Algorithm design: basic tools
 Lecture 01.02

by Marina Barsky

Algorithm design flowchart

Algorithm design flowchart

Formalizing problem: input \rightarrow output

Formalizing problem

- Problem vs. problem instance:

Take: 24 and 15. What is their greatest common divisor (gcd)?

- Formalized general problem: input and output

Input: 2 integer numbers a and b
Output: The greatest common divisor $\operatorname{gcd}(a, b)$

Problem: Compute GCD

Input: 2 integers $a, b>0, a>b$
Output: $\operatorname{gcd}(a, b)$.

We want it to work on large numbers: $\operatorname{gcd}(3918848,1653264)$ \qquad Problem instance

Algorithm design flowchart

Formalizing problem: input \rightarrow output

Analyzing problem

Brainstorming solution

Expressing solution in pseudocode

Proving correctness

Analyzing running time

Analyzing: Greatest Common Divisor

Formal Definition

For integers, a and b, their $\operatorname{greatest}$ common divisor $\operatorname{or} \operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$ is the largest integer d s.t. d divides both a and b (without remainder).

Why do we want to compute it:

- Put fraction a / b into simplest form.

■ Need to check remainders of (a / d) (b / d)

- d should divide both a and b.
- Want d to be as large as possible.

$$
a=15, b=45
$$

both 15 and 45 are divisible by $3,5,15$
we want to find 15

Go over an example

Algorithm design flowchart

Brainstorming

Problem: Compute GCD

Input: 2 integers $a, b>0, a>b$
Output: $\operatorname{gcd}(a, b)$.

According to the problem and the definition of gcd:
■ We need to go over integers 1, 2, ...
■ Check if each such integer i divides both a and b without remainder
■ Keep the largest such number

- Stop when $i=\min (a, b)=b$

$$
a=15, b=45
$$

both 15 and 45 are divisible by 3, 5,15

Algorithm design flowchart

Three ways of describing algorithmic solutions

- English
- Pseudocode
- Program

Pseudocode: example

```
FOR i \leftarrow 1 TO 100 DO
    IF i is divisible by 3 AND i is divisible by 5 THEN
        OUTPUT "Both"
    ELSE IF i is divisible by 3 THEN
        OUTPUT "By 3"
    ELSE IF i is divisible by 5 THEN
        OUTPUT "By 5"
    ELSE
        OUTPUT i
```


Pseudocode: example

```
FOR i & 1 TO 100 DO
    IF i is divisible by 3 AND i is divisible by 5 THEN
        OUTPUT "Both"
    ELSE IF i is divisible by 3 THEN
        OUTPUT "By 3"
    ELSE IF i is divisible by 5 THEN
        OUTPUT "By 5"
    ELSE
        OUTPUT i
```

 Python equivalent
 def some_algorithm ():
for i in range(1,101):
if $\mathrm{i} \% 3==0$ and $\mathrm{i} \% 5==0$:
print(i, "Both")
elif $\mathrm{i} \% 3=0$:
print(i, "By 3")
elif $\mathrm{i} \% 5=0$:
print(i, "By 5")
else:
print(i)

Pseudocode does not have specific syntax: it just has to be clear and unambiguous

Some specifics

- Assignment operator:
$X:=5$
$X \leftarrow 5$
- Comparing for equality:
if $x=y$
- FOR loop:
for each element x in sequence:
for i from 1 to n :
for i from 1 to n step 2:
for i from n down to 1 :
- WHILE loop:
same as if

Pseudocode does not have specific syntax

But keep in mind the goal: pseudocode must be easily translatable into a working program (in any language).

Pseudocode for GCD

English:

Try every integer from 1 to $\min (a, b)$.
If the integer divides both a and b, remember the best $g c d$ so far.
Since the integers we test are increasing,
the algorithm will remember the best - the greatest common divisor for a and b.

