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Definition
Binary max-heap is a binary tree (each
node has zero, one, or two children)

where the value of each node is at
least the values of its children.



Example: heap
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Example: not a heap
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Heap operations: get max
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Heap operations: get max
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Run-time: O(1)



Heap operations: insert (e)
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Heap operations: insert (e)
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Heap operations: insert (e)
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Heap operations: insert (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: sift up (e)
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Heap operations: insert (e)
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Heap operations: insert (e)
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Heap operations: extract max
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Heap operations: extract max

remove the O
root value
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Heap operations: extract max

replace the Q
empty node
value with @
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Heap operations: extract max
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Heap operations: extract max
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Heap operations: extract max
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Heap operations: sift down (e)

if current node
is smaller than @
one of its
hildren,
4 @@

largest child



Heap operations: sift down (e)
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Heap operations: sift down (e)
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Heap operations: sift down (e)
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Heap operations: sift down (e)
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Heap operations: sift down (e)
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Heap operations: extract max

depends on how

many times the

swap is

performed to @

restore the heap
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running time: O(tree height)



Summary so far
get max works in time O(1)

all other operations work in

time O(tree height) Q

we definitely want a tree to be
as shallow as possible



How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its

levels are full except possibly the last
one which is filled from left to right.



Example: complete binary tree
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Example: complete binary tree



Example: complete binary tree



Example: complete binary tree



Example: not complete binary tree



Example: not complete binary tree



Example: not complete binary tree
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Advantage of Complete
Binary Trees: Low Height

Lemma

A complete binary tree with ntotal
nodes has height at most O(log n).



Proof

m

H

Complete the last level of the tree if it is
not full to get a full binary tree.

This full tree has n > nnodes and the
same number of levels with the last level
marked as {.

Note that n < 25, because the total
number of nodes n is between 2*! -1 and
2t -1

Then n = 2t - 1 (sum of geometric series)
and hence:

£ =logy(n + 1) < loge(2n + 1) = Alog n). u



If we store Heap as a Complete
Binary Tree we can:

- Get maxin time O(1)
> Extract maxin time O(log n)
> Insert(e)in time O(log n)

As long as we keep the tree complete



More advantages:
The Complete Binary Tree can be
stored in an Array!




The Complete Binary Tree can
be stored in an Array
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The Complete Binary Tree can
be stored in an Array
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Tree operations in a heap array

But how do we perform heap operations
that require traversing the tree?

> Insert(e)

- Extract max



Tree operations in a heap array
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Tree operations in a heap array
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Tree operations in a heap array
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Heap array: insert (e)

to insert element,
insert it as a leaf in

the leftmost vacant N
position in the last @
level (the last
position of the @ a @ Q
array) and let it 6 @
Sift up
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Heap array: insert (e)

to insert element,
insert it as a leaf in
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position in the last
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Heap array: sift up (e)
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parent(A[/]) =
Al1(7-1)/2]]

parent(9) = 4
swap(9,4)
parent(4) = 1

swap(4,1)
parent(1) = 0 OK



Heap array: insert (e)
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Heap array: extract max()

to extract the

maximum value,
replace the root @
by the last leaf
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Heap array: extract max()

to extract the
maximum value,
replace the root
by the last leaf

and let it sift @ Q

down
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Heap array: sift down ()
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left_child(A[/]) = A[2/+ 1]
right_child(A[/]) = A[2/+ 2]

left_child(0) = 1
right_child(0) = 2

swap with max
swap(0,1)

left_child(1) = 3
right_child(1) = 4

swap with max
swap(1,3)

heap restored



Heap array: extract max ()
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running time: O(log 1)



Implementing Heap with Array

- Maintain capacity - the maximum
number of elements in the heap

- Maintain size - the (current) number
of heap elements

- HI[1. .. capacity] is an array which
occupies space capacity where the
heap elements occupy the first size
positions of this array



Example
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Summary

We learned a new data structure: binary
heap

Binary heap can be used to implement Priority
Queue ADT

Heap implementation is very efficient: all
required operations work in time O(log n)

Heap implementation as an array is also space
efficient: we only store an array of priorities.
Parent-child relationships are not stored, but are
implied by the positions in the array

It is also easy to implement



Common implementations of
Priority Queues using Heaps

e C++: priority_gueue in std library
e Java: PriorityQueue in java.uti/ package
e Python: heapg (separate module)

Underneath is a dynamic array



