
Abstract Data Types and
Data structures

Lecture 02.04
by Marina Barsky

1

Abstract Data Type (ADT):

result of the process of abstraction

❑ A specification of data to be stored together
with a set of operations on that data

❑ ADT = Data + Operations

➢ Abstraction - the process of extracting only essential
property from a real-life entity

➢ In CS: Problem → storage + operations

Abstraction in Programming

Abstraction

2

ADT is a mathematical concept
(from theory of concepts)

ADT is a language-agnostic concept

❑ Different languages support ADT in different ways

❑ In C++ or Java, use class construct to create a new ADT

ADT includes:

❑ Specification:

■ What needs to be stored

■ What operations are supported

❑ Implementation:

■ Data structures and algorithms used to meet the
specification

3

Example 1: HR roster

We want to model a list of company employees

➢ When the company grows - we should be able to add a
new employee

4

Example 1: HR roster

We want to model a list of company employees

➢ When the company grows - we should be able to add a
new employee

5

Example 1: HR roster

We want to model a list of company employees

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

6

Example 1: HR roster

We want to model a list of company employees

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

7

Abstraction of HR roster: Stack

➢ If these are the only important requirements
to the HR roster, then we can solve this
problem using Stack Abstract Data Type

➢ Stack stores a list of elements and allows
only 2 operations: adding a new element on
top of the stack and removing the element
from the top of the stack

➢ Thus, the elements are sorted by the time
stamp - from recent to older

➢ Stack is also called a LIFO queue (Last In -
First Out)

A

B

C

Top

8

1

2

3

3

2

1

Stack: Abstract data type which supports following

operations:

➔Push(e): adds element to collection
➔Top(): returns most recently-added element

➔Pop(): removes and returns most recently-

added element

➔Boolean IsEmpty(): are there any elements?

➔Boolean IsFull(): is there any space left?

Specification

9

ADT: Specification vs. implementation

Specification and implementation have

to be disjoint:

❑ One specification

❑ One or more implementations

■ Using different data structures (Array?
Linked List?)

■ Using different algorithms

10

Stack Implementation with Array

size: 0
capacity: 5

11

Stack Implementation with Array

size: 0
capacity: 5

Push(a)

12

Stack Implementation with Array

a

size: 1
capacity: 5

13

Stack Implementation with Array

a

size: 1
capacity: 5

Push(b)

14

Stack Implementation with Array

a b

size: 2
capacity: 5

15

Stack Implementation with Array

a b

size: 2
capacity: 5

Top() → b

16

Stack Implementation with Array

a b

size: 2
capacity: 5

Push(c)

17

Stack Implementation with Array

a b c

size: 3
capacity: 5

18

Stack Implementation with Array

a b c

size: 3
capacity: 5

Pop()

19

Stack Implementation with Array

a b

size: 2
capacity: 5

Pop() → c

20

Stack Implementation with Array

a b

size: 2
capacity: 5

Push(d)

21

Stack Implementation with Array

a b d

size: 3
capacity: 5

22

Stack Implementation with Array

a b d

size: 3
capacity: 5

Push(e)

23

Stack Implementation with Array

a b d e

size: 4
capacity: 5

24

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Push(f)

25

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

26

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Push(g)

27

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

ERROR
isFull() → True

28

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Pop()

29

Stack Implementation with Array

a b d e

size: 4
capacity: 5

IsEmpty → False

30

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Pop()

31

Stack Implementation with Array

a b d

size: 3
capacity: 5

Pop()

32

Stack Implementation with Array

a b

size: 2
capacity: 5

33

Stack Implementation with Array

a b

size: 2
capacity: 5

Pop()

34

Stack Implementation with Array

a

size: 1
capacity: 5

35

Stack Implementation with Array

a

size: 1
capacity: 5

Pop()

36

Stack Implementation with Array

size: 0
capacity: 5

IsEmpty() → True

37

Stack ADT: cost of operations

Array Impl.

Push(e) O(1)

Top() O(1)

Pop() O(1)

IsEmpty() O(1)

IsFull() O(1)

38

Stack Implementation with Linked List

head

Push(a)
39

Stack Implementation with Linked List

head
a

40

Stack Implementation with Linked List

head
a

Push(b)
41

Stack Implementation with Linked List

head
ab

42

Stack Implementation with Linked List

head
ab

Push(c)
43

Stack Implementation with Linked List

head
abc

44

Stack Implementation with Linked List

head
abc

Top()
45

Stack Implementation with Linked List

head
abc

Top() → c
46

Stack Implementation with Linked List

head
abc

Pop()
47

Stack Implementation with Linked List

head
ab

Pop() → c
48

Stack Implementation with Linked List

head
ab

IsEmpty() → False
49

Stack ADT: cost of operations

Array Impl. Link. List Impl.

Push(e) O(1) O(1)

Top() O(1) O(1)

Pop() O(1) O(1)

IsEmpty() O(1) O(1)

IsFull() O(1) O(1)

50

Stack: Summary

➔ADT Stack can be implemented with

either an Array or a Linked List Data

structure

➔ Each stack operation is O(1): Push,

Pop, Top, IsEmpty

➔ Considerations:

◆ Linked Lists have storage overhead

◆ Arrays need to be resized when full

51

Example 2: Doctor queue

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add
him to the queue

➢ When the doctor calls for the next patient, we should be
able to remove the patient from the front of the queue

52

Abstraction of Patient List:
Queue

➢ If these are the only two required operations, then
we can model the Doctor queue using a Queue ADT

➢ As in the Stack ADT, the elements in the Queue are
also sorted by timestamp, but in a different order:
from the earlier to the later

➢ This ADT is called a FIFO Queue (First In First Out)

A B C RearFront

53

1 2 3

Queue: Abstract Data Type which supports the

following operations:

➔ Enqueue(e): adds element e to collection

➔ Dequeue(): removes and returns least

recently-added key

➔ Boolean IsEmpty(): are there any

elements?