Pseudocode:

Algorithm NaiveGCD $(\boldsymbol{a}, \boldsymbol{b})$

```
best }\leftarrow
for d from 2 to min(a,b):
    if d|a and d|b:
        best \leftarrowd
return best
```


Pseudocode and code for GCD

Pseudocode:

Algorithm NaiveGCD($\boldsymbol{a}, \boldsymbol{b}$)

best $\leftarrow 1$

for d from 2 to $\min (a, b)$:
if $d \mid a$ and $d \mid b$: best $\leftarrow d$
return best

Code:

```
def gcd_naive(a, b):
    best = 1
    for i in range (2, min(a,b)+1):
    if a%i == 0 and b%i == 0:
        best = i
```

 return best

Algorithm design flowchart

For iterative algorithms (algorithms which use loops) we need to check:

- Initialization: states what must be true before entering a loop
- Loop invariant: states what property must be preserved with each iteration of the loop
- Termination: states what must be true after exiting the loop

Example

- Design an algorithm that takes as an input number n, and computes the sum of all positive integers i such that $i^{3}<n$

```
Algorithm one(n):
    sum \leftarrow 0
    i}\leftarrow1
    while (i * i * i < n) do:
        sum}\leftarrow\mathrm{ sum + i
        i}\leftarrowi+
    return sum
```

Algorithm two(n):
sum $\leftarrow 0$
$i \leftarrow 1$;
do:
sum \leftarrow sum + i
$\mathbf{i} \leftarrow \mathbf{i}+1$
while (i * i * $\mathbf{i}<n$)
return sum

Proving correctness of Algorithm one

Algorithm one(n):

```
    sum \leftarrow 0
```

 \(i \leftarrow 1\);
 while (i * i * i < n) do:
 sum \(\leftarrow\) sum \(+i\)
 \(i \leftarrow i+1\)
 return sum
 - Initialization: sum is zero, i is set to the first positive integer.
- Loop invariant: After each iteration i sum must contain the sum of all numbers from 1 to i subject to constraint: $i^{3}<n$.
- Termination: we exit the loop when $i^{3}>=n$. At this point sum contains the sum of the required numbers. If $n=1$, we did not enter the loop, and the sum correctly remains zero.

Proving correctness of Algorithm two

```
Algorithm two(n):
    sum }\leftarrow
    i}\leftarrow1
    do:
        sum}\leftarrow\mathrm{ sum + i
        i}\leftarrow\mathbf{i}+
    while (i * i * i < n)
    return sum
```

- Initialization: sum is zero, i is the first positive integer.
- Loop invariant: we enter the loop without checking loop condition and add i to sum. If $n=1$, we still enter the loop, and the sum is 1 , but is should be 0 ! We check if $i^{3}<n$ after the addition is already performed. After each iteration of the loop, sum contains the sum of all numbers from 1 to i, even if i already violated the condition! Loop invariant is violated.

For iterative algorithms (algorithms which use loops)
we need to check:

- Initialization: states what must be true before entering a loop
- Loop invariant: states what property must be preserved with each iteration of the loop
- Termination: states what must be true after exiting the loop
- If we know that the algorithm is designed strictly according to the problem definition, we can skip the proof step

To prove the correctness of recursive algorithms we use proof by mathematical induction!

- Base case: check if the stopping condition correctly computes the base case.
- Assumption: the algorithm is correct for $n=k-1$.
- Given the base and the assumption: prove that it is correct for $n=$ k.

