Dynamic arrays and
amortized analysis

Lecture 02.02 by Marina Barsky

It is not possible to always know in
advance how big an array should be

If we add an element past the
capacity of the array:

Bad things happen:

® Java: Array index out of bound
e Python: List index out of range

e C: Nowarnings, total corruption of program
memory

Dynamic allocation of space

® We keep track of the number of elements in
the array

e If we need more space - we allocate new
space and transfer data from an old array

e This requires O(n) operations to copy the data

int myArray[100];
int[] newArray = new int[200];
System.arraycopy(myArray, newArray, ©0,100);

int *my_array = malloc (100*size of(int));
my_array = realloc(200*size_of(int))

A new data structure

dynamic arrays (also known as resizable arrays)

Idea: store a pointer to a dynamically allocated
array, and replace it with a newly-allocated
array as needed.

Definition

Dynamic Array:

Data structure that supports the same
operations as a static array, but does not limit
the number of elements that it can hold.

Dynamic array

Contains 3 variables:
e arr: current address of the array
® capacity: size of the dynamically-allocated array
e size:number of elements currently in the array

Dynamic Array: Resizing

size: 1
(arr capacity: 2

add(a)

Dynamic Array: Resizing

size: 2
(arr capacity: 2

add(b)

Dynamic Array: Resizing

size: 2
(arr capacity: 2

add(c)

Cannot add c: need to resize

Dynamic Array: Resizing

rr

a

b

size: 2
capacity: 4

a

b

add(c)

Resize array: copy old data

10

Dynamic Array: Resizing

size: 3
(arr capacity: 4

alb|c

add(c)

11

Dynamic Array: Resizing

size: 4
(a rr capacity: 4
alb|c|d

add(d)

Dynamic Array: Resizing

size: 5
(arr capacity: 8
alblc|d]|e

add(e)

Dynamic Arrays: Common Operations

Beginning

End

Middle

d

b

C

add(e)

Remove
O(n)
0O(1)

O(n)

You always can have a
situation when you need to
resize and copy in O(n) time

14

Summary

(1 Unlike static arrays, dynamic arrays can be
resized.

(1 Appending a new element to a dynamic array
is often constant time, but can take O(n).

(1 Some space is wasted: at most half.

15

Amortized analysis

Sometimes, looking at the individual worst-case may be
too severe.
We may want to know the total worst-case cost for a

sequence of operations.

In dynamic arrays we only resize every so often.
e Many O(1) operations are followed by an O(n)
operation.
e What is the total cost of inserting many
elements?

16

Definition
Amortized cost: Given a sequence of n

operations, the amortized cost of each
operation is:

Cost(n operations)
n

17

Dynamic arrays:
cost of n calls to add

Let ¢;= cost of /th add.
If we choose the strategy to double the size of the
array on resizing, then:

{ i-1 if /— 1is a power of 2
c=1+

0 otherwise

18

Dynamic arrays:
cost of n calls to add

Let ¢;= cost of /th add.

{ i-1 if /— 1is a power of 2
=1+

0 otherwise

The total cost of performing n insertions:

logn

Zc,—n+ ZZJ—Zn

And the amortized cost per insertion: O(n)/n = O(1)
19

Alternatives to doubling

e We could use some different growth factor
(1.5, 2.5, 3 etc.).
e Could we use a constant amount?

20

Adding a constant amount
while resizing

Let’s expand by 10 each time, then:
Let ¢;= cost of /th add.

{ i-1 if /is a multiple of 10
=1+

0 otherwise
n /10

_ 0.10n(n —1))
Zci=n—l—210]=n—l— = 0(n*)

_ 2
i=1 j=1

And the amortized cost per insertion: O(n2)/n = O(n)

21

Dynamic arrays:
common implementations

1 C++: vector
1 Java: ArrayList
1 Python: list (some indirection)

22

Digression: Python arrays

O Anarray in Python is called a list

Underneath there is a C-array

O Arrays in Python do not store
contiguous data, but store contiguous
pointers to data

O Arrays in Python are implemented as
dynamic (resizable) arrays of pointers
(addresses)

L

https://www.laurentluce.com/posts/python-list-implementation/

23

https://www.laurentluce.com/posts/python-list-implementation/

Summary

(1 We learned how to calculate amortized cost of an
operation in the context of a sequence of
operations.

(1 We used a brute-force summation. This is called the
Aggregate Method of amortized analysis

(A There are other methods for more complex cases:

(1 Banker’s method (tokens)
(1 Physicist’s method (potential function, @)

Amortized analysis is a useful tool, because we can adjust the
implementation of a data structure based on the aggregated

time 24

https://en.wikipedia.org/wiki/Accounting_method_(computer_science)
https://en.wikipedia.org/wiki/Potential_method