➔ Boolean IsFull(): is there any space left?

Specification

54

Queue Implementation with Linked
List

head tail

55

Queue Implementation with Linked
List

Enqueue(a)

head tail

56

Queue Implementation with Linked
List

head tail

a

57

Queue Implementation with Linked
List

head tail

a

Enqueue(b)
58

Queue Implementation with Linked
List

head tail

a b

59

Queue Implementation with Linked
List

head tail

a

Enqueue(c)

b

60

Queue Implementation with Linked
List

head tail

a b c

61

Queue Implementation with Linked
List

head tail

a b c

Dequeue()
62

Queue Implementation with Linked
List

head tail

b c

Dequeue() → a
63

Queue Implementation with Linked List

➔ Augment Linked List with the tail pointer

➔ For Enqueue(e) use list.add(e) - which
adds an element at the end

➔ For Dequeue() use
list.remove(list.head)

➔ For IsEmpty() use (list.head = NULL?)

64

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.

Enqueue (e) O(1)

Dequeue() O(1)

IsEmpty() O(1)

65

Queue Implementation with Array

0

read

0

write

66

Queue Implementation with Array

0

read

0

write

Enqueue(a)
67

Queue Implementation with Array

0

read

1

write

a

68

Queue Implementation with Array

0

read

1

write

a

Enqueue(b)
69

Queue Implementation with Array

0

read

2

write

a b

70

Queue Implementation with Array

0

read

2

write

a b

Dequeue()
71

Queue Implementation with Array

1

read

2

write

b

Dequeue() → a
72

Queue Implementation with Array

1

read

2

write

b

Enqueue(c)
73

Queue Implementation with Array

1

read

3

write

b c

74

Queue Implementation with Array

1

read

3

write

b c

Enqueue(d)
75

Queue Implementation with Array

1

read

4

write

b c d

76

Queue Implementation with Array

1

read

4

write

b c d

Dequeue()
77

Queue Implementation with Array

2

read

4

write

c d

Dequeue() → b
78

Queue Implementation with Array

2

read

4

write

c d

Enqueue(e)
79

Concept of a Circular Array

2

read

4

write

c d

Enqueue(e)
80

0

1

23

4

Concept of a Circular Array

2

read

4

write

c d

Enqueue(e)
81

0

1

23

4

Queue Implementation with Array

2

read

0

write

c d e

82

Queue Implementation with Array

2

read

0

write

c d e

Enqueue(f)
83

Queue Implementation with Array

2

read

1

write

f c d e

84

Queue Implementation with Array

2

read

1

write

f c d e

Enqueue(g)
85

Queue Implementation with Array

2

read

1

write

f c d e

Enqueue(g) → ERROR

Cannot set read = write

isFull() → True 86

Queue Implementation with Array

2

read

1

write

f c d e

Dequeue()
87

Queue Implementation with Array

3

read

1

write

f d e

Dequeue() → c
88

Queue Implementation with Array

3

read

1

write

f d e

Dequeue()
89

Queue Implementation with Array

4

read

1

write

f e

Dequeue() → d
90

Queue Implementation with Array

4

read

1

write

f e

Dequeue()
91

Queue Implementation with Array

0

read

1

write

f

Dequeue() → e
92

Queue Implementation with Array

0

read

1

write

f

Dequeue()
93

Queue Implementation with Array

1

read

1

write

Dequeue() → f
94

Queue Implementation with Array

1

read

1

write

IsEmpty() → True
95

Queue Implementation with Array

➔ Queue ADT can be implemented with a circular Array

➔ We need 2 pointers (indexes of the array): read and write

➔ When we enqueue(e) we add e at position write, and
increment write. If write was at the last position, it wraps
around to position 0

➔ After enqueue(e) read and write cannot be equal -
because next time you write you would erase the first
element of the queue pointed to by read

➔ When we dequeue() we remove the element at position
read, and increment read

➔ If read=write then the queue is empty

96

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.circular

Enqueue (e) O(1) O(1)

Dequeue() O(1) O(1)

IsEmpty() O(1) O(1)

97

Queue: Summary

➔ ADT Queue can be implemented with

either a Linked List (with tail) or an Array

(Circular) Data structure

➔ Each queue operation is O(1):

Enqueue, Dequeue, IsEmpty

➔ Considerations:

◆ Linked Lists have unlimited storage

◆ Arrays need to be resized when full

◆ Linked Lists have simpler maintenance
98

Hide implementation details
from users of ADT

Users of ADT:

❑ Aware of the specification only

■ Usage only based on the specified
operations

❑ Do not care / need not know about the actual

implementation

■ i.e. Different implementations do not
affect the users of ADT

99

A Wall of ADT
■ ADT operations provide:

❑ Interface to data structures

❑ Secure access

100

Violating the abstraction

■ User programs should not:
❑ Use the underlying data structure directly

❑ Depend on implementation details

101

class Stack {

Public push(int n) {

...

}

Specification as slit in the wall

■ User only depends on specifications:

❑ Function name, parameter types, and return type

Request of

operation

push(4)

Result of

operation

s contains 4

Implementatio

n

int main() {

Stack s;

s.push(4);

s.pop();

return s.isEmpty();

}

User of Stack

102

Advantages of ADT

■ Hide the implementation details by building walls
around the data and operations

❑ So that changes in either will not affect
other program components that use them

■ Functionalities are less likely to change

■ Localise rather than globalise changes

■ Help manage software complexity

103