Example

- Design an algorithm which takes as an input string s of length n and returns a new string where the characters of s appear in a reverse order.

```
Algorithm reverse(s of length n)
    if n = 0 then
    return \varepsilon
    else
    a}\leftarrow\textrm{s}[\textrm{n}
    r}\leftarrows-
    return a + reverse(r)
```


Correctness proof: reverse

```
Algorithm reverse(s of length n)
    if n = 0 then
        return \varepsilon
    else
        a}\leftarrow\textrm{s}[\textrm{n}
        r}\leftarrow\mathbf{s}-\textrm{a
        return a + reverse(r)
```

It seems natural to do induction on n, the length of the string.
Base case: if $n=0, s=\varepsilon$, the empty string. In this case, the first return statement is executed, and the algorithm returns ε, the correct reversal of itself.
In other words, $\operatorname{reverse}(\varepsilon)=\varepsilon$.
Hypothesis: Suppose as inductive hypothesis that, for any string of length $k-1$, reverse $\left(\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \ldots \mathrm{c}_{\mathrm{k}-1}\right)=\mathrm{c}_{\mathrm{k}-1} \mathrm{c}_{\mathrm{k}-2} \ldots \mathrm{c}_{2} \mathrm{c}_{1}$, for some $\mathrm{k}>0$.

Proof: Now suppose reverse is sent a string of length k. Then:
reverse $\left(\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \ldots \mathrm{c}_{\mathrm{k}-1} \mathrm{c}_{\mathrm{k}}\right)$
$=\mathrm{c}_{\mathrm{k}}$ reverse $\left(\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \ldots \mathrm{c}_{\mathrm{k}-1}\right)$ (according to the algorithm)
$=\mathrm{c}_{\mathrm{k}} \mathrm{c}_{\mathrm{k}-1} \mathrm{c}_{\mathrm{k}-2} \ldots \mathrm{c}_{2} \mathrm{c}_{1}$ (by inductive hypothesis)

Correctness of NaiveGCD

Algorithm NaiveGCD($\mathbf{a}, \boldsymbol{b}$)

```
best }\leftarrow
for d from 2 to min (a,b):
    if d/a and d|b:
        best \leftarrowd
return best
```

We assume without loss of generality that $a>b$.

- Initialization: best is set to 1 . This is correct because every integer is divisible by 1 .
- Loop invariant: we check if the next d can be a common divisor, and if yes, update best. Thus after each iteration best contains the greatest common divisor from 1 to d.
- Termination: according to loop invariant, best contains the greatest among all common divisors from 1 to $\min (a, b)$.
Should we check numbers $>\min (a, b)$?
No, because if $b<a$, say, we divide b by $d>b$, and the remainder always will be b (non-zero)

Algorithm design flowchart

How long does it take to compute?

How many steps does your algorithm take?

The pseudocode makes it easy to count the total number of steps as it relates to the input size n and the nature of the input

Algorithm has_divisors(n)

for i from 2 to $n-1$:
if iln:
return True
return False

- It may happen that algorithm produces True already on the first operation, because n is even: 1 operation in total
- However, it may take $n-2$ steps in case that n is prime: $n-2$ operations in total

Number of operations vs. input size

- We can count number of steps for a variety of inputs and for different values of n and plot the results

RAM model of computation

This process of counting computer operations is greatly simplified if we accept the RAM model of computation:

- Access to each memory element takes a constant time (1 step)
- Each "simple" operation (,,$+-=$, if, call) takes 1 step.
- Loops and subroutine calls are not simple operations: they depend upon the size of the data and the contents of a subroutine:
- "sort()" is not a single-step operation
- "max(list)" is not a single-step operation
- " if x in list" is not a single-step operation

This model is useful and accurate in the same sense as the flat-earth model (which is useful)!

Number of operations vs. input size

- We want to be able to describe the performance of our algorithm in more general terms
- We see that there is the best case and the worst case for each value of n

Complexity

- The best case complexity of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
- The average-case complexity of the algorithm is the function defined by an average number of steps taken on any instance of size n.
- The worst case complexity of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
- Each of these complexities defines a numerical function: number of operations vs. size of the input

We are more interested in the worst case

Because the nature of the input is generally not known in advance, we concentrate on the worst-case: we want to know if it is practical to run this algorithm on large inputs of unknown nature

Still exact analysis is hard!

Best, worst, and average case are all difficult to deal with because the precise function details may be complicated:

It is easier to talk about upper and lower bounds of a function.
Asymptotic notation ($0, \Theta, \Omega$) allows us to describe complexity functions in practice.

