
Chapter

17 NP-Completeness

Composite satellite image of the United States at night, 1996. U.S. government
image. NOAA/NGDC DMSP.

Contents

17.1 P and NP . 476
17.2 NP-Completeness . 483
17.3 CNF-SAT and 3SAT . 489
17.4 VERTEX-COVER, CLIQUE, and SET-COVER 492
17.5 SUBSET-SUM and KNAPSACK 496
17.6 HAMILTONIAN-CYCLE and TSP 499
17.7 Exercises . 502

474 Chapter 17. NP-Completeness

Printed circuit boards connect electronic components, with the motherboard

in a personal computer being a well-known example that connects memory chips,

input/output ports, and a computer’s CPU. The connections in a circuit board are

made by an etching process that creates wires on its surface. Then holes are drilled

into the board, allowing for the insertion of electronic components, which are sub-

sequently soldered into the holes. Drilling all of the holes in such a board is a

relatively slow step in this manufacturing process, and drilling time is wasted dur-

ing the time the drill must move from one hole to the next. Thus, in order to

manufacture a large number of identical printed circuit boards, it is worthwhile to

minimize the total amount of time that a drill travels in order to drill all of the holes

in a board.

Looking at this process as a computational problem, we can see that this man-

ufacturing problem is actually an instance of a classic algorithmic problem—the

traveling salesperson problem (TSP). In the traveling salesperson problem, we

are given a set of “cities” that a traveling salesperson needs to visit. In addition,

between every pair of cities, v and w, we are given “distance,” d(v, w), that is a
number representing the cost (in time, miles, money, etc.) for traveling between

city v and city w. The TSP objective is to find a tour that visits all of the cities

and minimizes the total cost of all the traveling the salesperson needs to do. The

problem of drilling all the holes in a printed circuit board is an instance of the trav-

eling salesperson problem. Each of the holes represents a “city” and the distance

between two of these cities is the time it would take to move a robotic drill from

one hole to another, including the time it would take to change drill bits if the two

holes are of different sizes. (See Figure 17.1.)

In addition to the example of optimizing the process of drilling holes in a

printed circuit board, there are many other applications of the traveling salesper-

son problem. For instance, optimizing the delivery of packages in a UPS or FedEx

truck, or the route that one should take to see all the points of interest on a vacation,

are also traveling salesperson problems. Thus, it would be useful if we had a fast

and simple algorithm for computing an optimal solution to any instance of the trav-

eling salesperson problem. Unfortunately, this is a very difficult problem to always

solve optimally.

Some computational problems, like the traveling salesperson problem, are hard.

Moreover, even after lots of different researchers have worked on designing ef-

ficient algorithms for solving them, we may still not have a method that runs in

polynomial time. Ideally, in such cases, we would like to prove that it is impossible

to find a polynomial-time solution, so that we can clearly establish the difficulty of

such a problem. Such a proof would be a great relief when an efficient algorithm

evades us, for then we could take comfort from the fact that no efficient algorithm

exists for this problem. Unfortunately, such proofs are typically also very difficult

to discover.

Still, we can prove that certain problems are computationally as difficult as

other problems, which is an indirect way of showing a problem is computationally

475

difficult. In particular, the concept of NP-completeness allows us to rigorously

show that finding an efficient algorithm for a certain problem is at least as hard

as finding efficient algorithms for all the problems in a large class of problems

called “NP.” The formal notion of “efficient” we use here is that a problem has an

algorithm running in time proportional to a polynomial function of its input size, n.
(Recall that this notion of efficiency was already mentioned in Section 1.1.5.) That

is, we consider an algorithm “efficient,” for the discussion in this chapter, if it runs

in time O(nk) on any input of size n, for some constant k > 0. The class NP
contains some extremely difficult problems, for which polynomial-time solutions

have eluded researchers for decades. Therefore, while showing that a problem

is NP-complete is admittedly not the same as proving that an efficient algorithm

for the problem is impossible, it is nevertheless a powerful statement. Basically,

showing that a problem L is NP-complete says that, although we have been unable

to find an efficient algorithm for L, neither has any computer scientist who has ever

lived! Indeed, most computer scientists strongly believe it is impossible to solve

any NP-complete problem in polynomial time.

In this chapter, we formally define the class NP and its related class P, and we

show how to prove that some problems are NP-complete. We also discuss some of

the best-known NP-complete problems, showing that each one is at least as hard

as every other problem in NP. These problems include satisfiability, vertex cover,

knapsack, and traveling salesperson.

Figure 17.1: Artwork for a printed circuit board. Each circle in this diagram repre-

sents a hole that needs to be drilled. Optimizing the route that a drill should take to

make these holes is an instance of the traveling salesperson problem (TSP). 8051

Development System Circuit Board, Paul Stoffregen, 2005, public domain image.

476 Chapter 17. NP-Completeness

17.1 P and NP

In this section, we define P and NP, which give us the basic tools for formally

saying a problem is computationally difficult. But before we discuss the issue of

intractability of computational problems, like the traveling salesperson problem,

we need to revisit the definition of the running time of an algorithm.

In order to study NP-completeness, we need to be more precise about running

time. Namely, instead of the informal notion of input size as the number of “items”

that form the input (see Chapter 1), we define the input size, n, of a problem to be

the number of bits used to encode an input instance. We also assume that characters

and numbers in the input are encoded using a reasonable binary encoding scheme,

so that each character uses a constant number of bits and each integer M > 0 is

represented with at most c logM bits, for some constant c > 0. In particular, we

disallow inputs that are specified using a unary encoding, where an integer M is

represented with M 1’s.

Recall that we have, for most of the other chapters of this book, defined the

input size, n, to be the number of “items” or “elements” in an input. In this chapter,

however, we take n to be the number of bits used to represent an input, as mentioned

above. Formally, we define the worst-case running time of an algorithm A to be

the worst-case time taken by A as a function of n, taken over all inputs (with valid

encodings) having n bits.

From the standpoint of polynomial-time algorithms, we don’t actually lose

much by focusing on bit-length as our definition of input size. For instance, if

an algorithm has a running time that is polynomial in the number of input bits,

n, then it also runs in polynomial time in the number of “items,” N , in that same

input, for
√
n ≤ N ≤ n. Likewise, any “reasonable” algorithm that runs in poly-

nomial time in terms of the number of input items, N , will also run in polynomial

time in terms of the number of input bits, n, where by “reasonable” we mean that

numbers used by the algorithm can be represented using O(logN) bits or arrays
of O(logN)-bit numbers. Thus, under this restriction, n is O(N logN); hence, a
reasonable algorithm with a running time that is polynomial in N will also have a

running time that is polynomial in n. (See Figure 17.2 and also Exercise C-17.2.)

Figure 17.2: Viewing input size in terms of bits.

17.1. P and NP 477

17.1.1 Defining the Complexity Classes P and NP
By the notion of a “reasonable” algorithm described above, we can easily show

that, for the problems discussed elsewhere in this book, such as graph problems,

text processing, or sorting, the polynomial-time algorithms given in those other

chapters translate into polynomial-time algorithms using the notion of running time

considered in this chapter.

Moreover, the class of polynomials is closed under addition, multiplication, and

composition. That is, if p(n) and q(n) are polynomials, then so are p(n) + q(n),
p(n) · q(n), and p(q(n)). Thus, we can combine or compose polynomial-time

algorithms to construct new polynomial-time algorithms. For example, if an algo-

rithm, A, takes an input of size n and produces an output of size q(n) in O(q(n))
time, and then an algorithm, B, takes the output of A as its input, where B runs

in O(p(m)) time on inputs of size m, then this combined algorithm runs in time

O(q(n) + p(q(n))), which is polynomial if p and q are polynomials.

Decision Problems and Languages

To simplify our discussion, let us restrict our attention for the time being to decision
problems, that is, to computational problems for which the intended output is either

“yes” or “no.” In other words, a decision problem’s output is a single bit, which is

either 0 or 1. For example, each of the following are decision problems:

• Given a string T and a string P , does P appear as a substring of T ?
• Given two sets S and T , do S and T contain the same set of elements?

• Given a graph G with integer weights on its edges, and an integer k, does G
have a minimum spanning tree of weight at most k?

As last problem illustrates, we can often turn an optimization problem, where we
are trying to minimize or maximize some value, into a decision problem. We can

introduce a parameter k and ask if the optimal value for the optimization problem

is at most or at least k. Note that if we can show that a decision problem is hard,

then its related optimization version must also be hard.

We say that an algorithm A accepts an input string x if A outputs “yes” on

input x, andA rejects x ifA outputs “no” on input x. Thus, we can view a decision
problem as actually being just a setL of strings—the strings that should be accepted

by an algorithm that correctly solves the problem. Indeed, we often use the letter

“L” to denote such a decision problem, because a set of strings is often referred to

as a language. We can extend this language-based viewpoint further to say that an

algorithm A decides a language L if, for each string x, A outputs “yes” if x is in L
and “no” otherwise. Throughout this chapter, we assume that if x is in an improper

syntax, then an algorithm given x will output “no.” In addition, we restrict our

attention to algorithms, that is, computations that terminate on every input after a

finite number of steps.

