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Abstract Data Type (ADT): 

result of the process of abstraction

❑ A specification of data to be stored together 
with a set of operations on  that data

❑ ADT = Data + Operations

➢ Abstraction - the process of extracting only essential  
property from a real-life entity

➢ In CS: Problem → storage + operations

Abstraction in Programming

Abstraction
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ADT is a mathematical concept 
(from theory of concepts)

ADT is a language-agnostic concept

❑ Different languages support ADT in different ways

❑ In C++ or Java, use class construct to create a new ADT

ADT includes:

❑ Specification:

■ What needs to be stored

■ What operations are supported

❑ Implementation:

■ Data structures and algorithms used to meet the 
specification
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Example 1: HR roster

We want to model a list of company employees

➢ When the company grows - we should be able to add a 
new employee  
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Abstraction of HR roster: Stack

➢ If these are the only important requirements 
to the HR roster, then we can solve this 
problem using Stack Abstract Data Type

➢ Stack stores a list of elements and allows 
only 2 operations: adding a new element on 
top of the stack and removing the element 
from the top of the stack

➢ Thus, the elements are sorted by the time 
stamp - from recent to older

➢ Stack is also called a LIFO queue (Last In -
First Out)
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Stack: Abstract data type which supports following 

operations:

➔Push(e): adds element to collection
➔Top(): returns most recently-added element

➔Pop(): removes and returns most  recently-

added element

➔Boolean IsEmpty(): are there any elements?

➔Boolean IsFull(): is there any space left?

Specification
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ADT: Specification vs. implementation

Specification and implementation have 

to be disjoint:

❑ One specification

❑ One or more implementations

■ Using different data structures (Array? 
Linked List?)

■ Using different algorithms
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Stack Implementation with Array

size: 0 
capacity: 5
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Stack Implementation with Array

size: 0 
capacity: 5

Push(a)
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Stack Implementation with Array

a

size: 1
capacity: 5
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Stack Implementation with Array

a

size: 1 
capacity: 5

Push(b)
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Stack Implementation with Array

a b

size: 2
capacity: 5
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Stack Implementation with Array

a b

size: 2 
capacity: 5

Top() → b
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Stack Implementation with Array

a b

size: 2 
capacity: 5

Push(c)
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Stack Implementation with Array

a b c

size: 3
capacity: 5
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Stack Implementation with Array

a b c

size: 3 
capacity: 5

Pop() 
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Stack Implementation with Array

a b

size: 2 
capacity: 5

Pop() → c
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Stack Implementation with Array

a b

size: 2 
capacity: 5

Push(d)
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Stack Implementation with Array

a b d

size: 3
capacity: 5
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Stack Implementation with Array

a b d

size: 3 
capacity: 5

Push(e)
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Stack Implementation with Array

a b d e

size: 4
capacity: 5
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Stack Implementation with Array

a b d e

size: 4 
capacity: 5

Push(f)
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Stack Implementation with Array

a b d e f

size: 5
capacity: 5

26



Stack Implementation with Array

a b d e f

size: 5 
capacity: 5

Push(g)
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Stack Implementation with Array

a b d e f

size: 5
capacity: 5

ERROR
isFull() → True
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Stack Implementation with Array

a b d e f

size: 5 
capacity: 5

Pop()
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Stack Implementation with Array

a b d e

size: 4
capacity: 5

IsEmpty → False
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Stack Implementation with Array

a b d e

size: 4 
capacity: 5

Pop()
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Stack Implementation with Array

a b d

size: 3
capacity: 5

Pop()
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Stack Implementation with Array

a b

size: 2
capacity: 5

33



Stack Implementation with Array

a b

size: 2 
capacity: 5

Pop()
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Stack Implementation with Array

a

size: 1
capacity: 5
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Stack Implementation with Array

a

size: 1 
capacity: 5

Pop()
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Stack Implementation with Array

size: 0
capacity: 5

IsEmpty() → True
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Stack ADT: cost of operations

Array Impl.

Push(e) O(1)

Top() O(1)

Pop() O(1)

IsEmpty() O(1)

IsFull() O(1)
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Stack Implementation with Linked List

head

Push(a)
39



Stack Implementation with Linked List

head
a
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Stack Implementation with Linked List

head
a

Push(b)
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Stack Implementation with Linked List

head
ab
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Stack Implementation with Linked List

head
ab

Push(c)
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Stack Implementation with Linked List

head
abc
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Stack Implementation with Linked List

head
abc

Top()
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Stack Implementation with Linked List

head
abc

Top() → c
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Stack Implementation with Linked List

head
abc

Pop() 
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Stack Implementation with Linked List

head
ab

Pop() → c
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Stack Implementation with Linked List

head
ab

IsEmpty() → False
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Stack ADT: cost of operations

Array Impl. Link. List Impl.

Push(e) O(1) O(1)

Top() O(1) O(1)

Pop() O(1) O(1)

IsEmpty() O(1) O(1)

IsFull() O(1) O(1)
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Stack: Summary

➔ADT Stack can be implemented with 

either an Array or a Linked List Data 

structure

➔ Each stack operation is O(1): Push, 

Pop, Top, IsEmpty

➔ Considerations: 

◆ Linked Lists have storage overhead

◆ Arrays need to be resized when full
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Example 2: Doctor queue

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add 
him to the queue

➢ When the doctor calls for the next patient, we should be 
able to remove the patient from the front of the queue
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Abstraction of Patient List: 
Queue 

➢ If these are the only two required operations, then 
we can model the Doctor queue using a Queue ADT

➢ As in the Stack ADT, the elements in the Queue are 
also sorted by timestamp, but in a different order: 
from the earlier to the later

➢ This ADT is called a FIFO Queue (First In First Out)

A B C RearFront
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Queue: Abstract Data Type which supports the 

following  operations:

➔ Enqueue(e): adds element e to collection  

➔ Dequeue(): removes and returns least 

recently-added key

➔ Boolean IsEmpty( ): are there any  

elements?

