
Binary Heaps

Lecture 02.06
by Marina Barsky

https://visualgo.net/en/heap?slide=1

https://visualgo.net/en/heap?slide=1

Example: Binary Tree

Level 0

Level 1

Level 2

Level 3

Root

Internal node
with upto 2
children

Leaf

Definition

Binary max-heap is a binary tree (each

node has zero, one, or two children)

where the value of each node is at

least the values of its children.

Example: heap

42

29

14

9

7

18

18

12 7

Example: not a heap

42

29

14

19

7

18

25

12 7

Heap operations: get max

return the

root value

42

29

14

9

7

18

18

12 74

Heap operations: get max

return the

root value

42

29

14

9

7

18

18

12 74

Run-time: O(1)

Heap operations: insert(e)

create a new

node

42

29

14

9

7

18

18

12 74

32

Heap operations: insert(e)

attach a new

node to any

leaf

42

29

14

9

7

18

18

12 74

32

Heap operations: insert(e)

the heap

property may

become

violated

42

29

14

9

7

18

18

12 74

32

Heap operations: insert(e)

to fix that we

let the new

node sift up

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

this works

because the

heap property

is violated

only on a

single edge at

a time

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

29

32

14

7

18

18

12 74

9

Heap operations: sift_up(e)

if current

element is

bigger than

the parent:

swap

42

32

29

14

7

18

18

12 74

9

Heap operations: sift_up(e)

heap property

is restored

42

32

29

14

7

18

18

12 74

9

Heap operations: insert(e)

running time

of insert

depends on

how many

times we

need to swap

42

32

29

14

7

18

18

12 74

9

Heap operations: insert(e)

the

problematic

node gets

closer to the

root with

each swap

42

32

29

14

7

18

18

12 74

9

running time: O(tree height)

Heap operations: extract max

remove and

return the

root value

42

29

14

9

7

18

18

12 74

Heap operations: extract max

remove the

root value
29

14

9

7

18

18

12 74

Heap operations: extract max

replace the

empty node

value with

any leaf

node value

and remove

the leaf

29

14

9

7

18

18

12 74

Heap operations: extract max

replace the

empty node

value with

any leaf

node value

and remove

the leaf

9

29

14 7

18

18

12 74

Heap operations: extract max

again, this

may violate

the heap

property

9

29

14 7

18

18

12 74

Heap operations: extract max

to fix it we

let the

problematic

node sift

down

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node

is smaller than

one of its

children, swap

it with the

largest child

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

swapping with

the largest

child

automatically

restores both

broken edges

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

swapping with

the largest

child

automatically

restores both

broken edges

29

9

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node

is smaller than

one of its

children, swap

it with the

largest child

29

9

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node

is smaller than

one of its

children, swap

it with the

largest child

29

14

9 7

18

18

12 74

Heap operations: sift_down(e)

the heap

property is

restored

29

14

9 7

18

18

12 74

Heap operations: extract max

depends on how

many times the

swap is

performed to

restore the heap

29

14

9 7

18

18

12 74

running time: O(tree height)

Summary so far
➢ get_max works in time O(1)

➢ all other operations work in
time O(tree height)

➢ we definitely want a tree to be
as shallow as possible

How to Keep a Tree Shallow?

Definition

A binary tree is complete if all its

levels are full except possibly the last

one which is filled from left to right.

Example: complete binary tree

Level 0

Level 1

Level 2

Example: complete binary tree

Example: complete binary tree

Example: complete binary tree

Example: not complete binary tree

Example: not complete binary tree

Example: not complete binary tree

Advantage of Complete
Binary Trees: Low Height

Lemma
A complete binary tree with n total

nodes has height at most O(log n).

Proof
❏ Complete the last level of the tree if it is

not full to get a full binary tree.

❏ This full tree has n′ ≥ n nodes and the

same number of levels with the last level

marked as ℓ.

❏ Note that n′ ≤ 2n, because the total
number of nodes n is between 2ℓ-1 -1 and

2ℓ -1
❏ Then n′ = 2ℓ − 1 (sum of geometric series)

and hence:

ℓ = log2(n
′
+ 1) ≤ log2(2n + 1) = O(log n).