Bounding Functions

- $f(n)=\boldsymbol{O}(g(n))$ means $C \times g(n)$ is an upper bound on $f(n)$
- $f(n)=\Omega(g(n))$ means $C \times g(n)$ is a lower bound on $f(n)$
- $f(n)=\Theta(g(n))$ means $C_{1} \times g(n)$ is a lower bound on $f(n)$ and $C_{2} \times g(n)$ is an upper bound on $f(n)$
C, C_{1}, and C_{2} are all constants independent of n.

Formal Definitions

- $f(n)=\boldsymbol{O}(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $c \cdot g(n)$.
- $f(n)=\boldsymbol{\Omega}(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c \cdot g(n)$.
- $f(n)=\boldsymbol{\Theta}(g(n))$ if there exist positive constants n_{0}, c_{1}, and c_{2} such that to the right of n_{0}, the value of $f(n)$ always lies between $c_{1} \cdot g(n)$ and $c_{2} \cdot g(n)$ inclusive.

\mathbf{O}, Ω, and 0

- The definitions imply a constant n_{0} beyond which they are satisfied.
- We do not care about small values of n.

Complexity of NaiveGCD

Algorithm NaiveGCD $(\boldsymbol{a}, \boldsymbol{b})$

```
best}\leftarrow
for d from 1 to min(a,b):
    if d/a and d|b:
        best }\leftarrow
return best
1 step
b steps
    1 step
        1 step
1 step
```

- If $\mathrm{a}>\mathrm{b}$:

$$
\text { Total steps: } 1+2 b+1
$$

- As b becomes bigger, we can ignore constants
- The NaiveGCD algorithm runs in time $0(b)$

We want it to work on large numbers:
$\operatorname{gcd}(3918848,1653264)$

Algorithm design flowchart

Algorithm designer mantra

"Perhaps the most important principle for the good algorithm designer is to refuse to be content" Aho, Hopcroft, Ullman: "The design and Analysis of Computer Algorithms", 1974

- Structure of the input
- New insight
- Idea

Mantra: Can we do better?

Runtime of NaiveGCD

Pseudocode:

Algorithm NaiveGCD($\boldsymbol{a}, \boldsymbol{b}$)

best $\leftarrow 0$
for d from 1 to min (a, b) :
if $d \mid a$ and $d \mid b$: best $\leftarrow d$
return best

The NaiveGCD algorithm runs in time $\mathrm{O}(b)$
We want it to work on large numbers:
$\operatorname{gcd}(3918848,1653264)$

Can we do better?

Euclid's observation

Theorem

Let $\mathrm{a}>\mathrm{b}$, and rem be the remainder when a is divided by b.

Then
$\operatorname{gcd}(a, b)=\operatorname{gcd}(r e m, b)=\operatorname{gcd}(b$, rem $)$.

Proof (sketch)

- $a=b q+r e m$ for some integer q
$\square d$ divides a and b if and only if it divides rem and b

Euclid

Euclidean GCD algorithm

Algorithm EuclidGCD (a, b)

```
if b=0: return }
rem}\leftarrow\mathrm{ the remainder when }a\mathrm{ is divided by b
return EuclidGCD(b, rem)
```


Example

$$
\begin{array}{ll}
\operatorname{gcd}(33,27) & 33 \% 27=6 \\
\operatorname{gcd}(27,6) & 27 \% 6=3 \\
\operatorname{gcd}(6,3) & 6 \% 3=0 \\
\operatorname{gcd}(3,0) & \\
\quad \operatorname{gcd}(33,27)=3
\end{array}
$$

- Each step reduces the size of numbers by about a factor of 2 .
- Takes about $\log (a b)$ steps.
- GCDs of 100 -digit numbers takes about 600 steps.
- Each step - a single integer division.

