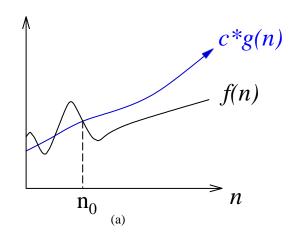
Exploring Big-Oh

Lecture 01.03

by Marina Barsky

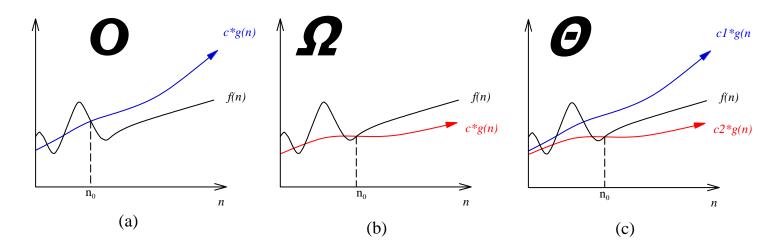
[Big Oh formally]

f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 the value of f(n) always lies on or below $c \cdot g(n)$



For Big-O Notation analysis, we care more about the part that grows fastest as the input grows, because everything else is quickly eclipsed as *n* gets very large

[Why Big Oh – and not Big Theta]



- Theta represents a tight bound on the performance of the algorithm it is the best characteristic of the running time.
- BUT: It is not easy to find a single bounding function g(n) that bounds f(n) both from above and from below for all possible inputs:

For example: bubble sort is not always >= c_2 n^2 , that is $f(n) \neq \Theta(n^2)$

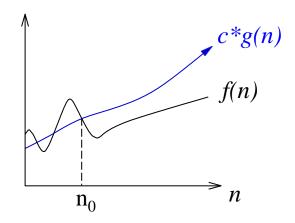
 It is easier to give an upper bound, which might not always be tight, but is easier to find.

[Big Oh –the rate of growth]

- We use Big O Notation to talk about how quickly the runtime grows
- Big O guarantees that for a given input size n the algorithm never exceeds the value some function on n
- Big O bounds the speed of growth from above:
 - so we can say things like the runtime grows "on the order of the size of the input" (O(n)) or "on the order of the square of the size of the input" $(O(n^2))$

Big Oh – in practice

f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 the value of f(n) always lies on or below $c \cdot g(n)$



Big-oh is an upper bound that does two things:

- Removes lower order (ie slower growing) terms.
- Removes constant factors.

Example: Let's show that $f(n) = \frac{1}{2} n^2 + 3n \le cn^2$

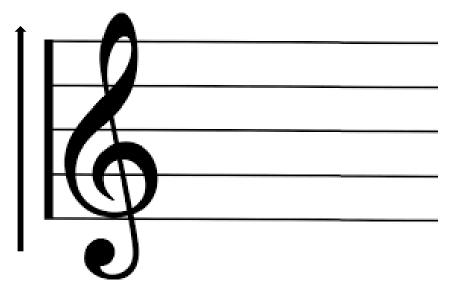
Divide both sides by n²

 $\frac{1}{2}$ + 3/n ≤ c

Then, starting with $n_0=6$ and any $c \ge 1$, $f(n) \le cn^2$

Let c=2, then $f(n) < 2n^2$ for any n>6, $f(n) = O(n^2)$

Classifying algorithms with Big-Oh



Doubly-Exponential Functions: 22ⁿ

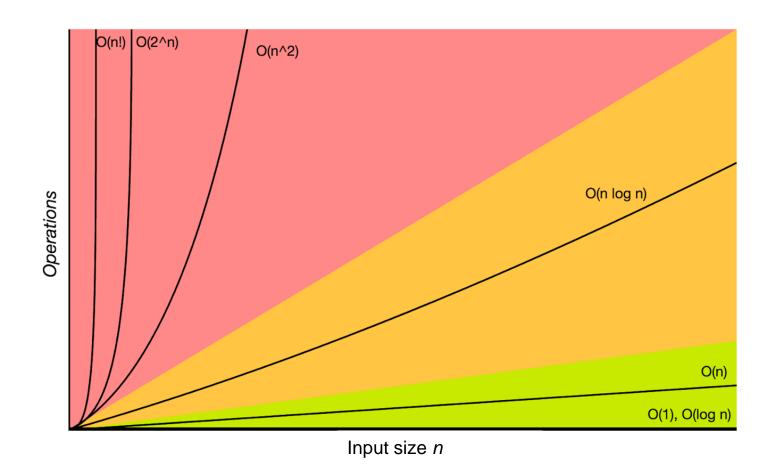
Exponential Functions: 2ⁿ, 3ⁿ, n·2ⁿ

Polynomial Functions: n, n^2 , n^3 , $n^2 \cdot \log(n)$, $\sqrt{n} = n^{0.5}$

Logarithmic Functions: $log(n) = log_2(n)$, $log_3(n)$

Doubly-Logarithmic Functions: $\log \log n = \log_2(\log_2(n))$

Big Oh matters



2 ⁿ	n ²	n	log n	n bytes
~1*10³	100	10	1	10 B
~1*10 ³⁰	10000	100	2	100 B
~1*10 ³⁰⁰	1000000	1,000	3	1 KB
~1*10 ³⁰⁰⁰	10000000	10,000	4	10 KB
~1*10 ^{30,000}	1000000000	100,000	5	100 KB
~1*10 ^{300,000}	1.00E+12	1,000,000	6	1 MB
n/a	1.00E+14	10,000,000	7	10 MB
n/a	1.00E+16	100,000,000	8	100 MB
n/a	1.00E+18	1,000,000,000	9	1 GB
n/a	1.00E+20	10,000,000,000	10	10 GB
n/a	1.00E+22	100,000,000,000	11	100 GB
n/a	1.00E+24	1,000,000,000,000	12	1 TB

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million ($2*10^9$) cycles (operations) per second.

