
Algorithm design: basic tools
Lecture 01.02

by Marina Barsky

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

● Problem vs. problem instance:

Take: 24 and 15. What is their greatest common divisor (gcd)?

● Formalized general problem: input and output

Input: 2 integer numbers a and b

Output: The greatest common divisor gcd(a,b)

Formalizing problem

We want it to work on large numbers:
gcd(3918848, 1653264) Problem instance

Problem: Compute GCD

Input: 2 integers a, b > 0, a >b

Output: gcd(a, b).

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

Analyzing: Greatest Common Divisor

Formal Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the

largest integer d s.t. d divides both a and b (without remainder).

Put fraction a/b into simplest form.

d should divide both a and b.

Want d to be as large as possible.

Why do we want to compute it:

Need to check remainders of (a/d) (b/d)

a=15, b=45

both 15 and 45 are
divisible by 3, 5,15

we want to find 15

Go over an example

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

Brainstorming

Problem: Compute GCD

Input: 2 integers a, b > 0, a > b

Output: gcd(a, b).

a=15, b=45

both 15 and 45 are
divisible by 3, 5,15

We need to go over integers 1, 2, …

According to the problem and the

definition of gcd:

Check if each such integer i divides both a
and b without remainder

Keep the largest such number

Stop when i = min(a,b) = b

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

● English

● Pseudocode

● Program

Three ways of describing
algorithmic solutions

Increasing

precision

Pseudocode: example
FOR i ← 1 TO 100 DO

IF i is divisible by 3 AND i is divisible by 5 THEN

OUTPUT "Both"

ELSE IF i is divisible by 3 THEN

OUTPUT "By 3"

ELSE IF i is divisible by 5 THEN

OUTPUT "By 5"

ELSE

OUTPUT i

Pseudocode: example
FOR i ← 1 TO 100 DO

IF i is divisible by 3 AND i is divisible by 5 THEN

OUTPUT "Both"

ELSE IF i is divisible by 3 THEN

OUTPUT "By 3"

ELSE IF i is divisible by 5 THEN

OUTPUT "By 5"

ELSE

OUTPUT i

def some_algorithm ():

for i in range(1,101):

if i%3 == 0 and i%5 == 0:

print(i, "Both")

elif i%3 == 0:

print(i, "By 3")

elif i%5 == 0:

print(i, "By 5")

else:

print(i)

Python equivalent

Pseudocode does not have specific syntax:
it just has to be clear and unambiguous
Some specifics

● Assignment operator:

X := 5

X ← 5

● Comparing for equality:

if x = y

● FOR loop:

for each element x in sequence:

for i from 1 to n:

for i from 1 to n step 2:

for i from n down to 1:

● WHILE loop:

same as if

Pseudocode does not have specific syntax

But keep in mind the goal:
pseudocode must be easily translatable
into a working program (in any language).

Pseudocode for GCD

Algorithm NaiveGCD(a, b)

best ← 1
for d from 2 to min(a , b):

if d|a and d|b:

best ← d

return best

English:
Try every integer from 1 to min(a, b).

If the integer divides both a and b, remember the best gcd so far.

Since the integers we test are increasing,

the algorithm will remember the best – the greatest common divisor for a and b.

Pseudocode:

Pseudocode and code for GCD

Algorithm NaiveGCD(a, b)

best ← 1
for d from 2 to min(a , b):

if d|a and d|b:

best ← d

return best

Pseudocode:

def gcd_naive(a, b):

best = 1

for i in range (2, min(a,b)+1):

if a%i == 0 and b%i == 0:

best = i

return best

Code:

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

Correctness proof: iterative algorithms

For iterative algorithms (algorithms which use loops) -

we need to check:

● Initialization: states what must be true before entering a loop

● Loop invariant: states what property must be preserved with each

iteration of the loop

● Termination: states what must be true after exiting the loop

Example
● Design an algorithm that takes as an input number n, and

computes the sum of all positive integers i such that i3 < n

Algorithm one(n):

sum ← 0

i ← 1;

while (i * i * i < n) do:

sum ← sum + i

i ← i + 1

return sum

Algorithm two(n):

sum ← 0

i ← 1;

do:

sum ← sum + i

i ← i + 1

while (i * i * i < n)

return sum

Proving correctness of Algorithm one

● Initialization: sum is zero, i is set to the first positive integer.

● Loop invariant: After each iteration i sum must contain the sum of all numbers from 1

to i subject to constraint: i3 < n.

● Termination: we exit the loop when i3 >= n. At this point sum contains the sum of the

required numbers. If n=1, we did not enter the loop, and the sum correctly remains

zero.