Algorithm design: infinite loop

Algorithms for Generating primes

Class activity

Sample problem: checking number for primality

Problem: divisors

Input: integer $n>0$
Output: True if n is divisible by any number other than 1 and n, False otherwise

Algorithm has_divisors(n)

Write a naive algorithm which tests if n is divisible by any number between 2 and $n-1$.

Complexity of has_divisors

Upper bound?
Lower bound?

Can we do better?

has_divisors revisited

Problem: divisors
 Input: integer $\mathrm{n}>0$
 Output: True if n is divisible by any number other than 1 and n , False otherwise

Algorithm has_divisors2(n)

$$
\begin{aligned}
& 16=2 \star 8 \\
& 16=4 \star 4 \\
& 16=8 \star 2
\end{aligned}
$$

Do we really need to check all the $\mathrm{n}-2$ values?

Sample problem: generating primes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

Algorithm list_primes(n)

Design a naive algorithm which generates a list of primes Use algorithm has_divisors2

Sample problem: generating primes

$$
\begin{array}{ll}
\text { Problem: } & \text { list of primes } \\
\text { Input: } & \text { integer } n>0 \\
\text { Output: } & \text { list of all prime numbers }<=n
\end{array}
$$

Algorithm list_primes(n)

Design a naive algorithm which generates a list of primes Use algorithm has_divisors2
What is worst-case complexity of this algorithm?

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers $<=n$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

2 is a prime. What do we know about $4,6,8 . . . ?$

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers $<=n$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

$4,6,8$ are removed from the list

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Next prime is 3 . What do we know about $9,15,21$?

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

We exclude $9,15,21$

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers $<=n$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

We exclude remaining multiples of 5 - which is 25

Sieve of Eratosthenes

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

	2	3		5
	7		9	
11		13	14	15
	17		19	
21	22	23		25

Remaining numbers are all primes

Sieve of Eratosthenes: ancient version

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

Algorithm sieve_primes(n)

candidates \leftarrow list [2,3....n]
primes \leftarrow empty list
while candidates is not empty:
$\mathrm{p} \leftarrow$ first element of candidates
primes \leftarrow primes $+p$
candidates \leftarrow candidates - p
for each remaining number x in candidates:
if x is divisible by p :
candidates \leftarrow candidates - x
return primes

Sieve of Eratosthenes: ancient version

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers <= n

Algorithm sieve_primes(n)

candidates \leftarrow list $[2,3 \ldots . . . n]$
primes \leftarrow empty list
while candidates is not empty:
$\mathrm{p} \leftarrow$ first element of candidates
primes \leftarrow primes $+p$
candidates \leftarrow candidates - p
for each remaining number x in candidates:
if x is divisible by p : candidates \leftarrow candidates - \mathbf{x}
return primes

Problem!

The removal of elements from the array: to remove an element from the middle of the array we need to move $0(n)$ elements to fill the gap after removal

Sieve of Eratosthenes: ancient version

Problem: list of primes

Input: integer $n>0$
Output: list of all prime numbers $<=n$

Algorithm sieve_primes(n)

candidates \leftarrow list $[2,3 \ldots . . . n]$
primes \leftarrow empty list
while candidates is not empty:
$\mathrm{p} \leftarrow$ first element of candidates
primes \leftarrow primes $+p$
candidates \leftarrow candidates - p
for each remaining number x in candidates:
if x is divisible by p : candidates \leftarrow candidates $-\mathbf{x}$
return primes
With the linked list: running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Can we do better?

Possible solution

Store the numbers in the doubly-linked list.
The removal will take time $0(1)$.
But there will be a significant memory overhead.