➔ Boolean IsFull(): is there any space left?

Specification
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Queue Implementation with Linked 
List 

head tail
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Queue Implementation with Linked 
List 

Enqueue(a)

head tail
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Queue Implementation with Linked 
List 

head tail

a
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Queue Implementation with Linked 
List 

head tail

a

Enqueue(b)
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Queue Implementation with Linked 
List 

head tail

a b
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Queue Implementation with Linked 
List 

head tail

a

Enqueue(c)

b
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Queue Implementation with Linked 
List 

head tail

a b c
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Queue Implementation with Linked 
List 

head tail

a b c

Dequeue()
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Queue Implementation with Linked 
List 

head tail

b c

Dequeue() → a
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Queue Implementation with Linked List 

➔ Augment Linked List with the tail pointer

➔ For Enqueue(e) use list.add(e) - which 
adds an element at the end

➔ For Dequeue() use 
list.remove(list.head)

➔ For IsEmpty() use (list.head = NULL?)
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Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.

Enqueue (e) O(1)

Dequeue() O(1)

IsEmpty() O(1)
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Queue Implementation with Array

0

read

0

write
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Queue Implementation with Array

0

read

0

write

Enqueue(a)
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Queue Implementation with Array

0

read

1

write

a
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Queue Implementation with Array

0

read

1

write

a

Enqueue(b)
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Queue Implementation with Array

0

read

2

write

a b
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Queue Implementation with Array

0

read

2

write

a b

Dequeue()
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Queue Implementation with Array

1

read

2

write

b

Dequeue() → a
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Queue Implementation with Array

1

read

2

write

b

Enqueue(c)
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Queue Implementation with Array

1

read

3

write

b c
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Queue Implementation with Array

1

read

3

write

b c

Enqueue(d)
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Queue Implementation with Array

1

read

4

write

b c d
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Queue Implementation with Array

1

read

4

write

b c d

Dequeue()
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Queue Implementation with Array

2

read

4

write

c d

Dequeue() → b
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Queue Implementation with Array

2

read

4

write

c d

Enqueue(e) 
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Concept of a Circular Array

2

read

4

write

c d

Enqueue(e) 
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Concept of a Circular Array

2

read

4

write

c d

Enqueue(e) 
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Queue Implementation with Array

2

read

0

write

c d e
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Queue Implementation with Array

2

read

0

write

c d e

Enqueue(f) 
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Queue Implementation with Array

2

read

1

write

f c d e
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Queue Implementation with Array

2

read

1

write

f c d e

Enqueue(g) 
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Queue Implementation with Array

2

read

1

write

f c d e

Enqueue(g) → ERROR

Cannot set read = write

isFull() → True 86



Queue Implementation with Array

2

read

1

write

f c d e

Dequeue() 
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Queue Implementation with Array

3

read

1

write

f d e

Dequeue() → c
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Queue Implementation with Array

3

read

1

write

f d e

Dequeue() 
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Queue Implementation with Array

4

read

1

write

f e

Dequeue() → d
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Queue Implementation with Array

4

read

1

write

f e

Dequeue() 
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Queue Implementation with Array

0

read

1

write

f

Dequeue() → e
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Queue Implementation with Array

0

read

1

write

f

Dequeue() 
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Queue Implementation with Array

1

read

1

write

Dequeue() → f
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Queue Implementation with Array

1

read

1

write

IsEmpty() → True 
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Queue Implementation with Array

➔ Queue ADT can be implemented with a circular Array

➔ We need 2 pointers (indexes of the array): read and write

➔ When we enqueue(e) we add e at position write, and 
increment write. If write was at the last position, it wraps 
around to position 0

➔ After enqueue(e) read and write cannot be equal -
because next time you write you would erase the first 
element of the queue pointed to by read

➔ When we dequeue() we remove the element at position 
read, and increment read

➔ If read=write then the queue is empty
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Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.circular

Enqueue (e) O(1) O(1)

Dequeue() O(1) O(1)

IsEmpty() O(1) O(1)
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Queue: Summary

➔ ADT Queue can be implemented with 

either a Linked List (with tail) or an Array 

(Circular) Data structure

➔ Each queue operation is O(1): 

Enqueue, Dequeue, IsEmpty

➔ Considerations: 

◆ Linked Lists have unlimited storage

◆ Arrays need to be resized when full

◆ Linked Lists have simpler maintenance
98



Hide implementation details  
from users of ADT

Users of ADT:

❑ Aware of the specification only

■ Usage only based on the specified 
operations

❑ Do not care / need not know about the actual  

implementation

■ i.e. Different implementations do not 
affect the users of ADT
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A Wall of ADT
■ ADT operations provide:

❑ Interface to data structures

❑ Secure access

100



Violating the abstraction

■ User programs should not:
❑ Use the underlying data structure directly

❑ Depend on implementation details
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class Stack {

Public push(int n) {

... ... ...

}

Specification as slit in the wall

■ User only depends on specifications:

❑ Function name, parameter types, and return type

Request of  

operation

push(4)

Result of  

operation

s contains 4

Implementatio

n

int main() {  

Stack s;

s.push(4);  

s.pop();

return s.isEmpty();

}

User of Stack
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Advantages of ADT

■ Hide the implementation details by building walls 
around the data and operations

❑ So that changes in either will not affect 
other program components that use them

■ Functionalities are less likely to change

■ Localise rather than globalise changes

■ Help manage software complexity
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