478 Chapter 17. NP-Completeness

The Million-Dollar P = NP Question

The complexity class P is the set of all decision problems (or languages) L that can

be decided in worst-case polynomial time. That is, there is an algorithm A that, on

input x, runs in p(n) time, where n is the size of x and p(n) is a polynomial, and, if

x ∈ L, then A outputs “yes,” and otherwise A outputs “no.” The latter case refers

to the complement of a language L, which consists of all binary strings that are not
in L. Given an algorithm A that decides a language L in polynomial time, p(n),
we can easily construct a polynomial-time algorithm that decides the complement

of L. In particular, given an input x, we can construct a complement algorithm B
that simply runs A for p(n) steps, where n is the size of x. If A outputs “yes,” then

B outputs “no,” and if A outputs “no,” then B outputs “yes.” In either case, the

complement algorithm, B, runs in polynomial time. Therefore, if a language L,
representing some decision problem, is in P, then the complement of L is also in P.

The complexity class NP is defined to include the complexity class P but allow

for the inclusion of languages that may not be in P. Specifically, with NP problems,

we allow algorithms to perform an additional operation:

• choose(b): this operation chooses in a nondeterministic way a bit (that is, a

value that is either 0 or 1) and assigns it to b.

When an algorithm A uses the choose primitive operation, then we say A is non-
deterministic. We state that an algorithm A nondeterministically accepts a string
x if there exists a set of outcomes to the choose calls that A could make on input

x such that A would ultimately output “yes.” In other words, it is as if we consider

all possible outcomes to choose calls and only select those that lead to acceptance
if there is such a set of outcomes.

The complexity class NP is the set of every decision problem (or language),

L, that can be nondeterministically accepted in polynomial time, where we define

the running time, p(n), of a nondeterministic algorithm to be the maximum running

time forA taken over all possible outcomes to its choose calls on an input of size n.
That is, L is in NP if there is a nondeterministic algorithm A and polynomial p(n)
such that, on an input x of size n, if x ∈ L, then there is a set of outcomes to the

choose calls in A so that it outputs “yes” and A runs in p(n) time. If x is not in L,
then every possible outcome to the choose calls in A results in A outputting “no.”

Interestingly, unlike as was the case with P, just because a language L is in NP
does not necessarily imply that the complement of L is also in NP. Indeed, there is
a complexity class, called co-NP, that consists of all languages whose complement

is in NP, and many researchers believe co-NP �= NP.
The Clay Mathematics Institute has offered $1 million to the first person who

proves whether P = NP. Although no one has, as of this writing, succeeded in

claiming this prize, the majority of computer scientists believe that P is different

thanNP. That is, most computer scientists believe that the answer to the “P=NP?”
question is “no.”

17.1. P and NP 479

An Alternative Definition of NP

There is actually another way to define the complexity class NP, which might be

more intuitive for some readers. This alternative definition of NP is based on de-

terministic verification, instead of nondeterministic acceptance. We say that a lan-

guage L can be verified by an algorithm A if, given any string x in L as input,

there is another string y such that A outputs “yes” on input z = x + y, where we
use the symbol “+” to denote concatenation. The string y is called a certificate for
membership in L, for it helps us certify that x is indeed in L. Note that we make

no claims about verifying when a string is not in L.
This notion of verification allows us to give an alternative definition of the

complexity class NP. Namely, we can define NP to be the set of all languages

L, defining decision problems, such that L can be verified in polynomial time.

That is, there is a (deterministic) algorithm A that, for any x in L, verifies using
some certificate y that x is indeed in L in polynomial time, p(n), including the

time A takes to read its input z = x + y, where n is the size of x. Note that

this definition implies that the size of y is less than p(n). As the following theorem
shows, this verification-based definition ofNP is equivalent to the nondeterminism-

based definition given above.

Theorem 17.1: A language L can be (deterministically) verified in polynomial
time if and only if L can be nondeterministically accepted in polynomial time.

Proof: Suppose there is a deterministic algorithmA that can verify in polynomial

time, p(n), that a string x is in L when given a polynomial-length certificate y.
We can construct a nondeterministic algorithm B that takes the string x as input

and calls the choose method to assign the value of each bit in y. After B has

constructed a string z = x + y, it then calls A to verify that x ∈ L given the

certificate y. If there exists a certificate y such that A accepts z, then there is

clearly a set of nondeterministic choices for B that result in B outputting “yes”

itself. In addition, B will run in O(p(n)) steps.
Next, suppose that there is a nondeterministic algorithm A that, given a string

x in L, performs p(n) steps, which may include choose steps, such that, for some

sequence of outcomes to these choose steps, A will output “yes.” There is a de-

terministic verification algorithm B that, given x in L, uses as its certificate y the

ordered concatenation of all the outcomes to choose calls that Amakes on input x
in order to ultimately output “yes.” Since A runs in p(n) steps, where n is the size

of x, the algorithm B will also run in O(p(n)) steps given input z = x + y.

The practical implication of this theorem is that, since both definitions of NP
are equivalent, we can use either one for showing that a problem is in NP. That
is, Theorem 17.1 implies that we can structure a nondeterministic algorithm so

that all of its choose steps are performed first and the rest of the algorithm is just

a verification. We illustrate this approach by showing some interesting decision

problems to be in NP in the next subsection.

480 Chapter 17. NP-Completeness

17.1.2 Some Interesting Problems in NP
Our first example problem in NP is the traveling salesperson problem, which we

discussed above. Recall that in this problem we are given a set of N “cities” to-

gether with a distance function, d(v, w), which assigns an integer cost to each pair

of cities (so that d(v, w) = d(w, v)), and we are asked to find a tour of all the cities
that has minimum total cost. Viewing this as a decision problem, or language TSP,

we assume we are also given an integer k, and we are asked whether there is a cycle
that visits each city exactly once, returning to the starting city, such that the total

cost of the tour is at most k. (See Figure 17.3.)

1

3

7

2

2

4 1

2

7

1

8

9 6

5

6

7

Figure 17.3: An example instance of the TSP decision problem, where k = 18 and

the answer is “yes.” City pairs with a finite cost between them are drawn as an

edge along with its integer cost; missing edges are for city pairs with infinite cost

between them. A tour with total cost at most k is drawn with bold edges.

Lemma 17.2: TSP is in NP.

Proof: Let us define a nondeterministic algorithm that accepts instances of TSP.

Assume that the cities are numbered 1 toN . We iteratively call the choosemethod

to determine a sequence S of N + 1 numbers from 1 to N . Then, we check that

each number from 1 to N appears exactly once in S (for example, by sorting S),
except for the first and last numbers in S, which should be the same. Then, we

verify that the sequence S defines a cycle of cities and that the total cost of the tour

defined by S is at most k. This algorithm clearly runs in polynomial time.

Observe that if there is a tour that visits each city exactly once, returning to

the starting city, with total cost at most k, then our nondeterministic algorithm will

output “yes.” Likewise, if our algorithm outputs “yes,” then it has found a tour

visiting each city exactly once, returning to the starting city, with total cost at most

k. Since this algorithm runs in polynomial time, this implies that TSP is in NP.

17.1. P and NP 481

Our next example is a problem related to circuit design testing. A Boolean
circuit is a directed graph where each node, called a logic gate, corresponds to a

simple Boolean function, AND, OR, or NOT. The incoming edges for a logic gate

correspond to inputs for its Boolean function and the outgoing edges correspond to

outputs, which will all be the same value, of course, for that gate. (See Figure 17.4.)

Vertices with no incoming edges are input nodes, and a vertex with no outgoing

edges is an output node.

NOT

OR

AND

Logic Gates:

Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0
0 1

Figure 17.4: An example Boolean circuit.

CIRCUIT-SAT is the problem that takes as input a Boolean circuit with a single

output node, and asks whether there is an assignment of values to the circuit’s inputs

so that its output value is “1.” Such an assignment of values is called a satisfying
assignment.

Lemma 17.3: CIRCUIT-SAT is in NP.

Proof: We construct a nondeterministic algorithm for accepting CIRCUIT-SAT in

polynomial time. We first use the choosemethod to “guess” the values of the input

nodes as well as the output value of each logic gate. Then, we simply visit each

logic gate g in C, that is, each vertex with at least one incoming edge. We then

check that the “guessed” value for the output of g is in fact the correct value for

g’s Boolean function, be it an AND, OR, or NOT, based on the given values for the
inputs for g. This evaluation process can easily be performed in polynomial time.

If any check for a gate fails, or if the “guessed” value for the output is 0, then we

output “no.” If, on the other hand, the check for every gate succeeds and the output

is 1, the algorithm outputs “yes.” Thus, if there is indeed a satisfying assignment

of input values for C, then there is a possible collection of outcomes to the choose
statements so that the algorithm will output “yes” in polynomial time. Likewise,

if there is a collection of outcomes to the choose statements so that the algorithm

outputs “yes” in polynomial-time algorithm, there must be a satisfying assignment

of input values for C. Therefore, CIRCUIT-SAT is in NP.

