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Example: Binary Tree

Level 0

Level 1

Level 2

Level 3

Root

Internal node 
with upto 2 
children

Leaf



Definition

Binary max-heap is a binary tree (each 

node has zero, one, or two children) 

where the value of each node is at 

least the values of its children.



Example: heap
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Example: not a heap
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Heap operations: get max

return the 

root value
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Heap operations: get max

return the 

root value
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Run-time: O(1)



Heap operations: insert(e)

create a new 

node
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Heap operations: insert(e)

attach a new 

node to any 

leaf
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Heap operations: insert(e)

the heap 

property may 

become 

violated
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Heap operations: insert(e)

to fix that we 

let the new 

node sift up
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Heap operations: sift_up(e)

if current 

element is 

bigger than 

the parent: 

swap
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Heap operations: sift_up(e)
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Heap operations: sift_up(e)
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Heap operations: sift_up(e)

this works 

because the 

heap property 

is violated 

only on a 

single edge at 

a time
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Heap operations: sift_up(e)

if current 

element is 

bigger than 

the parent: 

swap
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Heap operations: sift_up(e)

if current 

element is 

bigger than 

the parent: 
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Heap operations: sift_up(e)

heap property 

is restored
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Heap operations: insert(e)

running time 

of insert 

depends on 

how many 

times we 

need to swap 
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Heap operations: insert(e)

the 

problematic 

node gets 

closer to the 

root with 

each swap
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running time: O(tree height)



Heap operations: extract max

remove and 

return the 

root value
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Heap operations: extract max

remove the 

root value
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Heap operations: extract max

replace the 

empty node 

value with 

any leaf 

node value 

and remove 

the leaf
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Heap operations: extract max

replace the 

empty node 

value with 

any leaf 

node value 

and remove 

the leaf
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Heap operations: extract max

again, this 

may violate 

the heap 

property
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Heap operations: extract max

to fix it we 

let the 

problematic 

node sift 

down
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Heap operations: sift_down(e)

if current node 

is smaller than 

one of its 

children, swap 

it with the 

largest child
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Heap operations: sift_down(e)

swapping with 

the largest 

child 

automatically 

restores both 

broken edges
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Heap operations: sift_down(e)
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Heap operations: sift_down(e)

if current node 

is smaller than 

one of its 

children, swap 

it with the 

largest child
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Heap operations: sift_down(e)

if current node 

is smaller than 

one of its 

children, swap 

it with the 

largest child
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Heap operations: sift_down(e)

the heap 

property is 

restored
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Heap operations: extract max

depends on how 

many times the 

swap is 

performed to 

restore the heap
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running time: O(tree height)



Summary so far
➢ get_max works in time O(1)

➢ all other  operations work in 
time O(tree height)

➢ we definitely want a tree to be 
as shallow as possible



How to Keep a Tree Shallow?

Definition

A binary tree is complete if all its 

levels are full except possibly the last 

one which is filled from left to right.



Example: complete binary tree

Level 0

Level 1

Level 2



Example: complete binary tree



Example: complete binary tree



Example: complete binary tree



Example: not complete binary tree



Example: not complete binary tree



Example: not complete binary tree



Advantage of Complete 
Binary Trees: Low Height

Lemma
A complete binary tree with n total 

nodes has height at most O(log n).



Proof
❏ Complete the last level of the tree if it is 

not full to get a full binary tree.

❏ This full tree has n′ ≥ n nodes and the 

same number of levels with the last level 

marked as ℓ.

❏ Note that n′ ≤ 2n, because the total 
number of nodes n is between 2ℓ-1 -1 and 

2ℓ -1
❏ Then n′ = 2ℓ − 1 (sum of geometric series) 

and hence:

ℓ = log2(n
′
+ 1) ≤ log2(2n + 1) = O(log n).



If we store Heap as a Complete 
Binary Tree we can:

➔ Get max in time O(1)

➔ Extract max in time O(log n)

➔ Insert(e) in time O(log n)

As long as we keep the tree complete



More advantages:
The Complete Binary Tree can be 
stored in an Array!
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The Complete Binary Tree can 
be stored in an Array
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The Complete Binary Tree can 
be stored in an Array
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max value: A[0]



Tree operations in a heap array

But how do we perform heap operations 
that require traversing the tree?

➔ Insert(e)

➔ Extract max



Tree operations in a heap array
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parent(A[i]) = A[⌊(i -1)/2⌋]



Tree operations in a heap array
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max value: A[0]

parent(A[i]) = A[⌊(i -1)/2⌋]

left_child(A[i]) = A[2i + 1]



Tree operations in a heap array
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max value: A[0]

parent(A[i]) = A[⌊(i -1)/2⌋]

left_child(A[i]) = A[2i + 1]

right_child(A[i]) = A[2i + 2] 



Heap array: insert(e)
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to insert element, 

insert it as a leaf in 

the leftmost vacant 

position in the last 

level (the last 

position of the 

array) and let it 

sift up
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Heap array: insert(e)

42

29

14

6 11

7

18

12 8

42 29 18 14 7 12 8 6 11 33
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to insert element, 

insert it as a leaf in 

the leftmost vacant 

position in the last 

level (the last 

position of the 

array) and let it 

sift up



Heap array: sift_up(e)

42 29 18 14 7 12 8 6 11 33
0 1 2 3 4 5 6 7 8 9

parent(A[i]) = 

A[⌊(i -1)/2⌋]

42 29 18 14 7 12 8 6 11 33
0 1 2 3 4 5 6 7 8 9

parent(9) = 4

42 29 18 14 33 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

swap(9,4) 

42 29 18 14 33 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

parent(4) = 1

42 33 18 14 29 12 8 6 11 7
0 1 2 3 4 5 6 7 8 9

swap(4,1) 

parent(1) = 0 OK



Heap array: insert(e)
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running time: O(log n)



Heap array: extract max()
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to extract the  

maximum value,  

replace the root  

by the last leaf

and let it sift  

down
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Heap array: extract max()
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to extract the  

maximum value,  

replace the root  

by the last leaf

and let it sift  

down
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Heap array: sift_down()

11 29 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(A[i]) = A[2i + 1]

right_child(A[i]) = A[2i + 2] 

11 29 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(0) = 1

right_child(0) = 2

29 11 18 14 7 12 8 6
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swap with max

swap(0,1)

29 11 18 14 7 12 8 6
0 1 2 3 4 5 6 7

left_child(1) = 3

right_child(1) = 4

29 14 18 11 7 12 8 6
0 1 2 3 4 5 6 7

swap with max

swap(1,3)

heap restored



Heap array: extract max()
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running time: O(log n)



Implementing Heap with Array

➔ Maintain capacity - the maximum 

number of elements in the heap

➔ Maintain size - the (current) number 

of heap elements 

➔ H [1 . . . capacity ] is an array which 

occupies space capacity where the 

heap elements occupy the first size 

positions of this array



Example
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➔ We learned a new data structure: binary 
heap

➔ Binary heap can be used to implement Priority 
Queue ADT

➔ Heap implementation is very efficient: all 
required operations work in time O(log n)

➔ Heap implementation as an array is also space 
efficient: we only store an array of priorities. 
Parent-child relationships are not stored, but are 
implied by the positions in the array 

➔ It is also easy to implement

Summary



Common implementations of 
Priority Queues using Heaps

● C++: priority_queue in std library 
● Java: PriorityQueue in java.util package
● Python: heapq (separate module)

Underneath is a dynamic array