Algorithm one(n):

sum ← 0

i ← 1;

while (i * i * i < n) do:

sum ← sum + i

i ← i + 1

return sum

CORRECT

Proving correctness of Algorithm two

● Initialization: sum is zero, i is the first positive integer.

● Loop invariant: we enter the loop without checking loop condition and add i to sum. If

n=1, we still enter the loop, and the sum is 1, but is should be 0! We check if i3 < n

after the addition is already performed. After each iteration of the loop, sum contains

the sum of all numbers from 1 to i, even if i already violated the condition! Loop

invariant is violated.

Algorithm two(n):

sum ← 0

i ← 1;

do:

sum ← sum + i

i ← i + 1

while (i * i * i < n)

return sum

INCORRECT!

Correctness proof: iterative algorithms

For iterative algorithms (algorithms which use loops)

we need to check:

● Initialization: states what must be true before entering a loop

● Loop invariant: states what property must be preserved with each

iteration of the loop

● Termination: states what must be true after exiting the loop

● If we know that the algorithm is designed strictly according

to the problem definition, we can skip the proof step

Correctness proof: recursive algorithms

To prove the correctness of recursive algorithms we use proof by

mathematical induction!

● Base case: check if the stopping condition correctly computes the

base case.

● Assumption: the algorithm is correct for n = k – 1.

● Given the base and the assumption: prove that it is correct for n =

k.

Example
● Design an algorithm which takes as an input string s of length n and

returns a new string where the characters of s appear in a reverse order.

Algorithm reverse(s of length n)

if n = 0 then

return ε

else

a ← s[n]

r ← s - a

return a + reverse(r)

Correctness proof: reverse

It seems natural to do induction on n, the length of the string.

Base case: if n = 0, s = ε, the empty string. In this case, the first return statement is

executed, and the algorithm returns ε, the correct reversal of itself.

In other words, reverse(ε) = ε.

Hypothesis: Suppose as inductive hypothesis that, for any string of length k − 1,

reverse(c1c2c3 … ck−1) = ck−1ck−2 … c2c1, for some k > 0.

Proof: Now suppose reverse is sent a string of length k. Then:

reverse(c1c2c3 … ck−1 ck)

= ck reverse(c1c2c3 … ck−1) (according to the algorithm)

= ck ck−1ck−2 … c2c1(by inductive hypothesis)

Algorithm reverse(s of length n)

if n = 0 then

return ε

else

a ← s[n]

r ← s - a

return a + reverse(r)

Correctness of NaiveGCD

We assume without loss of generality that a>b.

● Initialization: best is set to 1. This is correct because every integer is divisible by 1.

● Loop invariant: we check if the next d can be a common divisor, and if yes, update

best. Thus after each iteration best contains the greatest common divisor from 1 to d.

● Termination: according to loop invariant, best contains the greatest among all

common divisors from 1 to min(a, b).

Should we check numbers > min(a, b)?

No, because if b < a, say, we divide b by d>b, and the remainder always will be b

(non-zero)

Algorithm NaiveGCD(a, b)

best ← 1
for d from 2 to min(a , b):

if d|a and d|b:

best ← d

return best

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time

How long does it take to compute?
How many steps does your algorithm take?

The pseudocode makes it easy to count the total number of steps as it relates to

the input size n and the nature of the input

● It may happen that algorithm produces True already on the first operation,

because n is even: 1 operation in total

● However, it may take n - 2 steps in case that n is prime: n - 2 operations in

total

Algorithm has_divisors(n)

for i from 2 to n -1:

if i|n :

return True

return False

Number of operations vs. input size

● We can count number of steps for a variety of
inputs and for different values of n and plot the
results

1 2 3 4

. .

N

Problem

Size

Number
of Steps

Different inputs

of size 4

RAM model of computation

This process of counting computer operations is greatly simplified if

we accept the RAM model of computation:

• Access to each memory element takes a constant time (1 step)

• Each “simple” operation (+, -, =, if, call) takes 1 step.

• Loops and subroutine calls are not simple operations: they depend
upon the size of the data and the contents of a subroutine:

○ “sort()” is not a single-step operation

○ “max(list)” is not a single-step operation

○ “ if x in list” is not a single-step operation

This model is useful and accurate in the same sense as the

flat-earth model (which is useful)!

Number of operations vs. input size

● We want to be able to describe the performance of our
algorithm in more general terms

● We see that there is the best case and the worst case
for each value of n

Best Case

Worst Case

Average Case

1 2 3 4

. .

N

Problem

Size

Number
of Steps

● The best case complexity of an algorithm is the function defined

by the minimum number of steps taken on any instance of size n.

