
Exploring Big-Oh
Lecture 01.03

by Marina Barsky

[Big Oh formally]

f (n) = O(g(n)) if there are positive constants n0 and c such that
to the right of n0 the value of f (n) always lies on or below c ·
g(n)

For Big-O Notation analysis, we care more about the part that
grows fastest as the input grows, because everything else is
quickly eclipsed as n gets very large

n

f(n)

c*g(n)

n0
(a)

Ω

n

f(n)

c*g(n)

n

f(n)

c*g(n)

n

f(n)

c1*g(n

c2*g(n)

(c)

n0 n0

(b)(a)

n0

• Theta represents a tight bound on the performance of the
algorithm – it is the best characteristic of the running time.

• BUT: It is not easy to find a single bounding function g(n) that
bounds f(n) both from above and from below for all possible
inputs:

For example: bubble sort is not always >= c2 n2, that is f(n)≠Θ(n2)

• It is easier to give an upper bound, which might not always be tight,
but is easier to find.

[Why Big Oh – and not Big Theta]

ΘO

[Big Oh –the rate of growth]

• We use Big O Notation to talk about how quickly the
runtime grows

• Big O guarantees that for a given input size n the
algorithm never exceeds the value some function on n

• Big O bounds the speed of growth from above:

so we can say things like the runtime grows “on the
order of the size of the input” (O(n)) or “on the
order of the square of the size of the input” (O(n²))

Big Oh – in practice

f (n) = O(g(n)) if there are positive constants n0 and c such that to the right of n0 the
value of f (n) always lies on or below c · g(n)

Big-oh is an upper bound that does two things:
• Removes lower order (ie slower growing) terms.
• Removes constant factors.

Example:

n

f(n)

c*g(n)

n0

Let’s show that f(n) = ½ n2 + 3n ≤ cn2

Divide both sides by n2

½ + 3/n ≤ c
Then, starting with n0=6 and any c ≥ 1, f(n) ≤ cn2

Let c=2, then f(n) < 2n2 for any n>6, f(n) = O(n2)

Classifying algorithms with Big-Oh

Doubly-Exponential Functions: 22

Exponential Functions: 2n, 3n, n·2n

Polynomial Functions: n, n2, n3, n2·log(n), √n = n0.5

Logarithmic Functions: log(n) = log2(n), log3(n)

Doubly-Logarithmic Functions: log log n = log2(log2(n))

n

Big Oh matters

Input size n

CPU with a clock speed of 2 gigahertz (GHz) can carry out two
thousand million (2*109) cycles (operations) per second.

• Algorithm which runs in O(2n) time will process 1 KB of input
in ~1022 years (more than 7 millenia)

• Processing 1 GB of input will take <0.001 ms by O(log n)
algorithm, < 1 sec by O(n) algorithm, and >32 years by O(n2)
algorithm

n bytes log n n n2 2n

10 B 1 10 100 ~1*103

100 B 2 100 10000 ~1*1030

1 KB 3 1,000 1000000 ~1*10300

10 KB 4 10,000 100000000 ~1*103000

100 KB 5 100,000 10000000000 ~1*1030,000

1 MB 6 1,000,000 1.00E+12 ~1*10300,000

10 MB 7 10,000,000 1.00E+14 n/a

100 MB 8 100,000,000 1.00E+16 n/a

1 GB 9 1,000,000,000 1.00E+18 n/a

10 GB 10 10,000,000,000 1.00E+20 n/a

100 GB 11 100,000,000,000 1.00E+22 n/a

1 TB 12 1,000,000,000,000 1.00E+24 n/a

Reasoning about time complexity

• When you intuitively understand an algorithm, the
reasoning about the run-time of an algorithm can be
done in your head

• But it is usually much easier to estimate complexity
given a precise-enough pseudocode

Big Oh: Multiplication by Constant

Multiplication by a constant does not change Big Oh:

The “old constant” C from the Big Oh becomes c · C

O(c · f (n)) → O(f (n))

Big Oh: Multiplication by Function

• But when both functions in a product depend on n, both are
important

• This is why the running time of two nested loops is O(n2).