If we store Heap as a Complete
Binary Tree we can:

➔ Get max in time O(1)

➔ Extract max in time O(log n)

➔ Insert(e) in time O(log n)

As long as we keep the tree complete

More advantages:
The Complete Binary Tree can be
stored in an Array!

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

The Complete Binary Tree can
be stored in an Array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

The Complete Binary Tree can
be stored in an Array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

max value: A[0]

Tree operations in a heap array

But how do we perform heap operations
that require traversing the tree?

➔ Insert(e)

➔ Extract max

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

max value: A[0]

parent(A[i]) = A[⌊(i -1)/2⌋]

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

max value: A[0]

parent(A[i]) = A[⌊(i -1)/2⌋]

left_child(A[i]) = A[2i + 1]

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

max value: A[0]

parent(A[i]) = A[⌊(i -1)/2⌋]

left_child(A[i]) = A[2i + 1]

right_child(A[i]) = A[2i + 2]

Heap array: insert(e)

42

29

14

6 11

7

18

12 8

to insert element,

insert it as a leaf in

the leftmost vacant

position in the last

level (the last

position of the

array) and let it

sift up
42 29 18 14 7 12 8 6 11

0 1 2 3 4 5 6 7 8 9

Heap array: insert(e)

42

29

14

6 11

7

18

12 8

42 29 18 14 7 12 8 6 11 33

0 1 2 3 4 5 6 7 8 9

33

to insert element,

insert it as a leaf in

the leftmost vacant

position in the last

level (the last

position of the

array) and let it

sift up

Heap array: sift_up(e)

42 29 18 14 7 12 8 6 11 33
0 1 2 3 4 5 6 7 8 9

parent(A[i]) =

A[⌊(i -1)/2⌋]

42 29 18 14 7 12 8 6 11 33
0 1 2 3 4 5 6 7 8 9

parent(9) = 4

42 29 18 14 33 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

swap(9,4)

42 29 18 14 33 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

parent(4) = 1

42 33 18 14 29 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

swap(4,1)

parent(1) = 0 OK

Heap array: insert(e)

42

33

14

6 11

29

18

12 8

7

42 33 18 14 29 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

running time: O(log n)

Heap array: extract max()

42

29

14

6 11

7

18

12 8

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

42 29 18 14 7 12 8 6 11

0 1 2 3 4 5 6 7 8

Heap array: extract max()

11

29

14

6

7

18

12 8

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

11 29 18 14 7 12 8 6

0 1 2 3 4 5 6 7

Heap array: sift_down()

11 29 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(A[i]) = A[2i + 1]

right_child(A[i]) = A[2i + 2]

11 29 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(0) = 1

right_child(0) = 2

29 11 18 14 7 12 8 6
0 1 2 3 4 5 6 7

swap with max

swap(0,1)

29 11 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(1) = 3

right_child(1) = 4

29 14 18 11 7 12 8 6
0 1 2 3 4 5 6 7

swap with max

swap(1,3)

heap restored

Heap array: extract max()

29

14

11

6

7

18

12 8

29 14 18 11 7 12 8 6
0 1 2 3 4 5 6 7

running time: O(log n)

Implementing Heap with Array

➔ Maintain capacity - the maximum

number of elements in the heap

➔ Maintain size - the (current) number

of heap elements

➔ H [1 . . . capacity] is an array which

occupies space capacity where the

heap elements occupy the first size

positions of this array

Example

29

14

11

6

7

18

12 8

29 14 18 11 7 12 8 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13

capacity: 14
size: 8

➔ We learned a new data structure: binary
heap

➔ Binary heap can be used to implement Priority
Queue ADT

➔ Heap implementation is very efficient: all
required operations work in time O(log n)

➔ Heap implementation as an array is also space
efficient: we only store an array of priorities.
Parent-child relationships are not stored, but are
implied by the positions in the array

➔ It is also easy to implement

Summary

Common implementations of
Priority Queues using Heaps

● C++: priority_queue in std library
● Java: PriorityQueue in java.util package
● Python: heapq (separate module)

Underneath is a dynamic array

