
Priority Queue ADT
Lecture 02.05

by Marina Barsky

Recap: Queue ADT

➢ The order in which elements go out of the queue
is defined by the time at which they were added
to the queue

A queue is an abstract data
type supporting the following
main operations:

● enqueue (e) adds an
element to the back of
the queue

● dequeue () extracts an
element from the front
of the queue

Priority queue

➢ A priority queue is a generalization of a queue
where each element is assigned a priority and
elements come out in order of priority

➢ If the priority is the earliest time they were added
to the queue then priority queue becomes a regular
queue

➢ We are interested in a case when priority of each
element is not related to the time when the
element was added to the queue

Example

Carrot:
expire 10 days

Potato:
expire 20 days

Spinach:
expire 5 days

Rice:
expire 100 days

Rice:
expire 100 days

Potato:
expire 20 days

Carrot:
expire 10 days

Spinach:
expire 5 days

Priority

● Add items in order of purchasing
● Consume the items by priority: the items that expire

soon have higher priority

Specification

Priority Queue is an abstract data type
supporting the following main operations:

➔ insert(e,p)* - adds a new element

with priority p

➔ top() - gives an element with the highest

priority

➔ pop() - removes and returns the element

with the highest priority

*To simplify the discussion we use insert(e), where e is
a number which reflects the priority

Example

Storage: Operations:

Example

Storage: Operations:

insert(5)

Example

Storage: Operations:

5

Example

Storage: Operations:

insert(7)
5

Example

Storage: Operations:

5

7

Example

Storage: Operations:

insert(1)
5

7

Example

Storage: Operations:

5

7
1

Example

Storage: Operations:

pop()
5

7
1

Example

Storage: Operations:

pop() → 7
5

1

Example

Storage: Operations:

top()
5

1

Example

Storage: Operations:

top() → 5
5

1

Implementing Priority Queue
with Unsorted Array/List

3 9 16 10

3 9 16 10

Implementing Priority Queue
with Unsorted Array/List

3 9 16 10 2

3 9 16 10 2

insert(e)
add e to the end
running time: O(1)

Implementing Priority Queue
with Unsorted Array/List

3 9 16 10 2

insert(e)
add e to the end
running time: O(1)

pop()
scan array/list to find max

running time: O(n)

3 9 16 10 2

2 3 9 10 16

Implementing Priority Queue
with Sorted Array

pop()
extract the last element

running time: O(1)

2 3 9 10 16

Implementing Priority Queue
with Sorted Array

pop()
extract the last element

running time: O(1)

insert(e)
find a position for e using binary search: O(log n)

2 3 4 9 10 16

Implementing Priority Queue
with Sorted Array

pop()
extract the last element

running time: O(1)

insert(e)
find a position for e using binary search: O(log n)

shift all elements to the right of it by 1: O(n)

insert e: O(1)

running time: O(n)

2 3 9 10 16

Implementing Priority Queue
with Sorted List

pop()
extract the last element

running time: O(1)

2 3 9 10 16

Implementing Priority Queue
with Sorted List

pop()
extract the last element

running time: O(1)

insert(e)
find a position for e (cannot use binary search): O(n)

insert e: O(1)

running time: O(n)

4

Priority Queue: running time for
different implementations

insert pop

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)

➢ Dijkstra’s algorithm: finding a shortest path in
a graph

➢ Prim’s algorithm: constructing a minimum
spanning tree of a graph

➢ Huffman encoding: constructing an optimum
prefix-free encoding of a string

➢ Heap sort: sorting a given sequence

Many algorithms use
Priority Queues

Priority Queue: running time for
different implementations

insert pop

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)

Binary Heap O(log n) O(log n)

