Binary Search Trees

Lecture 02.11
by Marina Barsky

Definition

Binary search tree is a binary tree with the following property:
for each node with key \boldsymbol{x}, all the nodes in its left subtree have keys smaller than x, and all the keys in its right subtree are greater or equal* to x.

*To simplify the discussion we will assume that all keys are unique, so the keys in the right subtree are strictly greater than x

Which one is a Binary Search Tree?

A
B
C

Which one is a Binary Search Tree?

BST Node

BST Node:
Key
Left
Right
Optional: Parent

BST: read operations

> Find (k): returns tree node with key k
$>$ Successor (k): finds and returns the node in the tree with the smallest key among all keys greater than k-i.e. finds the node with the next to k key in the list of sorted keys
$>$ Predecessor (k): same as successor, but from the left of k finds and returns the node with the key immediately preceding k in the sorted list of all keys
$>$ Range (lo, hi): returns the list of all tree nodes with keys between lo and hi (inclusive)

All these operations do not modify the tree

Operation Find

Input: Key k, Root R of BST
Output: The node with key k

Example: find (6, root R)

$6<7$
Root becomes left child of 7

Example: find (6, BST root R)

$6>4$
Root becomes right child of 4

Example: find (6, BST root R)

Algorithm Find (k, R)
 if R.Key $=k$: return R
 if R.Key >k:
 return $\boldsymbol{F i n d}(k$, R.Left)
 else if R.Key < k :
 return Find(k, R.Right)

Recursive algorithms are common But all these algorithms can be implemented without recursion

Example: find $(5, R)$

Missing key: return Null

Updated for the case of missing key

```
Algorithm Find (k, R)
if R is Null or R.Key = k:
    return R
if R.Key > k:
    return Find(k, R.Left)
else if R.Key < k:
    return Find(k, R.Right)
```


Missing key: find(5, R)

Note: If you stop before reaching null pointer, you find the place in the tree where k would fit.

Given a node N in a Binary Search Tree
 - find nodes with adjacent keys

Operation Successor

Input: key k
Output: The node in the tree with the next larger key.

Operation Predecessor

Input: key k
Output: The node in the tree with the next smaller key.

Operation Successor
 Input: key k
 Output: The node in the tree with the next larger key.

- We want to find the node with the key which is closest to k from above
- We would need a sub-operation get_min to solve this problem

Sub-operation: get_min (node N)

> We want to find min key in a subtree rooted at N

Sub-operation: get_min (node N)

> We want to find min key in a subtree rooted at N
> Among all descendants of N the only keys that are $<X$ are in the left subtree of N

Example: get_min (N)

\rightarrow Does node N have left child?
Yes \rightarrow there is a
key smaller than 5
\rightarrow Set N to be the left child and ask the same question

Example: get_min (N)

\rightarrow Does node N have left child?
Yes \rightarrow there is a
key smaller than 3
\rightarrow Set N to be the left child and ask the same question

Example: get_min (N)

\rightarrow Does node N have left child?
No \rightarrow there is no
key smaller than N

Follow the leftmost path in the tree - until no more left child

Algorithm Get_min (N)

if N.Left = null:
return N
else:
return Get_min (N.Left)

Successor (k)

First, find node N with key k

Case 1: N has right child

> In this situation all keys > k are in the right subtree of N

Case 1: Node N has the right child, but also has a parent with $p>k$

$>$ In this situation there are also keys $>k$ in the parent of N and in the right subtree of the parent
> However we are looking for the smallest among these keys
$>$ The min among all keys $>k$ is again in the right subtree of N because the keys in this subtree are precisely between k and p

Case 1: Node N has the right child, but also has a parent with $p>k$

$>$ The goal then becomes to find the smallest among all the keys in the right subtree of N
> Use get_min (N.right)

Algorithm Successor (k, R)
if R.Key = k: \# found N
if R.Right!= null:
return Get_min (R.Right)
if $k<R$. Key: \# continue searching for N return Successor (k, R.Left)
if $k>R$. Key : \# continue searching for N return Successor (k, R.Right)

Example: successor (5, R)

Example: successor (5, R)

Example: successor (5, R)

\rightarrow Follow the left subtree:
$5<14$
\rightarrow Found 5
$\rightarrow N$ has right child

Example: successor (5, R)