Sieve of Eratosthenes: better implementation

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3...n]
primes\leftarrowempty list
for i from 2 to n:
    if candidates[i] > 0
    p = candidates[i]
    primes}\leftarrow\mathrm{ primes + p
    for j=i+p to n step p:
        candidates[j] = 0
return primes
```

Not removing anything, just marking
We do not need to scan all the remaining elements

- we can jump to elements of interest directly.

Sieve of Eratosthenes: complexity

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3\ldots...n]
primes\leftarrowempty list
for i from 2 to n:
    if candidates[i] >0
    p = candidates[i]
    primes\leftarrowprimes + p
    for j=i+p to n step p:
        Inner loop
        candidates[j] = 0
return primes
```

$\mathrm{p}=2$, the inner loop will be executed $\rightarrow(\mathrm{n} / 2)$ times $\mathrm{p}=3$, the inner loop will be executed $\rightarrow(\mathrm{n} / 3)$ times $\mathrm{p}=5$, the inner loop will be executed $\rightarrow(\mathrm{n} / 5)$ times
$\mathrm{p}=\mathrm{n}$, the inner loop will be executed $\rightarrow 1$ time

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3...n]
primes\leftarrowempty list
fori from 2 to n:
    if candidates[i] > 0
    p = candidates[i]
    primes\leftarrowprimes + p
    for j=i+p to n step p:
        \longleftarrow Inner loop
        candidates[j] = 0
return primes
```

So the total number of steps in the inner loop (over the entire algorithm):
$\mathrm{n} / 2+\mathrm{n} / 3+\mathrm{n} / 5+\ldots+\mathrm{n} / \mathrm{n}$

Factor n out and you get:
$\mathrm{n}(1 / 2+1 / 3+1 / 5+\ldots+1 / \mathrm{n})$

What is the upper
bound of this sum?

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3...n]
primes\leftarrowempty list
for i from 2 to n:
    if candidates[i] > 0
    p = candidates[i]
    primes\leftarrowprimes + p
    for j=i+p to n step p:
        candidates[j] = 0
return primes
```

The total number of steps:
$\mathrm{n}(1 / 2+1 / 3+1 / 5+\ldots+1 / \mathrm{n})$

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots
$$

$1 / 2+1 / 3+1 / 5+\ldots+1 / n<\mathbf{1} / \mathbf{2}+\mathbf{1} / \mathbf{3}+\mathbf{1} / 4+\mathbf{1} / 5+\ldots+\mathbf{1} / \mathbf{n}$

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3...n]
primes\leftarrowempty list
for i from 2 to n:
    if candidates[i] > 0
    p = candidates[i]
    primes\leftarrowprimes + p
    for j=i+p to n step p:
        candidates[j] = 0
return primes
```

The total number of steps:
$\mathrm{n}(1 / 2+1 / 3+1 / 5+\ldots+1 / \mathrm{n})$
$1 / 2+1 / 3+1 / 5+\ldots+1 / n<\mathbf{1} / \mathbf{2}+\mathbf{1} / \mathbf{3}+\mathbf{1} / \mathbf{4}+\mathbf{1} / \mathbf{5}+\ldots+\mathbf{1} / \mathrm{n}=\mathbf{O}(\log \mathrm{n})$
This is the sum of harmonic series: LINK

Sieve of Eratosthenes: upper bound

Algorithm sieve_primes1(n)

```
candidates\leftarrowlist [1,2,3...n]
primes\leftarrowempty list
for i from 2 to n:
    if candidates[i] > 0
    p = candidates[i]
    primes}\leftarrow\mathrm{ primes + p
    for j=i+p to n step p:
        candidates[j] = 0
return primes
```

The total number of steps:
$\mathrm{n}+\mathrm{n}(1 / 2+1 / 3+1 / 5+\ldots+1 / n)=\mathrm{O}(\mathrm{n})+\mathrm{O}(\mathrm{n} \log \mathrm{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$

We could make this bound even tighter: $0(\mathrm{n} \log \log \mathrm{n})$

Algorithmic thinking: idea makes all the difference

\qquad

Naive

Look at the problem from different angles
Eureka!

Good algorithm!

Requirements to your algorithmic solution

Correctness
Speed (fast enough)
Simplicity and elegance

Algorithms ...

Quote by Francis Sullivan:
"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked they cast a brilliant new light on some aspect of computing."

