
Data structures: motivation

❏The choice of a suitable data structure can make
all the difference between an efficient and a failing
program

❏The input and output of any algorithm is stored
inside a data structure

❏Data structures organize data for quick and
efficient access

1

Examples of data structures

❏Simple: lists, stacks and queues

❏More intricate - but still very useful: heaps, search
trees, hash tables, Bloom filters, union-find …

❏Why so many?

Because different data structures support different
sets of operations and are good for different types
of tasks

2

Know what exists and
what it is good for

❏We will discuss the pros and cons of each data
structure for a particular task

❏The fewer operations the data structure supports - the
faster the operations will be

Think about the operations that you need a data
structure to support

Choose the best data structure - the one that supports
only required operations, and not more.

3

4 levels of Data Structure Proficiency

❏Level 0: ignorance

❏Level 1: cocktail party awareness

❏Level 2: solid literacy: know which data structures
are appropriate for which types of tasks and
comfortable using them

❏Level 3: hardcore programmers and computer
scientists: understand the internals of existing and
implement new data structures

4

Basic Data Structures:
Arrays and Linked Lists

5

Lecture 02.01 by Marina Barsky

1 5 17 3 25
1 5 17 3 25

8 2 36 5 3

ARRAYS

1D 2D
6

Definition
Array:
Contiguous area of memory containing equal-size elements

indexed by contiguous integers.

The maximum number of elements that can fit into the

allocated memory is called a capacity of the array.

The number of elements currently in the array is called a size

of the array.

0 1 2 3 4 5 6

7

What’s Special About Arrays?

0 1 2 3 4 5 6

Constant-time access to any element by index i.

Computed as:

array_addr + elem_size × (i)

8

Multi-Dimensional Arrays

(0,0)

(2,3)

array_addr + elem_size × (2 × 6 + 3)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1, 0)

.

9

Arrays: Time for Common Operations

Add Remove

Beginning

End

Middle

5 8 3 12

10
size=4

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1)

Middle

5 8 3 12 4

11
A[4] = 4
size = 5

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1) O(1)

Middle

5 8 3 12

12
Remove A[4]
size=4

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1) O(1)

Middle

5 8 3 12

13

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1) O(1)

Middle

8 3 12

14

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1) O(1)

Middle

8 3 12

15

Arrays: Time for Common Operations

Add Remove

Beginning

End O(1) O(1)

Middle

8 3 12

16

Arrays: Time for Common Operations

Add Remove

Beginning O(n)

End O(1) O(1)

Middle

8 3 12

17
size=3

Arrays: Time for Common Operations

Add Remove

Beginning O(n) O(n)

End O(1) O(1)

Middle

8 3 12

18
size=3

Arrays: Time for Common Operations

Add Remove

Beginning O(n) O(n)

End O(1) O(1)

Middle O(n) O(n)

8 3 12

19
size=3

Summary: Arrays

❏ Array: contiguous area of memory consisting of

equal-size elements indexed by contiguous

integers

❏ Constant-time access to any element by

location (index)

❏ Constant time to add/remove at the end

❏ Linear time to add/remove at an arbitrary

location

20