● The average-case complexity of the algorithm is the function

defined by an average number of steps taken on any instance of

size n.

● The worst case complexity of an algorithm is the function defined

by the maximum number of steps taken on any instance of size n.

● Each of these complexities defines a numerical function: number

of operations vs. size of the input

Complexity

We are more interested in the worst case

Because the nature of the input is generally not known
in advance, we concentrate on the worst-case: we want
to know if it is practical to run this algorithm on large
inputs of unknown nature

Best Case

Worst Case

Average Case

1 2 3 4

. .

N

Problem

Size

Number
of Steps

Still exact analysis is hard!

Best, worst, and average case are all difficult to deal with
because the precise function details may be complicated:

f(n)

lower bound

upper bound
n0

n
1 2 3 4

It is easier to talk about upper and lower bounds of a function.

Asymptotic notation (O, Θ, Ω) allows us to describe complexity
functions in practice.

Bounding Functions

● f(n) = O(g(n)) means C×g (n) is an upper bound on
f(n)

● f(n) = Ω(g(n)) means C × g (n) is a lower bound on
f(n)

● f(n) = Θ(g(n)) means C1 × g (n) is a lower bound on
f(n) and C2 × g (n) is an upper bound on f(n)

C, C1, and C2 are all constants independent of n.

Formal Definitions

• f (n) = O(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f (n) always lies

on or below c · g(n).

• f (n) = Ω(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f (n) always lies

on or above c · g(n).

• f (n) = Θ(g(n)) if there exist positive constants n0, c1,

and c2 such that to the right of n0, the value of f (n)
always lies between c1 · g(n) and c2 · g(n) inclusive.

O, Ω, and Θ

n

f(n)

c*g(n)

n

f(n)

c*g(n)

n

f(n)

c1*g(n

c2*g(n

)

(c)

n0 n0

(b)(a)

n0

• The definitions imply a constant n0 beyond which they
are satisfied.

• We do not care about small values of n.

Complexity of NaiveGCD

Algorithm NaiveGCD(a, b)

best ← 0 1 step
for d from 1 to min(a, b): b steps

if d|a and d|b: 1 step

best ← d 1 step

return best 1 step

● If a > b:

Total steps: 1 + 2b + 1

● As b becomes bigger, we can ignore constants

● The NaiveGCD algorithm runs in time O(b)

We want it to work on large numbers:
gcd(3918848, 1653264)

Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time Are we done?

Algorithm designer mantra

● Structure of the input

● New insight

● Idea

“Perhaps the most important principle for the good

algorithm designer is to refuse to be content”

Aho, Hopcroft, Ullman: “The design and

Analysis of Computer Algorithms”, 1974

Mantra: Can we do better?

Runtime of NaiveGCD

Algorithm NaiveGCD(a, b)

best ← 0
for d from 1 to min(a, b):

if d|a and d|b:

best ← d

return best

Pseudocode:

Can we do better?

The NaiveGCD algorithm runs in time O(b)

We want it to work on large numbers:
gcd(3918848, 1653264)

Euclid’s observation

Theorem

Let a > b, and rem be the remainder when a is divided by b.

Then

gcd(a, b) = gcd(rem, b) = gcd(b, rem).

Proof (sketch)

a = bq + rem for some integer q

d divides a and b if and only if it divides rem and b

Euclid
Mid-4th - Mid-3rd

century BC

Euclidean GCD algorithm

Algorithm EuclidGCD(a, b)

if b = 0: return a

rem ← the remainder when a is divided by b

return EuclidGCD(b, rem)

Example

gcd(33, 27)

gcd(27, 6)

gcd(6, 3)

33 % 27 = 6

27 % 6 = 3

6 % 3 = 0

gcd(33, 27) = 3

gcd(3, 0)

• Each step reduces the size of numbers

by about a factor of 2.

• Takes about log(ab) steps.

• GCDs of 100-digit numbers takes about

600 steps.

• Each step - a single integer division.

Algorithm design: infinite loop

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time Can we do better?

Algorithms for Generating primes

Class activity

Sample problem: checking number for
primality

Write a naive algorithm which tests if n is divisible by any number

between 2 and n-1.

Problem: divisors

Algorithm has_divisors(n)

Input: integer n > 0
Output: True if n is divisible by any number other than 1 and n,

False otherwise

Complexity of has_divisors

Upper bound ?

Lower bound ?

Can we do better?

has_divisors revisited

Do we really need to check all the n - 2 values?

