22.5 Strongly connected components 615

Figure 22.8 A dag for topological sorting.

22.4-3
Give an algorithm that determines whether or not a given undirected graph G =
(V, E) contains a cycle. Your algorithm should run in O(V') time, independent
of |E|.

22.4-4

Prove or disprove: If a directed graph G contains cycles, then TOPOLOGICAL-
SORT(G) produces a vertex ordering that minimizes the number of “bad” edges
that are inconsistent with the ordering produced.

22.4-5

Another way to perform topological sorting on a directed acyclic graph G =
(V, E) is to repeatedly find a vertex of in-degree 0, output it, and remove it and
all of its outgoing edges from the graph. Explain how to implement this idea so
that it runs in time O(V + E). What happens to this algorithm if G has cycles?

22.5 Strongly connected components

We now consider a classic application of depth-first search: decomposing a di-
rected graph into its strongly connected components. This section shows how to do
so using two depth-first searches. Many algorithms that work with directed graphs
begin with such a decomposition. After decomposing the graph into strongly con-
nected components, such algorithms run separately on each one and then combine
the solutions according to the structure of connections among components.

Recall from Appendix B that a strongly connected component of a directed
graph G = (V, E) is a maximal set of vertices C C V such that for every pair
of vertices u and v in C, we have both ¥ ~ v and v ~» u; that is, vertices 1 and v
are reachable from each other. Figure 22.9 shows an example.

616

Chapter 22 Elementary Graph Algorithms

G55
(a)
215 -qa)

2

(b)

Ced D
© Cabe
Cfe) Ch D

Figure 22.9 (a) A directed graph G. Each shaded region is a strongly connected component of G.
Each vertex is labeled with its discovery and finishing times in a depth-first search, and tree edges
are shaded. (b) The graph GT, the transpose of G, with the depth-first forest computed in line 3
of STRONGLY-CONNECTED-COMPONENTS shown and tree edges shaded. Each strongly connected
component corresponds to one depth-first tree. Vertices b, ¢, g, and &, which are heavily shaded, are
the roots of the depth-first trees produced by the depth-first search of GT. (¢) The acyclic component
graph GSCC obtained by contracting all edges within each strongly connected component of G so
that only a single vertex remains in each component.

Our algorithm for finding strongly connected components of a graph G =
(V, E) uses the transpose of G, which we defined in Exercise 22.1-3 to be the
graph G = (V, E"), where ET = {(u,v) : (v,u) € E}. Thatis, E" consists of
the edges of G with their directions reversed. Given an adjacency-list representa-
tion of G, the time to create G* is O(V + E). It is interesting to observe that G
and GT have exactly the same strongly connected components: ¥ and v are reach-
able from each other in G if and only if they are reachable from each other in G™.
Figure 22.9(b) shows the transpose of the graph in Figure 22.9(a), with the strongly
connected components shaded.

22.5 Strongly connected components 617

The following linear-time (i.e., ®(V + E)-time) algorithm computes the strongly
connected components of a directed graph G = (V, E) using two depth-first
searches, one on G and one on GT.

STRONGLY-CONNECTED-COMPONENTS (G)

1 call DFS(G) to compute finishing times u.f for each vertex u

2 compute GT

3 call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing u.f (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in line 3 as a
separate strongly connected component

The idea behind this algorithm comes from a key property of the component
graph G5°¢ = (V5¢€ ESCC) which we define as follows. Suppose that G
has strongly connected components C,C,,...,Cr. The vertex set V5 is
{v1,va,..., vk}, and it contains a vertex v; for each strongly connected compo-
nent C; of G. There is an edge (v;,v;) € ES°if G contains a directed edge (x, y)
for some x € C; and some y € C;. Looked at another way, by contracting all
edges whose incident vertices are within the same strongly connected component
of G, the resulting graph is G5°C. Figure 22.9(c) shows the component graph of
the graph in Figure 22.9(a).

The key property is that the component graph is a dag, which the following
lemma implies.

Lemma 22.13

Let C and C’ be distinct strongly connected components in directed graph G =
(V,E),letu,v € C,letu’,v' € C’, and suppose that G contains a path u ~» u’.
Then G cannot also contain a path v/ ~» v,

Proof If G contains a path v’ ~» v, then it contains paths ¥ ~ u’ ~ v’ and
V' ~» v ~» u. Thus, u and v’ are reachable from each other, thereby contradicting
the assumption that C and C’ are distinct strongly connected components.]

We shall see that by considering vertices in the second depth-first search in de-
creasing order of the finishing times that were computed in the first depth-first
search, we are, in essence, visiting the vertices of the component graph (each of
which corresponds to a strongly connected component of G) in topologically sorted
order.

Because the STRONGLY-CONNECTED-COMPONENTS procedure performs two
depth-first searches, there is the potential for ambiguity when we discuss u.d
or u.f. In this section, these values always refer to the discovery and finishing
times as computed by the first call of DFS, in line 1.

618

Chapter 22 Elementary Graph Algorithms

We extend the notation for discovery and finishing times to sets of vertices.
If U € V, then we define d(U) = min,ey {u.d} and f(U) = max,ey {u.f}.
That is, d(U) and f(U) are the earliest discovery time and latest finishing time,
respectively, of any vertex in U.

The following lemma and its corollary give a key property relating strongly con-
nected components and finishing times in the first depth-first search.

Lemma 22.14
Let C and C’ be distinct strongly connected components in directed graph G =
(V, E). Suppose that there is an edge (4, v) € E, where u € C and v € C’'. Then

F(C) > f(C).

Proof We consider two cases, depending on which strongly connected compo-
nent, C or C’, had the first discovered vertex during the depth-first search.

