
Dynamic arrays and
amortized analysis

1

It is not possible to always know in
advance how big an array should be

Lecture 02.02 by Marina Barsky

Bad things happen:

● Java: Array index out of bound
● Python: List index out of range
● C: No warnings, total corruption of program

memory

If we add an element past the
capacity of the array:

2

● We keep track of the number of elements in
the array

● If we need more space - we allocate new
space and transfer data from an old array

● This requires O(n) operations to copy the data

Dynamic allocation of space

int myArray[100];
int[] newArray = new int[200];
System.arraycopy(myArray, newArray, 0,100);

int *my_array = malloc (100*size_of(int));
my_array = realloc(200*size_of(int))

3

A new data structure

dynamic arrays (also known as resizable arrays)

Idea: store a pointer to a dynamically allocated

array, and replace it with a newly-allocated

array as needed.

4

Dynamic Array:
Data structure that supports the same

operations as a static array, but does not limit

the number of elements that it can hold.

Definition

5

Contains 3 variables:
● arr: current address of the array
● capacity: size of the dynamically-allocated array

● size: number of elements currently in the array

Dynamic array

6

Dynamic Array: Resizing

a

arr

size: 1
capacity: 2

add(a)

7

Dynamic Array: Resizing

a b

arr

size: 2
capacity: 2

add(b)

8

Dynamic Array: Resizing

a b

arr

size: 2
capacity: 2

add(c)

Cannot add c: need to resize

9

Dynamic Array: Resizing

a b

arr

size: 2
capacity: 4

add(c)

Resize array: copy old data

10

a b

Dynamic Array: Resizing

a b c

arr

size: 3
capacity: 4

add(c)

11

Dynamic Array: Resizing

a b c d

arr

size: 4
capacity: 4

add(d)

12

Dynamic Array: Resizing

a b c d e

arr

size: 5
capacity: 8

add(e)

13

Dynamic Arrays: Common Operations

Add Remove

Beginning O(n) O(n)

End O(n) O(1)

Middle O(n) O(n)

a b c d

add(e)

You always can have a
situation when you need to
resize and copy in O(n) time

14

Summary

❏ Unlike static arrays, dynamic arrays can be

resized.

❏ Appending a new element to a dynamic array

is often constant time, but can take O(n).

❏ Some space is wasted: at most half.

15

Amortized analysis

Sometimes, looking at the individual worst-case may be
too severe.
We may want to know the total worst-case cost for a

sequence of operations.

● In dynamic arrays we only resize every so often.

● Many O(1) operations are followed by an O(n)

operation.

● What is the total cost of inserting many

elements?

16

Amortized cost: Given a sequence of n

operations, the amortized cost of each
operation is:

Cost(n operations)

n

Definition

17

Dynamic arrays:
cost of n calls to add
Let ci = cost of i’th add.

If we choose the strategy to double the size of the

array on resizing, then:

ci = 1 +
i − 1 if i − 1 is a power of 2

0 otherwise

18

Dynamic arrays:
cost of n calls to add
Let ci = cost of i’th add.

ci = 1 +
i − 1 if i − 1 is a power of 2

0 otherwise

The total cost of performing n insertions:

And the amortized cost per insertion: O(n)/n = O(1)

19

● We could use some different growth factor

(1.5, 2.5, 3 etc.).

● Could we use a constant amount?

Alternatives to doubling

20

Adding a constant amount
while resizing

Let’s expand by 10 each time, then:

Let ci = cost of i’th add.

ci = 1 +
i − 1 if i is a multiple of 10

0 otherwise

And the amortized cost per insertion: O(n2)/n = O(n)

21

Dynamic arrays:
common implementations

❏ C++: vector

❏ Java: ArrayList

❏ Python: list (some indirection)

22

Digression: Python arrays

❏ An array in Python is called a list
❏ Underneath there is a C-array
❏ Arrays in Python do not store

contiguous data, but store contiguous
pointers to data

❏ Arrays in Python are implemented as
dynamic (resizable) arrays of pointers
(addresses)

https://www.laurentluce.com/posts/python-list-implementation/

23

https://www.laurentluce.com/posts/python-list-implementation/

❏ We learned how to calculate amortized cost of an

operation in the context of a sequence of

operations.

❏ We used a brute-force summation. This is called the

Aggregate Method of amortized analysis

❏ There are other methods for more complex cases:

❏ Banker’s method (tokens)

❏ Physicist’s method (potential function, Φ)

Amortized analysis is a useful tool, because we can adjust the

implementation of a data structure based on the aggregated

time

Summary

24

https://en.wikipedia.org/wiki/Accounting_method_(computer_science)
https://en.wikipedia.org/wiki/Potential_method

