Binary Heaps

Lecture 02.06
by Marina Barsky

https://visualgo.net/en/heap?slide=1

https://visualgo.net/en/heap?slide=1

Example: Binary Tree

Root

Level 0

/

Level 1 <4« Internal node
with upto 2
children

Level 2 Q G

74 7\
O OO

Level 3

Definition
Binary max-heap is a binary tree (each
node has zero, one, or two children)

where the value of each node is at
least the values of its children.

Example: heap

2)
29 (19
19 (@) @8
©) @@

Example: not a heap

@@

Heap operations: get max

return the
root value @ @
149) (1) (@8

@@ @@

Heap operations: get max

e W8
TjoeE
©® @@

Run-time: O(1)

Heap operations: insert (e)

create a new
node @ @
19 (1) (8
9@ @O
3)

Heap operations: insert (e)

attach a new
node to any @ @
leaf

149 (1) (8

@ (@)

Heap operations: insert (e)

the heap

property may ‘/ \‘

b

violated &@
$O ac

Heap operations: insert (e)

to fix that we

let the new @ @
node sift up
149 (1) (8

ololR=lo
®

Heap operations: sift up (e)

if current

clemert s

the parent:

W SHa D0
&

Heap operations: sift up (e)

if current

clemert s

the parent:

w @@ D0
&

Heap operations: sift up (e)

if current

clemert s

the parent:

w @ D0
&

Heap operations: sift up (e)

if current

clemert s

the parent:

W @E D0
&

Heap operations: sift up (e)

this works

because the \‘
heap property

is violated @
only on a
single edge at @ @ @

a time

Heap operations: sift up (e)

if current

clert s
the parent: @
swap @ a @ @

Heap operations: sift up (e)

if current

cenerts (G
the parent: @
swap @ a @ @

Heap operations: sift up (e)

heap property
is restored @ @
29 (1) (8

@D B
®

Heap operations: insert (e)

running time

of insert

depends on @

h

o 9 (1)

need to swap a @ @
O,

Heap operations: insert (e)

the

problematic

node gets @

| to th

o B
each swap a @ @

running time: O(tree height)

Heap operations: extract max

remove and

e
i
Clog:To

Heap operations: extract max

remove the O
root value
299 (8
149) (1) (@8

@@ @@

Heap operations: extract max

replace the Q
empty node
value with @

et @
and remove @ @@

the leaf

Heap operations: extract max

replace the

empty node @

value with

any leaf @

node value
and remove

the leaf a @ @

Heap operations: extract max

again, this
may violate
the heap

property ‘@
12)(7)

Heap operations: extract max

to fix it we
let the
problematic

O
.
@
D @O

Heap operations: sift down (e)

if current node
is smaller than @
one of its
hildren,
4 @@

largest child

Heap operations: sift down (e)

swapping with

the largest @

chi

automatically

restores both
@) @@

broken edges

Heap operations: sift down (e)

swapping with

the largest

chi of

automatically @

restores both
4) @@

broken edges

Heap operations: sift down (e)

if current node
is smaller than
one of its <9>/
hildren,
4 @@

largest child

Heap operations: sift down (e)

if current node
is smaller than
one of its
hildren,
4 @@

largest child

Heap operations: sift down (e)

the heap

property is

restored @ @
9 (@) 19

@ @O

Heap operations: extract max

depends on how

many times the

swap is

performed to @

restore the heap
4 @@

running time: O(tree height)

Summary so far
get max works in time O(1)

all other operations work in

time O(tree height) Q

we definitely want a tree to be
as shallow as possible

How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its

levels are full except possibly the last
one which is filled from left to right.

Example: complete binary tree

Level 0 Q
/

Level 1 Q D

oz OO

Example: complete binary tree

Example: complete binary tree

Example: complete binary tree

Example: not complete binary tree

Example: not complete binary tree

Example: not complete binary tree

OO

Advantage of Complete
Binary Trees: Low Height

Lemma

A complete binary tree with ntotal
nodes has height at most O(log n).

Proof

m

H

Complete the last level of the tree if it is
not full to get a full binary tree.

This full tree has n > nnodes and the
same number of levels with the last level
marked as {.

Note that n < 25, because the total
number of nodes n is between 2*! -1 and
2t -1

Then n = 2t - 1 (sum of geometric series)
and hence:

£ =logy(n + 1) < loge(2n + 1) = Alog n). u

If we store Heap as a Complete
Binary Tree we can:

- Get maxin time O(1)
> Extract maxin time O(log n)
> Insert(e)in time O(log n)

As long as we keep the tree complete

More advantages:
The Complete Binary Tree can be
stored in an Array!

