7

Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses
values ¢)i(j].€) fori,j,k = 1,2,...,n, where ¢g‘) is the highest-numbered interme-
diate vertex of a shortest path from i to j in which all intermediate vertices are
in the set {1,2,...,k}. Give a recursive formulation for ¢gc), modify the FLOYD-

WARSHALL procedure to compute the ¢)l-(/]-<) values, and rewrite the PRINT-ALL-

PAIRS-SHORTEST-PATH procedure to take the matrix ® = (¢)i(j'.’)) as an input.
How is the matrix @ like the s table in the matrix-chain multiplication problem of
Section 15.27

25.2-8
Give an O(VE)-time algorithm for computing the transitive closure of a directed
graph G = (V, E).

25.2-9

Suppose that we can compute the transitive closure of a directed acyclic graph in
f(V],|E]) time, where f is a monotonically increasing function of |V| and | E|.
Show that the time to compute the transitive closure G* = (V, E*) of a general
directed graph G = (V, E) is then f(|V|,|E|) + O(V + E*).

25.3 Johnson’s algorithm for sparse graphs

Johnson’s algorithm finds shortest paths between all pairs in O(V21gV + VE)
time. For sparse graphs, it is asymptotically faster than either repeated squaring of
matrices or the Floyd-Warshall algorithm. The algorithm either returns a matrix of
shortest-path weights for all pairs of vertices or reports that the input graph contains
a negative-weight cycle. Johnson’s algorithm uses as subroutines both Dijkstra’s
algorithm and the Bellman-Ford algorithm, which Chapter 24 describes.
Johnson’s algorithm uses the technique of reweighting, which works as follows.
If all edge weights w in a graph G = (V, E) are nonnegative, we can find short-
est paths between all pairs of vertices by running Dijkstra’s algorithm once from
each vertex; with the Fibonacci-heap min-priority queue, the running time of this
all-pairs algorithm is O(V?1gV + VE). If G has negative-weight edges but no
negative-weight cycles, we simply compute a new set of nonnegative edge weights

25.3 Johnson’s algorithm for sparse graphs 701

that allows us to use the same method. The new set of edge weights w must satisfy

two important properties:

1. For all pairs of vertices u,v € V, a path p is a shortest path from u to v using
weight function w if and only if p is also a shortest path from u to v using
weight function .

2. For all edges (u, v), the new weight w(u, v) is nonnegative.

As we shall see in a moment, we can preprocess G to determine the new weight
function w in O(VE) time.

Preserving shortest paths by reweighting

The following lemma shows how easily we can reweight the edges to satisfy the
first property above. We use § to denote shortest-path weights derived from weight

function w and § to denote shortest-path weights derived from weight function w.

Lemma 25.1 (Reweighting does not change shortest paths)

Given a weighted, directed graph G = (V, E) with weight function w : £ — R,
let 7 : V — R be any function mapping vertices to real numbers. For each edge
(u,v) € E, define

wu,v) =w,v) + h(u) —hQ). (25.9)
Let p = (vo, vy, ..., Vg) be any path from vertex v, to vertex vg. Then p is a
shortest path from v, to vx with weight function w if and only if it is a shortest path
with weight function w. That is, w(p) = 8(vy, vx) if and only if W(p) = 8A(v0, V).
Furthermore, G has a negative-weight cycle using weight function w if and only
if G has a negative-weight cycle using weight function .

Proof We start by showing that

w(p) = w(p) + h(vo) — h(vi) . (25.10)

We have
k

w(p) = Z W(vi—1, ;)

i=1

k
= Y i1, v) + h(vig) = h(v)
i=1
k
= Z w(vi—1, ;) + h(ve) — h(vy) (because the sum telescopes)
i=1

= w(p) + h(vo) —h(vi) .

702

Chapter 25 All-Pairs Shortest Paths

Therefore, any path p from vy to v; has wW(p) = w(p) + h(ve) — h(vy). Be-
cause h(vy) and h(vg) do not depend on the path, if one path from vy to v is
shorter than another using weight function w, then it is also shorter using w. Thus,
w(p) = 8(vy, vr) if and only if w(p) = 8A(v0, V).