- Algorithm which runs in O(2ⁿ) time will process 1 KB of input in ~10²² years (more than 7 millenia)
- Processing 1 GB of input will take <0.001 ms by O(log n) algorithm, < 1 sec by O(n) algorithm, and >32 years by O(n²) algorithm

Reasoning about time complexity

- When you intuitively understand an algorithm, the reasoning about the run-time of an algorithm can be done in your head
- But it is usually much easier to estimate complexity given a precise-enough pseudocode

Big Oh: Multiplication by Constant

Multiplication by a constant does not change Big Oh:

The "old constant" C from the Big Oh becomes $c \cdot C$

$$O(c \cdot f(n)) \rightarrow O(f(n))$$

Big Oh: Multiplication by Function

- But when both functions in a product depend on n, both are important
- This is why the running time of two nested loops is $O(n^2)$.

$$O(f(n)) \cdot O(g(n)) \rightarrow O(f(n) \cdot g(n))$$

Loops

The running time of a loop is, at most, the running time of the statements inside the loop (including if tests) multiplied by the number of iterations.

```
m:= 0
for i from 1 to n:  #repeat n times
    m:= m + 2 #constant time c
```

Total time = constant $c \times n = c n = O(n)$.

Nested loops

Analyze from the inside out. Total running time is the product of the sizes of all the loops.

Total time = $c \times n \times n = cn^2 = O(n^2)$.

Consecutive statements

Add the time complexity of each statement.

```
Total time = c_0 + c_1 n + c_2 n^2 = O(n^2).
```

If-then-else statements

Worst-case running time: the test, plus either the then part or the else part (whichever is the larger).

```
Total time = c_0 + (c_1 + c_2) * n = O(n).
```

Logarithmic complexity

An algorithm is $O(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $\frac{1}{2}$).

```
i:= 1
while i<=n:
    i:= i*2</pre>
```

• If we observe carefully, the value of *i* is doubling every time: Initially i = 1, in next step i = 2, and in subsequent steps i = 4, 8 and so on

Logarithmic complexity

An algorithm is $O(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $\frac{1}{2}$).

```
i:= 1
while i<=n:
    i:= i*2</pre>
```

- Let us assume that the loop is executing some k times before i becomes > n
- At k-th step $2^k = n$, and at (k + 1)-th step we come out of the loop
- Taking logarithm on both sides: log(2^k) = log n
 k log 2 = log n
 k = log n

Logarithmic complexity

The same logic holds for the decreasing sequence as well:

```
i:= n
while i >= 1:
    i:= i/2
```

Example: **binary search** (finding a word in a sorted list of size n)

- Look at the center point in the sorted list
- Is the word towards the left or right of center?
- Repeat the process with the left or right part of the list until the word is found.

Commonly used Logarithm Rules

Rule or special case	Formula
Product	$\log(xy) = \log(x) + \log(y)$
Quotient	$\log(x/y) = \log(x) - \log(y)$
Log of power	$log(x^y)=ylog(x)$
Log of one	log(1)=0
Log reciprocal	$\log(1/x) = -\log(x)$
Changing base	$\log_{10}(x) = \log_2(x)/\log_2(10)$

Constant.

Base of the logarithm does not matter in complexity analysis!

Commonly used summations

Arithmetic series

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n-1)}{2} = O(n^2)$$

Geometric series

$$\sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n = \frac{x^{n+1}-1}{x-1} = O(x^{n+1} - 1) = O(x^n), x \neq 1$$

x is a constant, for example 2.

If x < 1, then the above sum = $1/(1-x) \le 2 = O(1)$.

Harmonic series

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} = O(\log n)$$

Example: reasoning about complexity

Algorithm2(n)

while
$$s \le n$$
:
 $i \leftarrow i + 1$
 $s \leftarrow s + i$

- *i* is going through 1,2,3 ...
- Our goal is to determine how many times i should increase until s hits n: let's call this number k
- s on the other hand contains a sum of $1 + 2 + 3 + ... k = O(k^2)$
- So when $k^2 = n$ the loop stops
- Thus after $k=\forall n$ steps the algorithm terminates \rightarrow the complexity of the algorithm is $O(\forall n)$

Real-life performance

- How do we compare algorithms which belong to the same big-Oh class?
- Some of them may contain a very large constant: but we already got rid of all constants in our analysis
- Some of the algorithms may use a faulty data structure:

 an example would be an ancient version of the Sieve of Eratosthenes, where we removed an element from the middle of the list: expensive operation
- The implementation quality and the programming language also matter:
 - good implementation can make an algorithm run for up to 1000 times faster for the same input
- For these reasons, we run comparative performance tests