The Complete Binary Tree can
be stored in an Array

42

29

18

14

7/

12

18

01 2 3 456

9
7

4
8

The Complete Binary Tree can
be stored in an Array

18

6

N[O

Tree operations in a heap array

But how do we perform heap operations
that require traversing the tree?

> Insert(e)

- Extract max

Tree operations in a heap array

(42) |42

29

18

14

7/

12

18

0 012 3 45 6
@

max value: A[0]
parent(A[]) = A[l(/-1)/2]]

@1 7 @ 18
@3@4

7 8

9
7

Tree operations in a heap array

(a2) 42[29[18[14 7 [12[18[9] 4
7 8

0 012 3 45 6
29 18

1N\ max value: A[0]
@ 7 12 18 parent(A[/]) = A[|(7-1)/2]]

3 4 61 left_child(A[]) = A[2/+ 1]
(9) (4)

7 8

Tree operations in a heap array

(42) [a2/29]18]14 7 [12]18/ 9] 4
7 8

0 0123456
29 18
1N\ max value: A[0]
@ 7 12 18 parent(A[/]) = A[|(7-1)/2]]

3 14 6 left_child(A[7]) = A[2/ + 1]
@ @ right_child(A[7]) = A[2/ + 2]
7 8

Heap array: insert (e)

to insert element,
insert it as a leaf in

the leftmost vacant N
position in the last @
level (the last
position of the @ a @ Q
array) and let it 6 @
Sift up

42(29/18

14/7112/8 611
012 3 456 7 829

Heap array: insert (e)

to insert element,
insert it as a leaf in

the leftmost vacant @ @
position in the last
sostion o th a @ (8
array) and let it 6 @@

42|29(18|14| 7

SIift up

12181611133
012345%6 7 829

Heap array: sift up (e)

42

29

18

14

12

11

33

42

29

18

14

12

11

33

>IN AN

42

29

18

14

33

12

11

42

29

18

14

33

12

11

42

33

18

14

29

12

11

a0 00 00 o 00O & 00

N OOV I VN NN O

ool | oIN©

parent(A[/]) =
Al1(7-1)/2]]

parent(9) = 4
swap(9,4)
parent(4) = 1

swap(4,1)
parent(1) = 0 OK

Heap array: insert (e)

33
1 9@ (8
OIG

42)

18)

42

33

18

14

29

12

8

6

11

7

0 1 2 _3 .
running time: O(log 1)

4

5

6

7

8

9

Heap array: extract max()

to extract the

maximum value,
replace the root @
by the last leaf
az\Id I:t issil‘?‘a a @ Q
()@
42129/1

down

8|14/ 7 /12|86 |11
012 3 456 7 8

Heap array: extract max()

to extract the
maximum value,
replace the root
by the last leaf

and let it sift @ Q

down

29/18|14| 7 |12
012345

o |00
N[O

Heap array: sift down ()

11

29

18

14

12

11

29

18

14

12

29

11

18

14

12

29

11

18

14

12

29

14

18

11

12

A NN AN AN AN

o |00 o 00 |0 |00 |00

N) N) Y E R () X E N [«) N KA (o)

left_child(A[/]) = A[2/+ 1]
right_child(A[/]) = A[2/+ 2]

left_child(0) = 1
right_child(0) = 2

swap with max
swap(0,1)

left_child(1) = 3
right_child(1) = 4

swap with max
swap(1,3)

heap restored

Heap array: extract max ()

o 1 2 3 4 5 6 7

running time: O(log 1)

Implementing Heap with Array

- Maintain capacity - the maximum
number of elements in the heap

- Maintain size - the (current) number
of heap elements

- HI[1. .. capacity] is an array which
occupies space capacity where the
heap elements occupy the first size
positions of this array

Example

18)
2 (8

capacity: 14
size: 8

29/14/18

11

71121816

o 1 2 3 4 5 6 7 8 9 10 11 12 13

Summary

We learned a new data structure: binary
heap

Binary heap can be used to implement Priority
Queue ADT

Heap implementation is very efficient: all
required operations work in time O(log n)

Heap implementation as an array is also space
efficient: we only store an array of priorities.
Parent-child relationships are not stored, but are
implied by the positions in the array

It is also easy to implement

Common implementations of
Priority Queues using Heaps

e C++: priority_gueue in std library
e Java: PriorityQueue in java.uti/ package
e Python: heapg (separate module)

Underneath is a dynamic array