Finally, we show that G has a negative-weight cycle using weight function w if
and only if G has a negative-weight cycle using weight function w. Consider any

cycle ¢ = (vg, vi,..., Vi), where vy = vi. By equation (25.10),
w(c) = wle)+h(vo) —h(ve)
= w(c).

and thus ¢ has negative weight using w if and only if it has negative weight us-
ing w. [

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: we want w(u, v) to be
nonnegative for all edges (#,v) € E. Given a weighted, directed graph G =
(V, E) with weight function w : £ — R, we make a new graph G’ = (V', E’),
where V' = V U {s} for some new vertex s ¢ V and E' = E U {(s,v) :v € V}.
We extend the weight function w so that w(s,v) = 0 for all v € V. Note that
because s has no edges that enter it, no shortest paths in G’, other than those with
source s, contain 5. Moreover, G’ has no negative-weight cycles if and only if G
has no negative-weight cycles. Figure 25.6(a) shows the graph G’ corresponding
to the graph G of Figure 25.1.

Now suppose that G and G’ have no negative-weight cycles. Let us define
h(v) = 6(s,v) for all v € V'. By the triangle inequality (Lemma 24.10),
we have h(v) < h(u) + w(u,v) for all edges (u,v) € E’. Thus, if we de-
fine the new weights @ by reweighting according to equation (25.9), we have
w(u,v) = w(u,v) + h(u) — h(v) > 0, and we have satisfied the second property.
Figure 25.6(b) shows the graph G’ from Figure 25.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson’s algorithm to compute all-pairs shortest paths uses the Bellman-Ford al-
gorithm (Section 24.1) and Dijkstra’s algorithm (Section 24.3) as subroutines. It
assumes implicitly that the edges are stored in adjacency lists. The algorithm re-
turns the usual |V| x |V| matrix D = d;;, where d;; = 6(i, j), or it reports that
the input graph contains a negative-weight cycle. As is typical for an all-pairs
shortest-paths algorithm, we assume that the vertices are numbered from 1 to |V].

25.3 Johnson’s algorithm for sparse graphs 703

Figure 25.6 Johnson’s all-pairs shortest-paths algorithm run on the graph of Figure 25.1. Ver-
tex numbers appear outside the vertices. (a) The graph G’ with the original weight function w.
The new vertex s is black. Within each vertex v is h(v) = §(s,v). (b) After reweighting each
edge (u,v) with weight function w(u,v) = w(u,v) + h(u) — h(v). (¢)—(g) The result of running
Dijkstra’s algorithm on each vertex of G using weight function @. In each part, the source vertex u
is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each
vertex v are the values §(u, v) and §(u, v), separated by a slash. The value dy,,, = 6(u, v) is equal to

S(u,v) + h(v) — hu).

704 Chapter 25 All-Pairs Shortest Paths

JOHNSON(G, w)
1 compute G', where G'.V = G.V U {s},
G' . E=G.EU{(s,v):veG.V}and
w(s,v) =0forallv e G.V
2 if BELLMAN-FORD(G’, w, s) == FALSE

3 print “the input graph contains a negative-weight cycle”
4 else for each vertex v € G'.V
5 set i (v) to the value of §(s, v)
computed by the Bellman-Ford algorithm
6 for each edge (u,v) € G'.E
7 w(u,v) = wu,v) + h(u) — h(v)
8 let D = (d,,) be anew n x n matrix
9 for each vertex u € G.V
10 run DUKSTRA (G, W, u) to compute g(u, v) forallv € G.V
11 for each vertex v € G.V
12 dyy = 8(u,v) + h(v) — h(u)
13 return D

