
Implementing
algorithms

Warm-up tutorial

Steps

1. Understand the problem, play with toy examples
2. Formalize the problem: input → desired output
3. Sketch possible solution in pseudocode/block/text
4. Translate an idea into a particular language taking into

account language constraints
5. Test your implementation

Step 1. Understand the problem

Find the maximum product of two distinct numbers
drawn from a sequence of non-negative integers.

Step 1. Understand the problem

Find the maximum product of two distinct numbers
drawn from a sequence of non-negative integers.

My understanding:

Given: A sequence of non-negative integers (each number is
either 0 or positive).

Need to find: The maximum value that can be obtained by
multiplying two different elements from the sequence.

Step 1. Understand the problem

My understanding:

Given: A sequence of non-negative integers (each number is
either 0 or positive).

Need to find: The maximum value that can be obtained by
multiplying two different elements from the sequence.

What do you mean by different elements?

The numbers are not necessarily distinct - but
they are at different positions in the sequence

Ask and
clarify!

Step 1. Understand the problem

Given: A sequence of non-negative integers (each number is
either 0 or positive).

Need to find: The maximum value that can be obtained by
multiplying two different elements from the sequence.

Sample input:

7 5 14 2 8 8 10 1 2

Sample output: 140

Sample input:

7 5 8 8 1 3

Sample output: 64 and not 56

Step 2. Formalize the problem

Input: a sequence of n integers a1, . . . , an | ai ≥ 0,

∀i in [1 ... n]

Output: max (ai* aj), 1≤i≠j≤n

Maximum pairwise product problem

Step 3. Sketch solution

The naive solution is in the problem definition:

we need to check all pairs of integers in a sequence and find
which pair produces the largest product

Input: a sequence of n integers a1, . . . , an | ai ≥ 0, ∀i in

[1 ... n]

Output: max (ai* aj), 1≤i≠j≤n

Maximum pairwise product problem

Step 3. Sketch solution

product ← 0

for i from 1 to n:

for j from 1 to n:

if i≠j:
if product < A[i] · A[j]:

product ← A[i] · A[j]
return product

Algorithm max_pairwise_product_naive(A[1 . . . n]):

Step 3. Sketch solution

product ← 0

for i from 1 to n:

for j from i + 1 to n:

product ← max(product, A[i] · A[j])
return product

Algorithm max_pairwise_product_naive(A[1 . . . n]):

#define MAX(X, Y) (((X) > (Y)) ? (X) : (Y))

Step 4. Implement solution
Language constraints:

Python:

We can find the size of list A using len(A)

C:

There is no way of finding the length of array A

(pointer decay)

Zero-based arrays/lists:

First position is 0, last position is n-1

Positive integer constraints:
Number of elements in an array: 2 ≤ n ≤ 2*109

Values of elements: 0 ≤ a1, . . . , an ≤ √(2 · 109)=4.4*104

max_product_naive.py

https://drive.google.com/file/d/1CDmXJolBt5WcGp5lV6xVJJHcN9pucTlF/view?usp=sharing

Step 5. Test
Test implementation:

lst = [5, 6, 2, 7, 4] → 42

lst = [1,2] → 2

lst = [2,1] → 2

max_product_naive.py

https://drive.google.com/file/d/1CDmXJolBt5WcGp5lV6xVJJHcN9pucTlF/view?usp=sharing

Step ... Think!

product ← 0

for i from 1 to n:

for j from i + 1 to n:

product ← max(product, A[i] · A[j])
return product

Algorithm max_pairwise_product_naive(A[1 . . . n]):

How many steps in total?

Step ... Think!

product ← 0

for i from 1 to n:

for j from i + 1 to n:

product ← max(product, A[i] · A[j])
return product

Algorithm max_pairwise_product_naive(A[1 . . . n]):

How many steps in total?
This is an O(n2) algorithm
For max input size 2*109 it will perform 4*1018 steps!

Can we do better?

Step ... Think!

Do you see a faster solution?

Sample input:

5 6 2 7 4

Sample output: ?

Step ... Think!

Do you see a faster solution?

Sample input:

5 6 2 7 4

Sample output: ?

Step 3A. Sketch faster solution

index1 ← 1

for i from 2 to n:

if A[i] > A[index1]:

index1 ← i

index2 ← 1

for i from 2 to n:

if i≠index1 and A[i] > A[index2]:

index2 ← i

return A[index1] · A[index2]

Algorithm max_pairwise_product_fast(A[1 . . . n]):

In total about 2n steps: O(n) algorithm!

Step 4A. Implement faster solution

max_product_fast1.py

index1 ← 1

for i from 2 to n:

if A[i] > A[index1]:

index1 ← i

index2 ← 1

for i from 2 to n:

if i≠index1 and A[i] > A[index2]:

index2 ← i

return A[index1] · A[index2]

Algorithm max_pairwise_product_fast(A[1 . . . n]):

https://drive.google.com/file/d/1AbjrUBIcaAtmD0BlBqkI0rsGH1Vlv_n5/view?usp=sharing

Step 5A. Test

Test implementation:

lst = [5, 6, 2, 7, 4] → 42

lst = [1,2] → 2

lst = [2,1] → 2 (outputs 4!!!!!)

Look at the code to find a bug or debug

Real correctness test: stress test

while true:
n ← random integer between 2 and N
allocate array A[1 . . . n]

for i from 1 to n:

A[i] ← random integer between 0 and M
print(A[1 . . . n])

result1 ← max_pairwise_product_naive(A)

result2 ← max_pairwise_product_fast(A)

if result1 = result2:

print(“OK”)

else:
print(“Wrong answer: ”, result1, result2)

return

Algorithm stress_test(N, M):

stress_test.py

https://drive.google.com/file/d/1zjYaf7mn0L-5M9g_JvHiJOVdn_zgC64o/view?usp=sharing

Correct algorithm

index ← 1

for i from 2 to n:

if A[i] > A[index]:

index ← i
swap A[index] and A[n]

index ← 1

for i from 2 to n − 1:

if A[i] > A[index]:

index ← i
swap A[index] and A[n − 1]

return A[n − 1] · A[n]

Algorithm max_pairwise_product_fast(A[1 . . . n]):

#define SWAP(a,b) {int temp; temp=a; a=b; b=temp;}

Correct algorithm: implementation

index ← 1

for i from 2 to n:

if A[i] > A[index]:

index ← i
swap A[index] and A[n]

index ← 1

for i from 2 to n − 1:

if A[i] > A[index]:

index ← i
swap A[index] and A[n − 1]

return A[n − 1] · A[n]

Algorithm max_pairwise_product_fast(A[1 . . . n]):

max_product_fast.py

https://drive.google.com/file/d/1y7tZ2b_z0X_G2BGJxrHoRjQEzX5x-dfO/view?usp=sharing

Summary

1. Understand the problem, play with toy examples
2. Formalize the problem: input → desired output
3. Sketch a naive solution in pseudocode
4. Implement naive solution
5. Improve your solution
6. Test your improved solution using stress test until

all the bugs are fixed