O(f (n)) · O(g(n)) → O(f (n) · g(n))

Loops

The running time of a loop is, at most, the running time of the
statements inside the loop (including if tests) multiplied by
the number of iterations.

Total time = constant c × n = c n = O(n).

m:= 0
for i from 1 to n: #repeat n times

m:= m + 2 #constant time c

Nested loops

Analyze from the inside out. Total running time is the product
of the sizes of all the loops.

for i from 1 to n: # outer loop - n times

for j from 1 to n: # inner loop - n times

k:= k+1 # constant time

Total time = c × n × n = cn2 = O(n2).

Consecutive statements
Add the time complexity of each statement.

x:= x + 1 # constant time

for i from 1 to n: # executes n times

m:= m+2 # constant time

for i from 1 to n: # outer loop - n times

for j from 1 to n: # inner loop - n times

k:= k+1 # constant time

Total time = c0 + c1n + c2n2 = O(n2).

If-then-else statements

Worst-case running time: the test, plus either the then part or
the else part (whichever is the larger).

if len(t) = 0: # test: constant

return false # then part: constant c0

else:
for n from 0 to len(t): # else part: (c1+c2)*n

if t[n] = p[n]: # if: c1 + c2 (no else)

return false
return true

Total time = c0 + (c1 + c2) * n = O(n).

Logarithmic complexity

An algorithm is O(log n) if it takes a constant time to cut the
problem size by a fraction (usually by ½).

i:= 1
while i<=n:

i:= i*2

● If we observe carefully, the value of i is doubling every
time: Initially i = 1, in next step i = 2, and in subsequent
steps i = 4, 8 and so on

Logarithmic complexity

An algorithm is O(log n) if it takes a constant time to cut the
problem size by a fraction (usually by ½).

i:= 1
while i<=n:

i:= i*2

● Let us assume that the loop is executing some k times -
before i becomes > n

● At k-th step 2k = n, and at (k + 1)-th step we come out of
the loop

● Taking logarithm on both sides: log(2k) = log n
k log 2 = log n
k = log n

Logarithmic complexity
The same logic holds for the decreasing sequence as well:

Example: binary search (finding a word in a sorted list of size n)
● Look at the center point in the sorted list
● Is the word towards the left or right of center?
● Repeat the process with the left or right part of the list until

the word is found.

i:= n
while i >= 1:

i:= i/2

Commonly used Logarithm Rules

Rule or special case Formula

Product log(xy)=log(x)+log(y)

Quotient log(x/y)=log(x)−log(y)

Log of power log(xy)=ylog(x)

Log of one log(1)=0

Log reciprocal log(1/x)=−log(x)

Changing base log10(x) = log2(x)/log2(10)

Constant.

Base of the logarithm does not
matter in complexity analysis!

https://mathinsight.org/logarithm_basics#product
https://mathinsight.org/logarithm_basics#quotient
https://mathinsight.org/logarithm_basics#log_power
https://mathinsight.org/logarithm_basics#log_one
https://mathinsight.org/logarithm_basics#log_reciprocal

Commonly used summations
Arithmetic series

Geometric series

Harmonic series

x is a constant, for example 2.

If x < 1, then the above sum = 1/(1-x) ≤ 2 = O(1).

Example: reasoning about
complexity

• i is going through 1,2,3 …

• Our goal is to determine how many
times i should increase until s hits n:
let’s call this number k

• s on the other hand contains a sum of
1 + 2 + 3 + … k = O(k2)

• So when k2 = n the loop stops

• Thus after k=√n steps the algorithm
terminates → the complexity of the
algorithm is O(√n)

Algorithm2(n)

i ←1

s ← 1

while s <= n:

i ← i + 1

s ← s + i

Real-life performance

• How do we compare algorithms which belong to the same big-
Oh class?

• Some of them may contain a very large constant: but we
already got rid of all constants in our analysis

• Some of the algorithms may use a faulty data structure:

an example would be an ancient version of the Sieve of
Eratosthenes, where we removed an element from the
middle of the list: expensive operation

• The implementation quality and the programming language
also matter:

good implementation can make an algorithm run for up to
1000 times faster for the same input

• For these reasons, we run comparative performance tests

