
Abstract data Type:
Range

Lecture 02.09
By Marina Barsky

1

Motivation 1: Closest Height

Find 3 people in your class whose height is

closest to yours.

2

Motivation 2: Date Ranges

Find all emails received in a given period

3

Motivation 3: Partial Search

Find all words that start with some given prefix

4

Specification

A Local Range ADT stores a number of

elements each with a key and supports the

following operations:

➔ RangeSearch(lo, hi): returns all

elements with keys between lo and hi

➔ NearestNeighbors(x, k): returns k

elements with keys closest to x

Abstract Data Type: Range

5

Example

1 4 6 7 10 13 15

6

Example

1 4 6 7 10 13 15

RangeSearch(5, 13)

7

Example

1 4 6 7 10 13 15

RangeSearch(5, 13)

1 4 6 7 10 13 15

8

Example

1 4 6 7 10 13 15

RangeSearch(5, 13)

1 4 6 7 10 13 15

NearestNeighbors(5, 3)

9

Example

1 4 6 7 10 13 15

RangeSearch(5, 13)

1 4 6 7 10 13 15

NearestNeighbors(5, 3)

1 4 6 7 10 13 15

10

Sorted keys

1 4 6 7 10 13 15

➢ Is seems that it is a good idea to store
keys in a sorted order

11

Dynamic Data Structure

➢ Store keys in sorted order
➢ Also want to be able to add/remove

keys efficiently:

Insert(x): Adds an element with key x

Delete(x): Removes the element with key x

12

Example

1 4 6 7 10 13 15

Insert (3)

1 3 4 6 7 10 13 15

Delete (10)

1 3 4 6 7 13 15

13

Implementing Range ADT

Let’s try known data structures:
➢ Array
➢ Sorted array
➢ Linked list
➢ Hash table

1 4 6 7 10 13 15

14

Array

➔ Range Search: O(n) ×

7 10 4 13 1 6 15

15

range(1, 7)

Array

➔ Range Search:

➔ Nearest Neighbors:
O(n) ×

O(n) ×

7 10 4 13 1 6 15

16

nearestNeighbors(6, 2)

Array

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15

3

17

insert (3)

Array

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

O(n) ×

O(n) ×

O(1) V
O(1) V

7 10 4 13 1 6 15 3

18

delete (10)

Sorted Array

➔ Range Search: O(log(n)) V

1 3 4 7 10 13 15

19

range(4, 8)

Sorted Array

➔ Range Search:

➔ Nearest Neighbors:

O(log(n)) V
O(log(n)) V

1 3 4 7 10 13 15

20

nearestNeighbors(3, 2)

Sorted Array

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

O(log(n)) V
O(log(n)) V

O(n) ×

1 3 4 7 10 13 15

6

21

insert (6)

Sorted Array

O(log(n)) V
O(log(n)) V

O(n) ×

O(n) ×

1 3 4 6 7 10 13 15

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

22

delete (6)

Linked List
➔ Range Search: O(n) ×

7 10 4 13 1 6 15

23

range (4, 9)

Linked List
O(n) ×

O(n) ×

7 10 4 13 1 6 15

➔ Range Search:

➔ Nearest Neighbors:

24

nearestNeighbors(6, 2)

Linked List
O(n) ×

O(n) ×

O(1) V

7 10 4 13 1 6 15 3

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

25

insert (3)

Linked List
O(n) ×

O(n) ×

O(1) V
O(1) V

7 10 4 13 1 6 15 3

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

26

delete (10)

Hash Table
Impossible ×

4 7 6 1

10

➔ Range Search:

27

Hash Table
Impossible ×

Impossible ×

4 7 6 1

10

➔ Range Search:

➔ Nearest Neighbors:

28

Hash Table
Impossible ×

Impossible ×

O(1) V

4 7 6 3 1

10

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

29

Hash Table
Impossible ×

Impossible ×

O(1) V
O(1) V

4 7 6 3 1

10

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

30

Nothing works

We need something new

➢ We want efficient data structure for Local
Range ADT

➢ None of the existing data structures work
➢ Sorted arrays are good for search but not

for update

31

Binary Search

32

Record search questions

33

7

4

1 6

13

10 15

We need a tree

34

7

4

1 6

13

10 15