482 Chapter 17. NP-Completeness

The next example problem is for a network monitoring problem. Suppose we

are given a computer network, which is modeled using a graph G such that each

vertex in G is a computer and each edge in G is a network connection between a

pair of computers. We would like to monitor all of these connections by installing

special monitoring devices on some of the computers, where a monitoring device

placed on a computer can continuously check if all the network connections to that

computer are working correctly. But these devices are relatively expensive, so we

would like to minimize the number of such devices that we need to deploy. Viewed

as a decision problem, which is known as VERTEX-COVER, we are given a graph G
and an integer k, and we are asked whether there is a subset C of k vertices such

that, for every edge (v, w) of G, v ∈ C or w ∈ C (possibly both). Such a subset is

known as a vertex cover. In other words, VERTEX-COVER is the decision problem

that takes a graph G and an integer k as input, and asks whether there is a vertex

cover for G containing at most k vertices. (See Figure 17.5.)

Figure 17.5: An instance of the VERTEX-COVER decision problem, where k = 4
and the answer is “yes.” The vertices in the vertex cover are drawn as large disks.

Lemma 17.4: VERTEX-COVER is in NP.

Proof: Suppose we are given an integer k and a graph G, with its vertices num-

bered 1 to N . We use repeated calls to the choose method to form a collection C
of k numbers that range from 1 to N . As a verification, we insert all the numbers

of C into a dictionary, and then we examine each of the edges in G to make sure

that, for each edge (v, w) in G, v is in C or w is in C. If we ever find an edge

with neither of its end-vertices in G, then we output “no.” If we run through all

the edges of G so that each has an end-vertex in C, then we output “yes.” Such a

computation clearly runs in polynomial time. Note that if G has a vertex cover of

size at most k, then there is an assignment of numbers to define the collection C so

that each edge of G passes our test and our algorithm outputs “yes.” Likewise, if

our algorithm outputs “yes,” then there must be a subset C of the vertices of size at

most k, such that C is a vertex cover. Thus, VERTEX-COVER is in NP.

17.2. NP-Completeness 483

17.2 NP-Completeness

The notion of nondeterministic acceptance of a decision problem (or language) is

admittedly strange. There is, after all, no conventional computer that can efficiently

perform a nondeterministic algorithm with many calls to the choose method. In-

deed, to date no one has shown how even an unconventional computer, such as a

quantum computer or DNA computer, can efficiently simulate any nondeterminis-

tic polynomial-time algorithm using a polynomial amount of resources. Certainly,

we can deterministically simulate a nondeterministic algorithm by trying out, one

by one, all possible outcomes to the choose statements that the algorithm makes.

But this simulation becomes an exponential-time computation for any nondeter-

ministic algorithm that makes at least nε calls to the choose method, for any fixed

constant ε > 0. Indeed, there are hundreds of problems in the complexity class

NP for which most computer scientists strongly believe there is no conventional

deterministic method for solving them in polynomial time.

The usefulness of the complexity classNP, therefore, is that it formally captures

a host of problems that many believe to be computationally difficult. In fact, there

are some problems that are provably at least as hard as every other problem in NP,
as far as polynomial-time solutions are concerned. This notion of hardness is based

on the concept of polynomial-time reducibility, which we now discuss.

17.2.1 Polynomial-Time Reducibility and NP-Hardness

We say that a language L, defining some decision problem, is polynomial-time
reducible to a languageM , if there is a function f computable in polynomial time,

that takes an input x to L, and transforms it to an input f(x) ofM , such that x ∈ L
if and only if f(x) ∈M . In addition, we use a shorthand notation, saying L poly−→M
to signify that language L is polynomial-time reducible to language M .

We say that a languageM , defining some decision problem, isNP-hard if every
other language L in NP is polynomial-time reducible to M . In more mathematical

notation, M is NP-hard, if, for every L ∈ NP, L poly−→ M . If a language M is

NP-hard and it is also in the class NP itself, thenM is NP-complete. Thus, an NP-
complete problem is, in a very formal sense, one of the hardest problems in NP, as
far as polynomial-time computability is concerned. For, if anyone ever shows that

an NP-complete problem L is solvable in polynomial time, then that immediately

implies that every other problem in the entire class NP is solvable in polynomial

time. For, in this case, we could accept any other NP language M by reducing

it to L and then running the algorithm for L. In other words, if anyone finds a

deterministic polynomial-time algorithm for even one NP-complete problem, then

P = NP.

484 Chapter 17. NP-Completeness

17.2.2 The Cook-Levin Theorem

At first, it might appear that the definition of NP-completeness is too strong. Still,

as the following theorem shows, there is at least one NP-complete problem.

Theorem 17.5 (The Cook-Levin Theorem): CIRCUIT-SAT is NP-complete.

Rather than give a formal proof of this theorem, which is somewhat cumber-

some, let us instead provide a sketch of this proof, which highlights the main ideas.

To begin, note that Lemma 17.3 shows that CIRCUIT-SAT is in NP. Thus, we have
yet to show this problem is NP-hard. That is, we need to show that every problem

in NP is polynomial-time reducible to CIRCUIT-SAT.

So, consider a language L, representing some decision problem that is in NP.
Since L is in NP, there is a deterministic algorithm D that accepts any x in L in

polynomial-time p(n), given a polynomial-sized certificate y, where n is the size

of x. The main idea of the proof is to build a large, but polynomial-sized, circuit

C that simulates the algorithm D on an input x in such a way that C is satisfiable

if and only if there is a certificate y such that D outputs “yes” on input z = x + y,
where “+” denotes concatenation.

Configurations of a Computation

Recall (from Section 1.1.2) that any deterministic algorithm, such as D, can be

implemented on a simple computational model (called the Random Access Ma-

chine, or RAM) that consists of a CPU and a bankM of addressable memory cells.

In our case, the memory M contains the input, x, the certificate, y, the working

storage, W , that D needs to perform its computations, and the code for the algo-

rithm D itself. The working storage W for D includes all the registers used for

temporary calculations and the stack frames for the procedures that D calls during

its execution. The topmost such stack frame in W contains the program counter

(PC) that identifies where D currently is in its program execution. Thus, there are

no memory cells in the CPU itself. In performing each step of D, the CPU reads

the next instruction i, which is pointed to by the PC, and performs the calculation

indicated by i, be it a comparison, arithmetic operation, a conditional jump, a step

in procedure call, etc., and then updates the PC to point to the next instruction to be

performed. Thus, the current state ofD is completely characterized by the contents

of its memory cells. Moreover, since D accepts an x in L in a polynomial p(n)
number of steps, where n is the size of x, then the entire effective collection of its

memory cells can be assumed to consist of just p(n) bits. For in p(n) steps, D can

access at most p(n) memory cells. Note also that the size of D’s code is constant

with respect to the sizes of x, y, and evenW . We refer to the p(n)-sized collection
M of memory cells for an execution ofD as the configuration of the algorithmD.

17.2. NP-Completeness 485

Boolean Circuits Can Perform Computations

The heart of the reduction of L to CIRCUIT-SAT depends on our constructing a

Boolean circuit that simulates the workings of the CPU in our computational model.

We omit the details of such a construction in this proof sketch, but it is well known

that a CPU can be designed as a Boolean circuit consisting of AND, OR, and NOT

gates. For example, such constructions are studied in depth in courses on computer

architecture. Moreover, let us further take for granted that this circuit, including

its address unit for connecting to a memory of p(n) bits, can be designed to take a

configuration of D as input and provide as output the configuration resulting from

processing the next computational step. In addition, let us assume that this simula-

tion circuit, which we will call S, can be constructed to consist of at most cp(n)2

AND, OR, and NOT gates, for some constant c > 0. We are admittedly making

an important assumption here, which would be established formally in an actual

proof of the Cook-Levin Theorem, but this assumption should at least be intuitive,

for if it were not the case, then the CPUs that come inside modern computers and

smartphones would not be as small as they are.

The Simulation

To then simulate the entire p(n) steps of D, we make p(n) copies of S, with the

output from one copy serving as the input for the next. (See Figure 17.6.) Part of

the input for the first copy of S consists of “hard-wired” values for the program for

D, the value of x, the initial stack frame (complete with PC pointing to the first

instruction of D), and the remaining working storage (initialized to all 0’s). The

only unspecified true inputs to the first copy of S are the cells of D’s configuration

for the certificate y. These are the true inputs to our circuit. Likewise, we ignore

all the outputs from the final copy of S, except the single output that indicates the
answer fromD, with “1” for “yes” and “0” for “no.” The total size of the circuit C
is O(p(n)3), which of course is still polynomial in the size of x.

Completing the Proof Sketch

Consider an input x that D accepts for some certificate y after p(n) steps. Then

there is an assignment of values to the input to C corresponding to y, such that, by

having C simulate D on this input and the hard-wired values for x, we will ulti-

mately have C output a 1. Thus, C is satisfiable in this case. Conversely, consider

a case when C is satisfiable. Then there is a set of inputs, which correspond to the

certificate y, such that C outputs a 1. But, since C exactly simulates the algorithm

D, this implies that there is an assignment of values to the certificate y, such that

D outputs “yes.” Thus, D will verify x in this case. Therefore, D accepts x with

certificate y if and only if C is satisfiable.