If d(C) < d(C’), let x be the first vertex discovered in C. At time x.d, all ver-
tices in C and C’ are white. At that time, G contains a path from x to each vertex
in C consisting only of white vertices. Because (u, v) € E, for any vertex w € C’,
there is also a path in G at time x.d from x to w consisting only of white vertices:
X ~ u — v ~ w. By the white-path theorem, all vertices in C and C’ become
descendants of x in the depth-first tree. By Corollary 22.8, x has the latest finishing
time of any of its descendants, and so x.f = f(C) > f(C’).

If instead we have d(C) > d(C’), let y be the first vertex discovered in C’.
At time y.d, all vertices in C’ are white and G contains a path from y to each
vertex in C’ consisting only of white vertices. By the white-path theorem, all ver-
tices in C’ become descendants of y in the depth-first tree, and by Corollary 22.8,
v.f = f(C’). Attime y.d, all vertices in C are white. Since there is an edge (u, v)
from C to C’, Lemma 22.13 implies that there cannot be a path from C’ to C.
Hence, no vertex in C is reachable from y. Attime y.f, therefore, all vertices in C
are still white. Thus, for any vertex w € C, we have w.f > y.f, which implies
that £(C) > f(C’). |

The following corollary tells us that each edge in GT that goes between different
strongly connected components goes from a component with an earlier finishing
time (in the first depth-first search) to a component with a later finishing time.

Corollary 22.15
Let C and C’ be distinct strongly connected components in directed graph G =
(V, E). Suppose that there is an edge (u,v) € ET, whereu € C and v € C’. Then

F(C) < f(C).

22.5 Strongly connected components 619

Proof Since (u,v) € ET, we have (v,u) € E. Because the strongly con-
nected components of G and G' are the same, Lemma 22.14 implies that

F(C) < F(C). =

Corollary 22.15 provides the key to understanding why the strongly connected
components algorithm works. Let us examine what happens when we perform the
second depth-first search, which is on GT. We start with the strongly connected
component C whose finishing time f(C) is maximum. The search starts from
some vertex x € C, and it visits all vertices in C. By Corollary 22.15, GT contains
no edges from C to any other strongly connected component, and so the search
from x will not visit vertices in any other component. Thus, the tree rooted at x
contains exactly the vertices of C. Having completed visiting all vertices in C,
the search in line 3 selects as a root a vertex from some other strongly connected
component C’ whose finishing time f(C’) is maximum over all components other
than C. Again, the search will visit all vertices in C’, but by Corollary 22.15,
the only edges in GT from C’ to any other component must be to C, which we
have already visited. In general, when the depth-first search of GT in line 3 visits
any strongly connected component, any edges out of that component must be to
components that the search already visited. Each depth-first tree, therefore, will be
exactly one strongly connected component. The following theorem formalizes this
argument.

Theorem 22.16
The STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the
strongly connected components of the directed graph G provided as its input.

Proof We argue by induction on the number of depth-first trees found in the
depth-first search of GT in line 3 that the vertices of each tree form a strongly
connected component. The inductive hypothesis is that the first k trees produced
in line 3 are strongly connected components. The basis for the induction, when
k = 0, is trivial.

In the inductive step, we assume that each of the first k depth-first trees produced
in line 3 is a strongly connected component, and we consider the (k + 1)st tree
produced. Let the root of this tree be vertex u, and let u be in strongly connected
component C. Because of how we choose roots in the depth-first search in line 3,
u.f = f(C) > f(C’) for any strongly connected component C’ other than C
that has yet to be visited. By the inductive hypothesis, at the time that the search
visits u, all other vertices of C are white. By the white-path theorem, therefore, all
other vertices of C are descendants of u in its depth-first tree. Moreover, by the
inductive hypothesis and by Corollary 22.15, any edges in G that leave C must be
to strongly connected components that have already been visited. Thus, no vertex

620

Chapter 22 Elementary Graph Algorithms

in any strongly connected component other than C will be a descendant of u during
the depth-first search of G*. Thus, the vertices of the depth-first tree in G7 that is
rooted at u form exactly one strongly connected component, which completes the
inductive step and the proof. |

Here is another way to look at how the second depth-first search operates. Con-
sider the component graph (GT)5°C of GT. If we map each strongly connected
component visited in the second depth-first search to a vertex of (GT)5¢C, the sec-
ond depth-first search visits vertices of (GT)5C in the reverse of a topologically
sorted order. If we reverse the edges of (GT)5C, we get the graph ((GT)5°¢)T.
Because ((GT)5¢“)T = G5¢C (see Exercise 22.5-4), the second depth-first search
visits the vertices of G5°C in topologically sorted order.

Exercises

22.5-1
How can the number of strongly connected components of a graph change if a new
edge is added?

22.5-2

Show how the procedure STRONGLY-CONNECTED-COMPONENTS works on the
graph of Figure 22.6. Specifically, show the finishing times computed in line 1 and
the forest produced in line 3. Assume that the loop of lines 5-7 of DFS considers
vertices in alphabetical order and that the adjacency lists are in alphabetical order.

22.5-3

Professor Bacon claims that the algorithm for strongly connected components
would be simpler if it used the original (instead of the transpose) graph in the
second depth-first search and scanned the vertices in order of increasing finishing
times. Does this simpler algorithm always produce correct results?

22.5-4
Prove that for any directed graph G, we have ((GT)5¢“)T = GS5°C. That is, the
transpose of the component graph of G7 is the same as the component graph of G.

22.5-5

Give an O(V + E)-time algorithm to compute the component graph of a directed
graph G = (V, E). Make sure that there is at most one edge between two vertices
in the component graph your algorithm produces.

