Abstract data Type:
Range

Lecture 02.09
By Marina Barsky

Motivation 1: Closest Height

Find 3 people in your class whose height is
closest to yours.

e

Motivation 2: Date Ranges

Find all emails received in a given period

Inbox

FROM

"lawiki.izp admin” <J5uF>
anonymous

anonymous

Anon Developer <gvbM>

12P User <ulUx>

KNOW

TO
Bote User <uhOd>

Bote User <uhQd>

Bote User <uhQd>

Bote User <uhOd>

Bote User <uhOd>

SUBJECT

hi

Sanders 2016
12PCon 2016

Re: Bote changess

HelloWorld!

SENT TIME v

Unknown

Aug 20,2015 327PM
Aug 30,2015325PM
Aug 30, 20152:54 PM

Aug 30, 20152:51 PM

Motivation 3: Partial Search

Find all words that start with some given prefix

Abstract Data Type: Range

Specification
A Local Range ADT stores a number of
elements each with a key and supports the
following operations:
=> RangeSearch(lo, hi): returns all
elements with keys between lo and hi
=> NearestNeighbors(x, k): returns k
elements with keys closest to X

Example

6

7

10

13

15

Example

1 4 6 7 10

RangeSearch(5, 13)

Example

1

4

6

7

10

13

15

RangeSearch(5, 13)

1

4

6

7

10

13

15

Example

1 4 6 7 10

RangeSearch(5, 13)

1 4 6 7 10

NearestNeighbors(5, 3)

Example

1 4 6 71013 15

RangeSearch(5, 13)

1 4 6 7 10 13 15

NearestNeighbors(5, 3)

Sorted keys

1 4 6 7/10 1315

> |s seems that it is a good idea to store
keys in a sorted order

11

Dynamic Data Structure

> Store keys in sorted order
> Also want to be able to add/remove
keys efficiently:

Insert(x): Adds an element with key X
Delete(x): Removes the element with key X

12

Example

6

7

10

13

15

Insert (3)

1

10

13

15

Delete (10)

1

3

13

15

13

Implementing Range ADT
1 4 6 7 10 1315

Let’s try known data structures:
> Array
> Sorted array
> Linked list
> Hash table

Array

- Range Search:

range(1, 7)

ﬁ1o.13h15

15

Array

- Range Search:
-> Nearest Neighbors:

nearestNeighbors(6, 2)

/ 10 4 13|16 15

P S N
> 5

X X

16

Array

- Range Search:
-> Nearest Neighbors:
-> Insert:

insert (3)

/711014 13|16 15

O(n)
O(n)
0O(1)

3)

17

K

Array

Range Search: O(n) x

Nearest Neighbors: O(n) x

Insert: O(1)

Delete: O(1)
delete (10)

7 10 413 1 6 15 3
18

range(4, 8)

Sorted Array

- Range Search: O(log(n)) I/
134 7 101315

19

Sorted Array

- Range Search: O(log(n))
=> Nearest Neighbors: O(log(n))

nearestNeighbors(3, 2)

¥ ¥ ¥
13 4 7101315

20

Sorted Array

- Range Search: O(log(n))
=> Nearest Neighbors: O(log(n))
= Insert: O(n) x

insert (6) @

¥ ¥ Y Y ¥
134 /7110 13 15

21

I

Sorted Array

Range Search: O(log(n))
Nearest Neighbors: O(log(n))
Insert: O(n) x
Delete: O(n) x
delete (6)

13 4 6 7 101315
AR

22

Linked List

- Range Search:

range (4, 9)

7 ™10 4 13—~ 1

15

23

Linked List

- Range Search:
= Nearest Neighbors:

nearestNeighbors(6, 2)

7

— 10

4

—> 13> 1

15

24

Linked List

-> Range Search: O(n) x
—> Nearest Neighbors: O(n) x
=> Insert: O(1)
insert (3)
7 =10 ~113 1 15~ 3

25

Linked List

-> Range Search: O(n) x
—> Nearest Neighbors: O(n) x
=> Insert: O(1)
=> Delete: O(1)
delete (10)
7| [20] 4 {131 1 [6 [+{15[3

206

Hash Table

- Range Search:

G

Impossible x

=
>8]

27

Hash Table

- Range Search: Impossible x
-> Nearest Neighbors: Impossible x

L

28

Hash Table

- Range Search:
-> Nearest Neighbors:
=> Insert:

7 79 @

Impossible x

Impossible x
O(1)

29

N 2

Hash Table

Range Search: Impossible x
Nearest Neighbors: Impossible x
Insert: O(1)
Delete: O(1)

P 95

30

vV

Nothing works

We want efficient data structure for Local
Range ADT

None of the existing data structures work
Sorted arrays are good for search but not
for update

We need something new

31

Binary Search

4 6|7

10

13

15

AN

10

13

15

32

Record search questions

1

13

1

33

We need a tree

7)
(4) (13
@ (0@ @5

34