486 Chapter 17. NP-Completeness

p(n)
memory

cells

S

x

D

W

y

x

D

W

y

S S

x

D

W

y

Output
0/1

from D

p(n)
steps

In
pu

ts

n

Figure 17.6: An illustration of the circuit used to prove that CIRCUIT-SAT is NP-
hard. The only true inputs correspond to the certificate, y. The problem instance,

x, the working storage, W , and the program code, D, are initially “hard-wired”

values. The only output is the bit that determines whether the algorithm accepts x.

17.2. NP-Completeness 487

17.2.3 How to Prove Problems to be NP-Complete
Now that we are armed with one NP-complete problem, we can prove other prob-

lems are NP-complete using simple polynomial-time reductions. We explore a

number of such reductions in the remainder of this chapter.

Given just a single NP-complete problem, we can now use polynomial-time

reducibility to show other problems to be NP-complete. We will make repeated

use of the following important lemma about polynomial-time reducibility.

Lemma 17.6: If L1
poly−→ L2 and L2

poly−→ L3, then L1
poly−→ L3.

Proof: Since L1
poly−→ L2, any instance, x, of size n, for L1, can be converted in

polynomial-time, p(n), into an instance f(x) for L2, such that x ∈ L1 if and only

if f(x) ∈ L2. Likewise, since L2
poly−→ L3, any instance, y, of sizem, for L2, can be

converted in polynomial-time, q(m), into an instance g(y) for L3, such that y ∈ L2

if and only if g(y) ∈ L3. Combining these two constructions, any instance, x, of
size n, for L1 can be converted in time, p(n) + q(k), into an instance, g(f(x)), for
L3, such that x ∈ L1 if and only if g(f(x)) ∈ L3, where k is the size of f(x).
But, k ≤ p(n), since f(x) is constructed in p(n) steps. Thus, q(k) ≤ q(p(n)).
Since the composition of two polynomials always results in another polynomial,

this inequality implies that L1
poly−→ L3.

In this section we establish several important problems to be NP-complete,

using this lemma. All of the proofs have the same general structure. Given a new

problem L, we first prove that L is in NP. Then, we reduce a known NP-complete

problem to L in polynomial time, showing L to be NP-hard. Thus, we show L to

be in NP and also NP-hard; hence, L has been shown to be NP-complete. (Why

not do the reduction in the other direction?) These reductions generally take one of

three forms:

• Restriction: This form shows a problem L isNP-hard by noting that a known
NP-complete problem M is actually just a special case of L.

• Local replacement: This forms reduces a known NP-complete problem M
to L by dividing instances of M and L into “basic units,” and then showing

how each basic unit of M can be locally converted into a basic unit of L.
• Component design: This form reduces a known NP-complete problem M

to L by building components for an instance of L that will enforce impor-

tant structural functions for instances of M . For example, some components

might enforce a “choice” while others enforce an “evaluation” function.

The last of the three above forms tends to be the most difficult to construct; it is the

form used, for example, by the proof of the Cook-Levin Theorem (17.5).

In Figure 17.7, we illustrate the problems we prove are NP-complete, together

with the problems they are reduced from and the technique used in each polynomial-

time reduction.

488 Chapter 17. NP-Completeness

In the remainder of this chapter we study some important NP-complete prob-

lems. We treat most of them in pairs, with each pair addressing an important class

of problems, including problems involving Boolean formulas, graphs, sets, and

numbers. We begin with two problems involving Boolean formulas.

Figure 17.7: Illustration of the reductions used in some fundamental NP-
completeness proofs. Each directed edge denotes a polynomial-time reduction,

with the label on the edge indicating the primary form of that reduction. The top-

most reduction is the Cook-Levin Theorem.

17.3. CNF-SAT and 3SAT 489

17.3 CNF-SAT and 3SAT
The first reductions we present are for problems involving Boolean formulas. A

Boolean formula is a parenthesized expression that is formed from Boolean vari-

ables using Boolean operations, such as OR (+), AND (·), NOT (drawn as a bar

over the negated subexpression), IMPLIES (→), and IF-AND-ONLY-IF (↔). A

Boolean formula is in conjunctive normal form (CNF) if it is formed as a collec-

tion of subexpressions, called clauses, that are combined using AND, with each

clause formed as the OR of Boolean variables or their negation, called literals. For
example, the following Boolean formula is in CNF:

(x1 + x2 + x4 + x7)(x3 + x5)(x2 + x4 + x6 + x8)(x1 + x3 + x5 + x8).

This formula evaluates to 1 if x2, x3, and x4 are 1, where we use 0 for false and

1 for true. CNF is called a “normal” form, because any Boolean formula can be

converted into this form.

CNF-SAT

Problem CNF-SAT takes a Boolean formula in CNF form as input and asks whether

there is an assignment of Boolean values to its variables so that the formula evalu-

ates to 1. It is easy to show that CNF-SAT is in NP, for, given a Boolean formula

S, we can construct a simple nondeterministic algorithm that first “guesses” an as-

signment of Boolean values for the variables in S and then evaluates each clause

of S in turn. If all the clauses of S evaluate to 1, then S is satisfied; otherwise, it is

not.

To show that CNF-SAT is NP-hard, we will reduce the Circuit-SAT problem to

it in polynomial time. So, suppose we are given a Boolean circuit, C. Without loss

of generality, we assume that each AND and OR gate has two inputs and each NOT

gate has one input. To begin the construction of a formula S equivalent to C, we

create a variable xi for each input for the entire circuit C. One might be tempted

to limit the set of variables to just these xi’s and immediately start constructing a

formula for C by combining subexpressions for inputs, but it is not clear that this

approach would take polynomial time. (See Exercise C-17.5.) Instead, we create a

variable yi for each output of a gate in C. Then we create a short formula Bg that

corresponds to each gate g in C as follows:

• If g is an AND gate with inputs a and b (which could be either xi’s or yi’s)
and output c, then Bg = (c↔ (a · b)).

• If g is an OR gate with inputs a and b and output c, thenBg = (c↔ (a+b)).
• If g is a NOT gate with input a and output b, then Bg = (b↔ a).

We wish to create our formula S by taking the AND of all of these Bg’s, but such

a formula would not be in CNF. So our method is to first convert each Bg to be in

490 Chapter 17. NP-Completeness

a b c B = (c↔ (a · b))
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 1 1
0 0 1 0
0 0 0 1

DNF formula for B = a · b · c + a · b · c + a · b · c + a · b · c
CNF formula for B = (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c).

Figure 17.8: A truth table for a Boolean formula B over variables a, b, and c. The
equivalent formula for B in DNF, and equivalent formula for B in CNF.

CNF, and then combine all of these transformed Bg’s by AND operations to define

the CNF formula S.
To convert a Boolean formula B into CNF, we construct a truth table for B, as

shown in Figure 17.8. We then construct a short formulaDi for each table row that

evaluates to 0. Each Di consists of the AND of the variables for the table, with the

variable negated if and only if its value in that row is 0. We create a formula D by

taking the OR of all theDi’s. Such a formula, which is the OR of formulas that are

the AND of variables or their negation, is said to be in disjunctive normal form,
or DNF. In this case, we have a DNF formula D that is equivalent to B, since it

evaluates to 1 if and only if B evaluates to 0. To convertD into a CNF formula for

B, we apply, to each Di, De Morgan’s laws, which establish that

(a + b) = a · b and (a · b) = a + b.

From Figure 17.8, we can replace each Bg that is of the form (c↔ (a · b)), by
(a + b + c)(a + b + c)(a + b + c)(a + b + c),

which is in CNF. Likewise, for each Bg that is of the form (b↔ a), we can replace
Bg by the equivalent CNF formula

(a + b)(a + b).

We leave the CNF substitution for a Bg of the form (c ↔ (a + b)) as an exercise

(R-17.2). Substituting each Bg in this way results in a CNF formula S ′ that cor-
responds exactly to each input and logic gate of the circuit, C. To construct the

final Boolean formula S, then, we define S = S ′ · y, where y is the variable that

is associated with the output of the gate that defines the value of C itself. Thus, C
is satisfiable if and only if S is satisfiable. Moreover, the construction from C to

S builds a constant-sized subexpression for each input and gate of C; hence, this

construction runs in polynomial time. Therefore, this local-replacement reduction

gives us the following.

Theorem 17.7: CNF-SAT is NP-complete.

17.3. CNF-SAT and 3SAT 491

3SAT

Consider the 3SAT problem, which takes a Boolean formula S that is in conjunctive

normal form (CNF) with each clause in S having exactly three literals, and asks

whether S is satisfiable. Recall that a Boolean formula is in CNF if it is formed by

the AND of a collection of clauses, each of which is the OR of a set of literals. For

example, the following formula could be an instance of 3SAT:

(x1 + x2 + x7)(x3 + x5 + x6)(x2 + x4 + x6)(x1 + x5 + x8).

Thus, the 3SAT problem is a restricted version of the CNF-SAT problem. (Note

that we cannot use the restriction form of NP-hardness proof, however, for this

proof form only works for reducing a restricted version to its more general form.)

In this subsection, we show that 3SAT is NP-complete, using the local-replacement

form of proof. Interestingly, the 2SAT problem, in which every clause has exactly

two literals, can be solved in polynomial time. (See Exercises C-17.6 and C-17.7.)