This code simply performs the actions we specified earlier. Line 1 produces G'.
Line 2 runs the Bellman-Ford algorithm on G’ with weight function w and source
vertex s. If G’, and hence G, contains a negative-weight cycle, line 3 reports the
problem. Lines 4—12 assume that G’ contains no negative-weight cycles. Lines 4-5
set h(v) to the shortest-path weight §(s, v) computed by the Bellman-Ford algo-
rithm for all v € V. Lines 67 compute the new weights w. For each pair of ver-
tices u, v € V, the for loop of lines 9-12 computes the shortest-path weight §(u, V)
by calling Dijkstra’s algorithm once from each vertex in V. Line 12 stores in
matrix entry d,, the correct shortest-path weight 6(u, v), calculated using equa-
tion (25.10). Finally, line 13 returns the completed D matrix. Figure 25.6 depicts
the execution of Johnson’s algorithm.

If we implement the min-priority queue in Dijkstra’s algorithm by a Fibonacci
heap, Johnson’s algorithm runs in O(V?21g V + VE) time. The simpler binary min-
heap implementation yields a running time of O(VE 1g V'), which is still asymp-
totically faster than the Floyd-Warshall algorithm if the graph is sparse.

Exercises

25.3-1
Use Johnson’s algorithm to find the shortest paths between all pairs of vertices in
the graph of Figure 25.2. Show the values of 4 and W computed by the algorithm.

Problems for Chapter 25 705

25.3-2
What is the purpose of adding the new vertex s to V, yielding V'?

25.3-3
Suppose that w(u,v) > 0 for all edges (u,v) € E. What is the relationship
between the weight functions w and w?

25.3-4

Professor Greenstreet claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm. Letting w* = ming, e {w(u, v)}, just
define w(u,v) = w(u,v) — w* for all edges (u,v) € E. What is wrong with the
professor’s method of reweighting?

25.3-5

Suppose that we run Johnson’s algorithm on a directed graph G with weight func-
tion w. Show that if G contains a 0-weight cycle ¢, then w(u,v) = 0 for every
edge (u,v) inc.

25.3-6

Professor Michener claims that there is no need to create a new source vertex in
line 1 of JOHNSON. He claims that instead we can just use G’ = G and let s be any
vertex. Give an example of a weighted, directed graph G for which incorporating
the professor’s idea into JOHNSON causes incorrect answers. Then show that if G
is strongly connected (every vertex is reachable from every other vertex), the results
returned by JOHNSON with the professor’s modification are correct.

Problems

25-1 Transitive closure of a dynamic graph

Suppose that we wish to maintain the transitive closure of a directed graph G =
(V, E) as we insert edges into E. That is, after each edge has been inserted, we
want to update the transitive closure of the edges inserted so far. Assume that the
graph G has no edges initially and that we represent the transitive closure as a
boolean matrix.

a. Show how to update the transitive closure G* = (V, E*) of agraph G = (V, E)
in O(V?) time when a new edge is added to G.

b. Give an example of a graph G and an edge e such that Q(1'?) time is required
to update the transitive closure after the insertion of e into G, no matter what
algorithm is used.

706 Chapter 25 All-Pairs Shortest Paths

¢. Describe an efficient algorithm for updating the transitive closure as edges are
inserted into the graph. For any sequence of n insertions, your algorithm should
run in total time Y /_, ; = O(V'?), where ¢; is the time to update the transitive
closure upon inserting the ith edge. Prove that your algorithm attains this time
bound.

25-2 Shortest paths in e-dense graphs

A graph G = (V,E) is e-dense if |E| = O(V'*€) for some constant € in the
range 0 < € < 1. By using d-ary min-heaps (see Problem 6-2) in shortest-paths
algorithms on e-dense graphs, we can match the running times of Fibonacci-heap-
based algorithms without using as complicated a data structure.

a. What are the asymptotic running times for INSERT, EXTRACT-MIN, and
DECREASE-KEY, as a function of d and the number 7 of elements in a d-ary
min-heap? What are these running times if we choose d = ®(n*) for some
constant 0 < o < 1? Compare these running times to the amortized costs of
these operations for a Fibonacci heap.

b. Show how to compute shortest paths from a single source on an e-dense directed
graph G = (V, E) with no negative-weight edges in O(E) time. (Hint: Pick d
as a function of €.)