Problem: divisors

Algorithm has_divisors2(n)

Input: integer n > 0
Output: True if n is divisible by any number other than 1 and n,

False otherwise

16 = 2*8

16 = 4*4

16 = 8*2

Sample problem: generating primes

Problem: list of primes

Algorithm list_primes(n)

Input: integer n > 0
Output: list of all prime numbers <= n

Design a naive algorithm which generates a list of primes

Use algorithm has_divisors2

Sample problem: generating primes

Problem: list of primes

Algorithm list_primes(n)

Input: integer n > 0
Output: list of all prime numbers <= n

Design a naive algorithm which generates a list of primes

Use algorithm has_divisors2

What is worst-case complexity of this algorithm?

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Eratosthenes
276 – 194 BC

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

2 is a prime. What do we know about 4, 6, 8…?

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

4, 6, 8 are removed from the list

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Next prime is 3. What do we know about 9, 15, 21?

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

We exclude 9, 15, 21

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

We exclude remaining multiples of 5 - which is 25

Sieve of Eratosthenes

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Remaining numbers are all primes

Sieve of Eratosthenes: ancient version

Algorithm sieve_primes(n)

candidates←list [2,3….n]
primes←empty list
while candidates is not empty:

p ← first element of candidates
primes←primes + p
candidates←candidates - p
for each remaining number x in candidates:

if x is divisible by p:
candidates←candidates - x

return primes

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Sieve of Eratosthenes: ancient version

Algorithm sieve_primes(n)

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Problem!
The removal of elements from
the array: to remove an
element from the middle of
the array we need to move
O(n) elements to fill the gap
after removal

candidates←list [2,3….n]
primes←empty list
while candidates is not empty:

p ← first element of candidates
primes←primes + p
candidates←candidates - p
for each remaining number x in candidates:

if x is divisible by p:
candidates←candidates - x

return primes

Sieve of Eratosthenes: ancient version

Algorithm sieve_primes(n)

Problem: list of primes

Input: integer n > 0
Output: list of all prime numbers <= n

Possible solution
Store the numbers in the
doubly-linked list.
The removal will take time
O(1).
But there will be a significant
memory overhead.

candidates←list [2,3….n]
primes←empty list
while candidates is not empty:

p ← first element of candidates
primes←primes + p
candidates←candidates - p
for each remaining number x in candidates:

if x is divisible by p:
candidates←candidates - x

return primes

With the linked list: running time is O(n2)

Can we do better?

Sieve of Eratosthenes: better implementation

Algorithm sieve_primes1(n)

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

Not removing
anything, just
marking
We do not need to
scan all the
remaining elements
– we can jump to
elements of interest
directly.

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

Sieve of Eratosthenes: complexity

Algorithm sieve_primes1(n)

p=2, the inner loop will be executed → (n/2) times

p=3, the inner loop will be executed → (n/3) times

p=5, the inner loop will be executed → (n/5) times

…

p=n, the inner loop will be executed → 1 time

Outer loop

Inner loop

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

So the total number of steps in the inner loop (over the entire algorithm):

n/2 + n/3 + n/5 +… + n/n

Factor n out and you get:

n(1/2 + 1/3 + 1/5 +… + 1/n)

What is the upper
bound of this sum?

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

Outer loop

Inner loop
This is called

amortized

running time

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

The total number of steps:

n(1/2 + 1/3 + 1/5 +… + 1/n)

1/2 + 1/3 + 1/5 +… + 1/n < 1/2 + 1/3 + 1/4 + 1/5 +… + 1/n

This is the sum of harmonic series: LINK

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

https://users.encs.concordia.ca/~chvatal/notes/harmonic.html

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

The total number of steps:

n(1/2 + 1/3 + 1/5 +… + 1/n)

1/2 + 1/3 + 1/5 +… + 1/n < 1/2 + 1/3 + 1/4 + 1/5 +… + 1/n = O (log n)

This is the sum of harmonic series: LINK

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

https://users.encs.concordia.ca/~chvatal/notes/harmonic.html

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

The total number of steps:

n + n(1/2 + 1/3 + 1/5 +… + 1/n) =O(n) + O(n log n) = O(n log n)

We could make this bound even tighter: O(n log log n)

candidates←list [1,2,3….n]
primes←empty list
for i from 2 to n:

if candidates[i] > 0
p = candidates[i]
primes←primes + p
for j=i+p to n step p:

candidates[j] = 0
return primes

Algorithmic thinking:
idea makes all the difference

Naive

Look at the problem from different

angles

Eureka!

Good algorithm!

Correctness

Speed (fast enough)

Simplicity and elegance

Requirements to your algorithmic solution

Quote by Francis Sullivan:

"For me, great algorithms are the poetry of computation. Just like

verse, they can be terse, allusive, dense, and even mysterious. But

once unlocked they cast a brilliant new light on some aspect of

computing."

Algorithms ...