Note that 3SAT is in NP, for we can construct a nondeterministic polynomial-

time algorithm that takes a CNF formula S with 3-literals per clause, guesses an

assignment of Boolean values for S, and then evaluates S to see if it is equal to 1.
To prove that 3SAT is NP-hard, we reduce the CNF-SAT problem to it in poly-

nomial time. Let C be a given Boolean formula in CNF. We perform the following

local replacement for each clause Ci in C:

• If Ci = (a), that is, it has one term, which may be a negated variable, then

we replace Ci with Si = (a+ b+ c) · (a+ b+ c) · (a+ b+ c) · (a+ b+ c),
where b and c are new variables not used anywhere else.

• If Ci = (a + b), that is, it has two terms, then we replace Ci with the sub-

formula Si = (a + b + c) · (a + b + c), where c is a new variable not used

anywhere else.

• If Ci = (a + b + c), that is, it has three terms, then we set Si = Ci.

• If Ci = (a1+a2+a3+ · · ·+ak), that is, it has k > 3 terms, then we replace

Ci with Si = (a1+a2+b1)·(b1+a3+b2)·(b2+a4+b3) · · · (bk−3+ak−1+ak),
where b1, b2, . . . , bk−1 are new variables not used anywhere else.

Notice that the value assigned to the newly introduced variables is completely ir-

relevant. No matter what we assign them, the clause Ci is 1 if and only if the small

formula Si is also 1. Thus, the original clause C is 1 if and only if S is 1. More-

over, note that each clause increases in size by at most a constant factor and that the

computations involved are simple substitutions. Therefore, we have shown how to

reduce an instance of the CNF-SAT problem to an equivalent instance of the 3SAT

problem in polynomial time. This, together with the earlier observation about 3SAT

belonging to NP, gives us the following theorem.

Theorem 17.8: 3SAT is NP-complete.

492 Chapter 17. NP-Completeness

17.4 VERTEX-COVER, CLIQUE, and SET-COVER

In the VERTEX-COVER problem, we are given a graph G and an integer k and

asked whether there is a vertex cover for G containing at most k vertices. That is,

VERTEX-COVER asks whether there is a subset C of vertices of size at most k, such
that for each edge (v, w), we have v ∈ C or w ∈ C. We showed, in Lemma 17.4,

that VERTEX-COVER is in NP.

VERTEX-COVER is NP-Complete

Given that VERTEX-COVER is in NP, to show that VERTEX-COVER is NP-complete,

we will show that VERTEX-COVER is NP-hard, by reducing the 3SAT problem to it

in polynomial time. This reduction is interesting in two respects. First, it shows an

example of reducing a logic problem to a graph problem. Second, it illustrates an

application of the component-design proof technique.

Let S be a given instance of the 3SAT problem, that is, a CNF formula such that

each clause has exactly three literals. We construct a graphG and an integer k such

that G has a vertex cover of size at most k if and only if S is satisfiable. We begin

our construction by adding the following:

• For each variable xi used in the formula S, we add two vertices in G, one

that we label with xi and the other we label with xi. We also add the edge

(xi, xi) to G. (Note: These labels are for our own benefit; after we construct

the graph G, we can always relabel vertices with integers if that is what an

instance of the VERTEX-COVER problem should look like.)

Each edge (xi, xi) is a “truth-setting” component, for, with this edge in G, a vertex

cover must include at least one of xi or xi. In addition, we add the following:

• For each clause Ci = (a+ b+ c) in S, we form a triangle consisting of three

vertices, i1, i2, and i3, and three edges, (i1, i2), (i2, i3), and (i3, i1).

Note that any vertex cover will have to include at least two of the vertices in

{i1, i2, i3} for each such triangle. Each such triangle is a “satisfaction-enforcing”

component. We then connect these two types of components, by adding, for each

clause Ci = (a + b + c), the edges (i1, a), (i2, b), and (i3, c). (See Figure 17.9.)
Finally, we set the integer parameter k = n + 2m, where n is the number of vari-

ables in S andm is the number of clauses. Thus, if there is a vertex cover of size at

most k, it must have size exactly k. This completes the construction of an instance

of the VERTEX-COVER problem. This construction clearly runs in polynomial time,

so let us consider its correctness.

17.4. VERTEX-COVER, CLIQUE, and SET-COVER 493

x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

Figure 17.9: Example graph G as an instance of the VERTEX-COVER problem con-

structed from the formula S = (x1 + x2 + x3) · (x1 + x2 + x3) · (x2 + x3 + x4).

Suppose there is an assignment of Boolean values to variables in S so that S is

satisfied. From the graphG constructed from S, we can build a subset of verticesC
that contains each literal a (in a truth-setting component) that is assigned 1 by the

satisfying assignment. Likewise, for each clause Ci = (a + b + c), the satisfying
assignment sets at least one of a, b, or c to 1. Whichever one of a, b, or c is 1
(picking arbitrarily if there are ties), we include the other two in our subset C. This

C is of size n + 2m. Moreover, notice that each edge in a truth-setting component

and clause-satisfying component is covered, and two of every three edges incident

on a clause-satisfying component are also covered. In addition, notice that an edge

incident to a component associated clause Ci that is not covered by a vertex in

the component must be covered by the node in C labeled with a literal, for the

corresponding literal in Ci is 1.
Suppose then the converse, namely, that there is a vertex coverC of size at most

n+2m. By construction, this set must have size exactly n+2m, for it must contain

one vertex from each truth-setting component and two vertices from each clause-

satisfying component. This leaves one edge incident to a clause-satisfying compo-

nent that is not covered by a vertex in the clause-satisfying component; hence, this

edge must be covered by the other endpoint, which is labeled with a literal. Thus,

we can assign the literal in S associated with this node 1 and each clause in S is

satisfied; hence, all of S is satisfied. Therefore, S is satisfiable if and only if G has

a vertex cover of size at most k. This gives us the following.

Theorem 17.9: VERTEX-COVER is NP-complete.

As mentioned before, the above reduction illustrates the component-design

technique. We constructed truth-setting and clause-satisfying components in our

graph G to enforce important properties in the clause S.

494 Chapter 17. NP-Completeness

CLIQUE

As with the VERTEX-COVER problem, there are several other problems that involve

selecting a subset of objects from a larger set so as to optimize the size the subset

can have while still satisfying an important property. The next such problem we

consider is the CLIQUE problem.

A clique in a graph G is a subset C of vertices such that, for each v and w in

C, with v �= w, (v, w) is an edge. That is, there is an edge between every pair of

distinct vertices in C. Problem CLIQUE takes a graph G and an integer k as input

and asks whether there is a clique in G of size at least k.
We leave as a simple exercise (R-17.7) to show that CLIQUE is in NP. To show

CLIQUE is NP-hard, we reduce the VERTEX-COVER problem to it. Therefore, let

(G, k) be an instance of the VERTEX-COVER problem. For the CLIQUE problem, we

construct the complement graph Gc, which has the same vertex set as G, but has

the edge (v, w), with v �= w, if and only if (v, w) is not in G. We define the integer

parameter for CLIQUE as n−k, where k is the integer parameter for VERTEX-COVER.

This construction runs in polynomial time and serves as a reduction, for Gc has a

clique of size at least n − k if and only if G has a vertex cover of size at most k.
(See Figure 17.10.)

(a) (b)

Figure 17.10: A graph G illustrating the proof that CLIQUE is NP-hard. (a) Shows
the graphGwith the nodes of a clique of size 5 shaded in gray. (b) Shows the graph
Gc with the nodes of a vertex cover of size 3 shaded in gray.

Therefore, we have the following.

Theorem 17.10: CLIQUE is NP-complete.

Note how simple the above proof by local replacement is. Interestingly, the next

reduction, which is also based on the local-replacement technique, is even simpler.

SET-COVER

Problem SET-COVER takes a collection of m sets S1, S2, . . ., Sm and an integer

parameter k as input and asks whether there is a subcollection of k sets Si1 , Si2 ,

17.4. VERTEX-COVER, CLIQUE, and SET-COVER 495

. . ., Sik , such that

m⋃

i=1

Si =
k⋃

j=1

Sij .

That is, the union of the subcollection of k sets includes every element in the union

of the original m sets.

We leave it to an exercise (R-17.14) to show SET-COVER is in NP. As to the

reduction, we note that we can define an instance of SET-COVER from an instance

G and k of VERTEX-COVER. Namely, for each vertex v of G, there is set Sv, which
contains the edges ofG incident on v. Clearly, there is a set cover among these sets

Sv’s of size k if and only if there is a vertex cover of size k inG. (See Figure 17.11.)

a

b

c

d

e

f

g

h

i
j

l

m

o

k

n

1

2

3

4

5 6

7

8

S1 = {a, b, c,m, d, e}
S2 = {e, h, o, n, i}
S3 = {a, f}
S4 = {j,m}
S5 = {b, j, l, n, k, g}
S6 = {g, c, i}
S7 = {k,m}
S8 = {d, o, l}

(a) (b)

Figure 17.11: A graph G illustrating the proof that SET-COVER is NP-hard. The

vertices are numbered 1 through 8 and the edges are given letter labels a through

o. (a) Shows the graph G with the nodes of a vertex cover of size 3 shaded in gray.