¢. Show how to solve the all-pairs shortest-paths problem on an e-dense directed
graph G = (V, E) with no negative-weight edges in O(VE) time.

d. Show how to solve the all-pairs shortest-paths problem in O(VE) time on an
€-dense directed graph G = (V, E) that may have negative-weight edges but
has no negative-weight cycles.

Chapter notes

Lawler [224] has a good discussion of the all-pairs shortest-paths problem, al-
though he does not analyze solutions for sparse graphs. He attributes the matrix-
multiplication algorithm to the folklore. The Floyd-Warshall algorithm is due to
Floyd [105], who based it on a theorem of Warshall [349] that describes how to
compute the transitive closure of boolean matrices. Johnson’s algorithm is taken
from [192].

Several researchers have given improved algorithms for computing shortest
paths via matrix multiplication. Fredman [111] shows how to solve the all-
pairs shortest paths problem using O(V*/2) comparisons between sums of edge

Notes for Chapter 25 707

weights and obtains an algorithm that runs in O(V3(lglg V/1g V)'/3) time, which
is slightly better than the running time of the Floyd-Warshall algorithm. Han [159]
reduced the running time to O(V3(lglg V/1g V)3/#). Another line of research
demonstrates that we can apply algorithms for fast matrix multiplication (see the
chapter notes for Chapter 4) to the all-pairs shortest paths problem. Let O(n®) be
the running time of the fastest algorithm for multiplying n x n matrices; currently
w < 2.376 [78]. Galil and Margalit [123, 124] and Seidel [308] designed algo-
rithms that solve the all-pairs shortest paths problem in undirected, unweighted
graphs in (V' p(V)) time, where p(n) denotes a particular function that is poly-
logarithmically bounded in n. In dense graphs, these algorithms are faster than
the O(VE) time needed to perform |V | breadth-first searches. Several researchers
have extended these results to give algorithms for solving the all-pairs shortest
paths problem in undirected graphs in which the edge weights are integers in the
range {1,2,..., W}. The asymptotically fastest such algorithm, by Shoshan and
Zwick [316], runs in time O(W V' p(VW)).

Karger, Koller, and Phillips [196] and independently McGeoch [247] have given
a time bound that depends on E*, the set of edges in E that participate in some
shortest path. Given a graph with nonnegative edge weights, their algorithms run in
O(VE* + V?IgV) time and improve upon running Dijkstra’s algorithm | V| times
when |E*| = o(E).

Baswana, Hariharan, and Sen [33] examined decremental algorithms for main-
taining all-pairs shortest paths and transitive-closure information. Decremen-
tal algorithms allow a sequence of intermixed edge deletions and queries; by
comparison, Problem 25-1, in which edges are inserted, asks for an incremen-
tal algorithm. The algorithms by Baswana, Hariharan, and Sen are randomized
and, when a path exists, their transitive-closure algorithm can fail to report it
with probability 1/n¢ for an arbitrary ¢ > 0. The query times are O(1) with
high probability. For transitive closure, the amortized time for each update is
o(V+*/3 lgl/ >V). For all-pairs shortest paths, the update times depend on the
queries. For queries just giving the shortest-path weights, the amortized time per
update is O(V3/E 1g*> V). To report the actual shortest path, the amortized up-
date time is min(O(V3/2/1gV), O(V?/E 1g* V)). Demetrescu and Italiano [84]
showed how to handle update and query operations when edges are both inserted
and deleted, as long as each given edge has a bounded range of possible values
drawn from the real numbers.

Aho, Hopcroft, and Ullman [5] defined an algebraic structure known as a “closed
semiring,” which serves as a general framework for solving path problems in di-
rected graphs. Both the Floyd-Warshall algorithm and the transitive-closure algo-
rithm from Section 25.2 are instantiations of an all-pairs algorithm based on closed
semirings. Maggs and Plotkin [240] showed how to find minimum spanning trees
using a closed semiring.