(b) Shows the sets associated with each vertex in G, with the subscript of each set

identifying the associated vertex. Note that S1 ∪ S2 ∪ S5 contains all the edges of

G.

Thus we have the following.

Theorem 17.11: SET-COVER is NP-complete.

This reduction illustrates how easily we can covert a graph problem into a set

problem. In the next subsection, we show how we can actually reduce graph prob-

lems to number problems.

496 Chapter 17. NP-Completeness

17.5 SUBSET-SUM and KNAPSACK

Some hard problems involve only numbers. In such cases, we must take extra care

to use the size of the input in bits, for some numbers can be very large. To clarify

the role that the size of numbers can make, researchers say that a problem L is

strongly NP-hard if L remains NP-hard even when we restrict the value of each

number in the input to be bounded by a polynomial in the size (in bits) of the input.

An input x of size nwould satisfy this condition, for example, if each number i in x
was represented using O(logn) bits. Interestingly, the number problems we study

in this section are not strongly NP-hard. (See Exercises C-17.14 and C-17.15.)
In the SUBSET-SUM problem, we are given a set S of n integers and an integer

k, and we are asked whether there is a subset of integers in S that sum to k. This
problem could arise, for example, as in the following.

Example 17.12: Suppose we have an Internet web server, and we are presented
with a collection of download requests. For each download request we can easily
determine the size of the requested file. Thus, we can abstract each web request
simply as an integer—the size of the requested file. Given this set of integers,
we might be interested in determining a subset of them that exactly sums to the
bandwidth our server can accommodate in one minute. Unfortunately, this problem
is an instance of SUBSET-SUM. Moreover, because it is NP-complete, this problem
will actually become harder to solve as our web server’s bandwidth and request-
handling ability improves.

SUBSET-SUM might at first seem easy, and indeed showing that it belongs toNP
is straightforward. (See Exercise R-17.15.) Unfortunately, it isNP-complete, as we

now show. Let G and k be given as an instance of the VERTEX-COVER problem.

Number the vertices of G from 1 to n and the edges G from 1 to m, and construct

the incidence matrix H for G, defined so that H[i, j] = 1 if and only if the edge

numbered j is incident on the vertex numbered i; otherwise, H[i, j] = 0. (See

Figure 17.12.)

We useH to define some admittedly large (but still polynomial-sized) numbers

to use as inputs to the SUBSET-SUM problem. Namely, for each row i of H , which

encodes all the edges incident on vertex i, we construct the number

ai = 4m+1 +
m∑

j=1

H[i, j]4j .

Note that this number adds in a different power of 4 for each 1-entry in the ith row
ofH[i, j], plus a larger power of 4 for good measure. The collection of ai’s defines
an “incidence component” to our reduction, for each power of 4 in an ai, except for
the largest, corresponds to a possible incidence between vertex i and some edge.

In addition to the above incidence component, we also define an “edge-covering

17.5. SUBSET-SUM and KNAPSACK 497

a

b

c

d

e

f

g

h

i
j

l

m

o

k

n

1

2

3

4

5 6

7

8

H 1 2 3 4 5 6 7 8

a 1 0 1 0 0 0 0 0
b 1 0 0 0 1 0 0 0
c 1 0 0 0 0 1 0 0
d 1 0 0 0 0 0 0 1
e 1 1 0 0 0 0 0 0
f 0 1 1 0 0 0 0 0
g 0 0 0 0 1 1 0 0
h 0 1 0 1 0 0 0 0
i 0 1 0 0 0 1 0 0
j 0 0 0 1 1 0 0 0
k 0 0 0 0 1 0 1 0
l 0 0 0 0 1 0 0 1
m 0 1 0 1 0 0 0 0
n 0 1 0 0 1 0 0 0
o 0 1 0 0 0 0 0 1

(a) (b)

Figure 17.12: A graph G illustrating the proof that SUBSET-SUM is NP-hard. The
vertices are numbered 1 through 8 and the edges are given letter labels a through o.
(a) Shows the graph G; (b) shows the incidence matrix H for G. Note that there is

a 1 for each edge in one or more of the columns for vertices 1, 2, and 5.

component,” where, for each edge j, we define a number

bj = 4j .

We then set the sum we wish to attain with a subset of these numbers as

k ′ = k4m+1 +
m∑

j=1

2 · 4j ,

where k is the integer parameter for the VERTEX-COVER instance.

Let us consider how this reduction, which clearly runs in polynomial time,

actually works. Suppose graph G has a vertex cover C = {i1, i2, . . . , ik}, of size
k. Then we can construct a set of values adding to k ′ by taking every ai with an

index inC, that is, each air for r = 1, 2, . . . , k. In addition, for each edge numbered

j in G, if only one of j’s endpoints is included in C, then we also include bj in our
subset. This set of numbers sums to k ′, for it includes k values of 4m+1 plus 2
values of each 4j (either from two air ’s such that this edge has both endpoints in C
or from one air and one bj if C contains just one endpoint of edge j).

Suppose there is a subset of numbers suming to k ′. Since k ′ contains k values

of 4m+1, it must include exactly k ai’s. Let us include vertex i in our cover for

each such ai. Such a set is a cover, for each edge j, which corresponds to a power

4j , must contribute two values to this sum. Since only one value can come from

a bj , one must have come from at least one of the chosen ai’s. Thus we have the
following:

Theorem 17.13: SUBSET-SUM is NP-complete.

498 Chapter 17. NP-Completeness

KNAPSACK

In the KNAPSACK problem, illustrated in Figure 17.13, we are given a set S of items,

numbered 1 to n. Each item i has an integer size, si, and worth, wi. We are also

given two integer parameters, s, and w, and are asked whether there is a subset, T ,
of S such that ∑

i∈T
si ≤ s, and

∑

i∈T
wi ≥ w.

Problem KNAPSACK defined above is the decision version of the optimization prob-

lem “0-1 knapsack” discussed in Section 12.6.

We can motivate the KNAPSACK problem with the following Internet applica-

tion.

Example 17.14: Suppose we have s widgets that we are interested in selling at
an Internet auction website. A prospective buyer i can bid on multiple lots by
saying that he or she is interested in buying si widgets at a total price of wi dollars.
If multiple-lot requests, such as this, cannot be broken up (that is, buyer i wants
exactly si widgets), then determining if we can earn w dollars from this auction
gives rise to the KNAPSACK problem. (If lots can be broken up, then our auction
optimization problem gives rise to the fractional knapsack problem, which can be
solved efficiently using the greedy method of Section 10.1.)

The KNAPSACK problem is in NP, for we can construct a nondeterministic

polynomial-time algorithm that guesses the items to place in our subset T and then

verifies that they do not violate the s and w constraints, respectively.

KNAPSACK is also NP-hard, as it actually contains the SUBSET-SUM problem

as a special case. In particular, any instance of numbers given for the SUBSET-

SUM problem can correspond to the items for an instance of KNAPSACK with each

wi = si set to a value in the SUBSET-SUM instance and the targets for the size s and
worth w both equal to k, where k is the integer we wish to sum to for the SUBSET-

SUM problem. Thus, by the restriction proof technique, we have the following.

Theorem 17.15: KNAPSACK is NP-complete.

7

6

1

2

3

5

4

 s

L

Figure 17.13: A geometric view of the KNAPSACK problem. Given a line L of length

s, and a collection of n rectangles, can we translate a subset of the rectangles to have

their bottom edge on L so that the total area of the rectangles touching L is at least

w? Here, the width of rectangle i is si and its area is wi.

17.6. HAMILTONIAN-CYCLE and TSP 499

17.6 HAMILTONIAN-CYCLE and TSP
The last two NP-complete problems we consider ask about the existence of certain

kinds of cycles in a graph. Such problems are useful for optimizing the travel of

robots and circuit-board drills, as discussed at the start of this chapter.

HAMILTONIAN-CYCLE

HAMILTONIAN-CYCLE is the problem that takes a graph G and asks whether there

is a cycle in G that visits each vertex in G exactly once, returning to its starting

vertex. (See Figure 17.14a.) It is relatively easy to show that HAMILTONIAN-CYCLE

is in NP—guess a sequence of vertices and verify that each consecutive pair of

vertices in this sequence is connected by an edge and that every vertex (other than

the starting and ending vertex) is visited exactly once. To show that this problem is

NP-complete, we will reduce VERTEX-COVER to it, using a component-design type

of reduction.

ve,bot

ve,top

we,bot

we,top

(a) (b)

Figure 17.14: Illustrating the HAMILTONIAN-CYCLE problem and its NP-
completeness proof. (a) Shows an example graph with a Hamiltonian cycle

shown in bold. (b) Illustrates a cover-enforcer subgraph He used to show that

HAMILTONIAN-CYCLE is NP-hard.

Let G and k be a given instance of the VERTEX-COVER problem. We will

construct a graph H that has a Hamiltonian cycle if and only if G has a vertex

cover of size k. We begin by including a set of k initially disconnected vertices

X = {x1, x2, . . . , xk} to H . This set of vertices will serve as a “cover-choosing”

component, for they will serve to identify which nodes of G should be included

in a vertex cover. In addition, for each edge e = (v, w) in G we create a “cover-

enforcer” subgraph He in H . This subgraph He has 12 vertices and 14 edges as

shown in Figure 17.14b.

Six of the vertices in the cover-enforcer He for e = (v, w) correspond to v and

the other six correspond to w. Moreover, we label two vertices in cover-enforcer

500 Chapter 17. NP-Completeness

(a) (c)(b)

Figure 17.15: The three possible ways that a Hamiltonian cycle can visit the edges

in a cover-enforcer He.

He that correspond to v as ve,top and ve,bot, and we label two vertices in He that

correspond to w as we,top and we,bot. These are the only vertices inHe that will be

connected to any other vertices in H outside of He. Thus, a Hamiltonian cycle can

visit the nodes of He in only one of three possible ways, as shown in Figure 17.15.

We join the important vertices in each cover-enforcerHe to other vertices inH
in two ways, one that corresponds to the cover-choosing component and one that

corresponds to the cover-enforcing component. For the cover-choosing component,

we add an edge from each vertex inX to every vertex ve,top and every vertex ve,bot.
That is, we add 2kn edges to H , where n is the number of vertices in G.

For the cover-enforcing component, we consider each vertex v inG in turn. For

each such v, let {e1, e2, . . . , ed(v)} be a listing of the edges of G that are incident

upon v. We use this listing to create edges inH by joining vei,bot inHei to vei+1,top

in Hei+1 , for i = 1, 2, . . . , d − 1. (See Figure 17.16.) We refer to the Hei compo-

nents joined in this way as belonging to the covering thread for v. This completes

the construction of the graph H . Note that this computation runs in polynomial

time in the size of G.

We claim that G has a vertex cover of size k if and only if H has a Hamil-

tonian cycle. Suppose, first, that G has a vertex cover of size k. Let C =
{vi1 , vi2 , . . . , vik} be such a cover. We construct a Hamiltonian cycle in H , by

connecting a series of paths Pj , where each Pj starts at xj and ends at xj+1, for

j = 1, 2, . . . , k − 1, except for the last path Pk, which starts at xk and ends at x1.
We form such a path Pj as follows. Start with xj , and then visit the entire covering
thread for vij in H , returning to xj+1 (or x1 if j = k). For each cover-enforcer

subgraph He in the covering thread for vij , which is visited in this Pj , we write,

without loss of generality, e as (vij , w). If w is not also in C, then we visit this He

as in Figure 17.15a or Figure 17.15c (with respect to vij). Instead, if w is also in

C, then we visit this He as in Figure 17.15b. In this way we will visit each vertex

in H exactly once, since C is a vertex cover for G. Thus, this cycle is in fact a

Hamiltonian cycle.

17.6. HAMILTONIAN-CYCLE and TSP 501

ed(v)

v

e1
e2

e3

(a) (b)

v
ed(v),bot

v
ed(v),top

ve1,top

ve1,bot

ve2,top

ve2,bot

ve3,bot

Figure 17.16: Connecting the cover-enforcers. (a) A vertex v in G and its set of

incident edges {e1, e2, . . . , ed(v)}. (b) The connections made between the Hei’s in

H for the edges incident upon v.

Suppose, conversely, that H has a Hamiltonian cycle. Since this cycle must

visit all the vertices inX , we break this cycle up into k paths, P1, P2, . . ., Pk, each

of which starts and ends at a vertex in X . Moreover, by the structure of the cover-

enforcer subgraphsHe and the way that we connected them, each Pj must traverse

a portion (possibly all) of a covering thread for a vertex v in G. Let C be the set of

all such vertices in G. Since the Hamiltonian cycle must include the vertices from

every cover-enforcer He and every such subgraph must be traversed in a way that

corresponds to one (or both) of e’s endpoints, C must be a vertex cover in G.

Therefore, G has a vertex cover of size k if and only if H has a Hamiltonian

cycle. This gives us the following.

Theorem 17.16: H AMILTONIAN-CYCLE is NP-complete.

TSP

In the traveling salesperson problem, or TSP, we are given an integer parameter

k and a graph G, such that each edge e in G is assigned an integer cost c(e), and
we are asked whether there is a cycle in G that visits all the vertices in G (possibly

more than once) and has total cost at most k. We have already established that TSP

is in NP, in Lemma 17.2. Given this fact, showing that TSP is NP-complete is easy,

as the TSP problem contains the HAMILTONIAN-CYCLE problem as a special case.

Namely, given an instance G of the HAMILTONIAN-CYCLE problem, we can create

an instance of TSP by assigning each edge in G the cost c(e) = 1 and setting the

integer parameter k = n, where n is the number of vertices in G. Therefore, using

the restriction form of reduction, we get the following.

Theorem 17.17: TSP is NP-complete.

502 Chapter 17. NP-Completeness

17.7 Exercises

Reinforcement
R-17.1 Professor Amongus has shown that a decision problem L is polynomial-time

reducible to an NP-complete problem M . Moreover, after 80 pages of dense
mathematics, he has also just proven that L can be solved in polynomial time.
Has he just proven that P = NP ? Why, or why not?

R-17.2 Use a truth table to convert the Boolean formula B = (a ↔ (b + c)) into an
equivalent formula in CNF. Show the truth table and the intermediate DNF for-
mula for B.

R-17.3 Show that the problem SAT, which takes an arbitrary Boolean formula S as input
and asks whether S is satisfiable, is NP-complete.

R-17.4 Consider the problem DNF-SAT, which takes a Boolean formula S in disjunc-
tive normal form (DNF) as input and asks whether S is satisfiable. Describe a
deterministic polynomial-time algorithm for DNF-SAT.

R-17.5 Consider the problem DNF-DISSAT, which takes a Boolean formula S in dis-
junctive normal form (DNF) as input and asks whether S is dissatisfiable, that is,
there is an assignment of Boolean values to the variables of S so that it evaluates
to 0. Show that DNF-DISSAT is NP-complete.

R-17.6 Convert the Boolean formula B = (x1 ↔ x2) · (x3 +x4x5) · (x1x2 +x3x4) into
CNF.

R-17.7 Show that the CLIQUE problem is in NP.

R-17.8 Given the CNF formula B = (x1) · (x2 + x3 + x5 + x6) · (x1 + x4) · (x3 + x5),
show the reduction of B into an equivalent input for the 3SAT problem.

R-17.9 Given B = (x1 + x2 + x3) · (x4 + x5 + x6) · (x1 + x4 + x5) · (x3 + x4 + x6),
draw the instance of VERTEX-COVER that is constructed by the reduction from
3SAT of the Boolean formula B.

R-17.10 Draw an example of a graph with 10 vertices and 15 edges that has a vertex cover
of size 2.

R-17.11 Draw an example of a graph with 10 vertices and 15 edges that has a clique of
size 6.

R-17.12 Professor Amongus has just designed an algorithm that can take any graph G
with n vertices and determine in O(nk) time whether G contains a clique of size
k. Does Professor Amongus deserve the Turing Award for having just shown that
P = NP? Why or why not?

R-17.13 Is there a subset of the numbers in {23, 59, 17, 47, 14, 40, 22, 8} that sums to
100? What about 130? Show your work.

R-17.14 Show that the SET-COVER problem is in NP.

R-17.15 Show that the SUBSET-SUM problem is in NP.

17.7. Exercises 503

R-17.16 Draw an example of a graph with 10 vertices and 20 edges that has a Hamiltonian
cycle. Also, draw an example of a graph with 10 vertices and 20 edges that does
not have a Hamiltonian cycle.

R-17.17 The Manhattan distance between two points (a, b) and (c, d) in the plane is
|a − c| + |b − d|. Using Manhattan distance to define the cost between every
pair of points, find an optimal traveling salesperson tour of the following set of
points: {(1, 1), (2, 8), (1, 5), (3,−4), (5, 6), (−2,−6)}.

Creativity
C-17.1 Let n denote the size of an input in bits and N denote the size in a number of

items. Define an algorithm to be c-incremental if any primitive operation involv-
ing one or two objects represented with b bits results in an object represented
with at most b+ c bits, for c ≥ 0. Show that an algorithm using multiplication as
a primitive operation may not be c-incremental for any constant c.

C-17.2 Using the definition of a c-incremental algorithm from the previous exercise,
show that, if a c-incremental algorithm A has a worst-case running time t(N) in
the RAMmodel, as a function of the number of input items,N , for some constant
c > 0, then A has running time O(n2t(n)), in terms of the number, n, of bits in
a standard binary encoding of the input.

C-17.3 Show that we can deterministically simulate in polynomial time any nondeter-
ministic algorithm A that runs in polynomial time and makes at most O(log n)
calls to the choose method, where n is the size of the input to A.

C-17.4 Show that every language L in P is polynomial-time reducible to the language
M = {5}, that is, the language that simply asks whether the binary encoding of
the input is equal to 5.

C-17.5 Show how to construct a Boolean circuit C such that, if we create variables only
for the inputs of C and then try to build a Boolean formula that is equivalent to
C, then we will create a formula exponentially larger than an encoding of C.

Hint: Use recursion to repeat subexpressions in a way that doubles their size
each time they are used.

C-17.6 Show that the backtracking algorithm given in Section 18.4.1 for the CNF-SAT
problem runs in polynomial time if every clause in the given Boolean formula
has at most two literals. That is, it solves 2SAT in polynomial time.

C-17.7 Consider the 2SAT version of the CNF-SAT problem, in which every clause in
the given formula S has exactly two literals. Note that any clause of the form
(a + b) can be thought of as two implications, (a → b) and (b → a). Consider
a graph G from S, such that each vertex in G is associated with a variable, x,
in S, or its negation, x. Let there be a directed edge in G from a to b for each
clause equivalent to (a → b). Show that S is not satisfiable if and only if there
is a variable x such that there is a path in G from x to x and a path from x to x.
Derive from this rule a polynomial-time algorithm for solving this special case
of the CNF-SAT problem. What is the running time of your algorithm?

504 Chapter 17. NP-Completeness

C-17.8 Suppose an oracle has given you a magic computer, C, that when given any
Boolean formula B in CNF will tell you in one step whether B is satisfiable.
Show how to use C to construct an actual assignment of satisfying Boolean val-
ues to the variables in any satisfiable formula B. How many calls do you need to
make to C in the worst case in order to do this?

C-17.9 Define SUBGRAPH-ISOMORPHISM as the problem that takes a graph, G, and
another graph, H , and determines if H is isomorphic to a subgraph of G. That
is, the problem is to determine whether there is a one-to-one mapping, f , of the
vertices in H to a subset of the vertices in G such that, if (v, w) is an edge in
H , then (f(v), f(w)) is an edge in G. Show that SUBGRAPH-ISOMORPHISM is
NP-complete.

C-17.10 Define INDEPENDENT-SET as the problem that takes a graph G and an integer k
and asks whether G contains an independent set of vertices of size k. That is, G
contains a set I of vertices of size k such that, for any v and w in I , there is no
edge (v, w) in G. Show that INDEPENDENT-SET is NP-complete.

C-17.11 Define HYPER-COMMUNITY to be the problem that takes a collection of n web
pages and an integer k, and determines if there are k web pages that all contain
hyperlinks to each other. Show that HYPER-COMMUNITY is NP-complete.

C-17.12 Define PARTITION as the problem that takes a set S = {s1, s2, . . . , sn} of num-
bers and asks whether there is a subset T of S such that

∑

si∈T
si =

∑

si∈S−T
si.

That is, it asks whether there is a partition of the numbers into two groups that
sum to the same value. Show that PARTITION is NP-complete.

C-17.13 Show that the HAMILTONIAN-CYCLE problem on directed graphs isNP-complete.

C-17.14 Show that the SUBSET-SUM problem is solvable in polynomial time if the input
is given in a unary encoding. That is, show that SUBSET-SUM is not strongly
NP-hard. What is the running time of your algorithm?

C-17.15 Show that the KNAPSACK problem is solvable in polynomial time if the input is
given in a unary encoding. That is, show that KNAPSACK is not strongly NP-
hard. What is the running time of your algorithm?

C-17.16 Consider the special case of TSP where the vertices correspond to points in the
plane, with the cost defined on an edge for every pair (p, q) being the usual Eu-
clidean distance between p and q. Show that an optimal tour will not have any
pair of crossing edges.

C-17.17 Given a graph G and two distinct vertices, v and w in G, define HAMILTONIAN-
PATH to be the problem of determining whether there is a path that starts at
v and ends at w and visits all the vertices of G exactly once. Show that the
HAMILTONIAN-PATH problem is NP-complete.

17.7. Exercises 505

Applications
A-17.1 Imagine that the annual university job fair is scheduled for next month and it is

your job to book companies to host booths in the large Truman Auditorium dur-
ing the fair. Unfortunately, at last year’s job fair, a fight broke out between some
people from competing companies, so the university president, Dr. Noah Drama,
has issued a rule that prohibits any pair of competing companies from both being
invited to this year’s event. In addition, he has shown you a website that lists the
competitors for every company that might be invited to this year’s job fair and
he has asked you to invite the maximum number of noncompeting companies as
possible. Show that the decision version of the problem Dr. Drama has asked you
to solve is NP-complete.

A-17.2 Suppose the football coach for the Anteaters has heard about your abilities to
solve challenging problems and has hired you to write a computer program that
can decide which of their many trophies to feature on their prized trophy shelf.
He is asking that you do this as a computer program, rather than just coming
up with a single decision, because the Anteaters are getting new trophies every
year. The trophies come in all different shapes and sizes, and the ones on the
prized trophy shelf have to be lined up next to one another. So the dimension
that matters most is a trophy’s width in centimeters, which is given as an integer.
In addition, the coach has assigned an integer score to each trophy, so that a
very prestigious trophy, like the one for winning the championship, would have a
high score, whereas a less prestigious trophy, like the one for having the funniest
uniforms, would have a low score. Moreover, given his eccentric nature, these
scores can be arbitrarily large. He has asked that, given a listing of all the team’s
trophies along with their widths and prestige scores, your program should choose
the set that maximizes the total prestige score and fits on the team’s trophy shelf.
Show that the decision version of the problem the coach has given you is NP-
complete.

A-17.3 Consider the trophy-choosing problem from the previous exercise, but now sup-
pose that each of the prestige scores is an integer in the range from 1 to 10.
Describe how you can solve this version of the problem in polynomial time.

A-17.4 Suppose a friend of yours is rushing for one of the university fraternities, Tau Nu
Tau (TNT). His job for this week is to arrange all the bottles in the TNT beer-
bottle collection in a circle, subject to the constraint that each pair of consecutive
bottles must be for beers that were both drunk in some TNT party. He has been
given a listing of the beers in the TNT beer-bottle collection, and, for each beer on
the list, he is told which other beers were drunk along with this one at some TNT
party. Politely show that your friend has been asked to solve an NP-complete
problem.

A-17.5 Suppose you are computer security expert working for a major company, Cable-
Clock, any you have just discovered that many of the computers at CableClock
are infected with malware that must have come from users visiting unsafe web-
sites. For each infected computer, you are given a log file that lists all websites it
has visited since the last time it was scanned for malware. Unfortunately, as you
look over these log files, you notice that there isn’t a single website that they all

506 Chapter 17. NP-Completeness

visited. You conclude, therefore, that there must be a number of websites that are
able to inject this malware, and the most likely candidates would be in a smallest
collection that is visited by all the infected computers. Show that the decision
version of the problem of determining such a collection is NP-complete.

A-17.6 Imagine that you are a Hollywood movie producer who is trying to decide how
your new movie should end. To help you make this decision, you would like to
assemble a group of movie-goers together to do a focus group. To avoid biases,
you have asked that the group be selected so that no two people in the group
has previously seen the same movie. So, among the set of possible focus-group
members, you have asked that each one fill out a list of all the movies they have
seen, and you will be using these lists to make your decision about who to invite
to the focus group. Show that the decision version of the problem of finding the
largest set of movie-goers for this focus group such that no two people in the
group has previously seen the same movie is NP-complete.

A-17.7 Suppose that you and a friend are both taking a Russian literature course and
have agreed to buy all of your books together “fifty-fifty,” so that for each book
purchased, you paid half and your friend paid half. Suppose now that the course
has ended and it is time to sell these books to the used-book buyer, who has
posted the used-book values of all of your books on her website. Unfortunately,
with your differing social calendars, there is no good time for you and your friend
to go to the bookstore together to return your shared books. So you need to divide
up the books between the two of you so that the total used-book value of the two
sets is the same. Show that determining whether such a division of the books is
possible, where there is an arbitrary number of books having arbitrary values, is
NP-complete.

Chapter Notes
Computing models are discussed in the textbooks by Lewis and Papadimitriou [143], Sav-
age [184] and Sipser [195].

The proof sketch of the Cook-Levin Theorem (17.5) given in this chapter is an adapta-
tion of a proof sketch of Cormen, Leiserson, and Rivest [50]. Cook’s original theorem [48]
showed that CNF-SAT was NP-complete, and Levin’s original theorem [141] was for a
tiling problem. We refer to Theorem 17.5 as the “Cook-Levin” Theorem in honor of these
two seminal papers, for their proofs were along the same lines as the proof sketch given for
Theorem 17.5. Karp [122] demonstrated several more problems to be NP-complete, and
subsequently hundreds of other problems have been shown to be NP-complete. Garey and
Johnson [80] give a very nice discussion of NP-completeness as well as a catalog of many
important NP-complete and NP-hard problems.

The reductions given in this chapter that use local replacement and restriction are well
known in the computer science literature; for example, see Garey and Johnson [80] or
Aho, Hopcroft, and Ullman [8]. The component-design proof that VERTEX-COVER is
NP-complete is an adaptation of a proof of Garey and Johnson [80], as is the component-
design proof that HAMILTONIAN-CYCLE is NP-complete, which itself is a combination
of two reductions by Karp [122]. The component-design proof that SUBSET-SUM is NP-
complete is an adaptation of a proof of Cormen, Leiserson, and Rivest [50].