\rightarrow Follow the left subtree: $5<14$
\rightarrow Found 5
$\rightarrow N$ has right child
\rightarrow Min in the subtree rooted at 9 is the successor of 5
successor $(5, R) \rightarrow 8$

Case 2: Node N with key k does not have the right child

$>$ In this case the successor of N is among N 's ancestors
$>$ Namely the last time we took the turn to left subtree - the key at the root of this subtree is the successor of N
$>$ If we do not have a parent field in our Node, then we cannot recover this parent
> Instead, we will keep track of the last parent when we took the left turn in the search for N

```
Algorithm Successor ( }k,R,S
if R.Key = k: # found N
    if R.Right!= null:
    return Get_min (R.Right)
    else:
        return S
if k<R.Key:# left turn
    S}\leftarrowR# remember the paren
    return Successor (k, R.Left,S)
if k>R.Key:
    return Successor(k, R.Right,S)
```

You start this algorithm with $R=$ root of BST and S (successor) set to null

Example: Successor (10, R)

$\rightarrow 10$ has right subtree
\rightarrow Successor is the min in this right subtree:
Successor (10) $\rightarrow 12$

Example: Successor (6, R)

\rightarrow While searching for 6: we update a possible candidate for successor (first 10, then 7) - because we do not know if N will have a right subtree or not
$\rightarrow 6$ does not have the right subtree
\rightarrow Successor is the last ancestor of 6 when we moved into the left subtree:

Successor (6) $\rightarrow 7$

Example: Successor (16, R)

\rightarrow While searching for 16: we never took the left turn
$\rightarrow 16$ does not have the right subtree
$\rightarrow 16$ also does not have a successor - it is the largest key in the tree

Successor (16) \rightarrow null

Now that we know how to find a successor, we can solve the range query

Operation Range

Input: Numbers x, y, root R
Output: A list of nodes with keys between x and y

Algorithm RangeSearch (x, y, R)

$L \leftarrow$ empty list
$N \leftarrow \boldsymbol{\operatorname { F i n d }}(x, R)$
while N is not Null and N.Key $\leq y$
$L \leftarrow L+N$
$N \leftarrow \operatorname{Successor}$ (N.Key, R, Null)
return L

Example: range search $(5,13)$

Example: range search $(5,13)$

Result: 5

Example: range search $(5,13)$

Result: 5, 6

Example: range search $(5,13)$

Result: 5, 6, 7

Example: range search $(5,13)$

Result: 5, 6, 7, 10

Example: range search $(5,13)$

Result: 5, 6, 7, 10, 12

Example: range search $(5,13)$

Result: 5, 6, 7, 10, 12

BST: update operations

> Insert (k): creates a new node with key k and inserts it into the appropriate position of BST
$>$ Delete (k): deletes the node with key k such that the BST property of the tree is preserved

We already have all the sub-operations to implement these

Operation Insert

Input: Key k
Output: Updated BST containing a new node N with key k

```
Algorithm Find (k, R)
if R is Null or R.Key = k:
    return R
if R.Key > k:
    return Find(k, R.Left)
else if R.Key < k:
    return Find(k, R.Right)
```

We need to slightly modify Find

Algorithm Insert (k, R)
if $R!=$ Null and R.Key $=k$:
return $E R R O R$
if R is Null: return new Node(k)
if k < R.Key:
R.left $=\boldsymbol{\operatorname { I n s e r }} \boldsymbol{\operatorname { s e n }}(k, \operatorname{R} . \mathrm{fef})$
return R
if k > R.Key: R.right $=\boldsymbol{I n s e r t}(k, R . r i g h t)$
return R

Example: insert (16, R)

Update right child of R and return updated node 14

Example: insert (6, R)

Example: insert (6, R)

Operation Delete

Input: Key k
Output: BST without node N with key k

The most challenging algorithm in this module

Delete node N with key k

$>$ First, find N
>Easy case (N has no children)
o Just detach N from the tree

Example: delete(4)

$>$ First, find N
$>$ Easy case (N has no children)
o Just detach N from the tree

Example: delete(4)

$>$ First, find N
 -Easy case (N has no children)
 o Just detach N from the tree

Delete node N with key k

\Rightarrow Medium case (N has one child): Just "splice out" node N

- Its unique child assumes the position previously occupied by N-gets promoted to its place

Example: delete(1)

\Rightarrow Medium case (N has one child):
Just "splice out" node N

- Its unique child assumes the position previously occupied by N-gets promoted to its place

Example: delete(1)

\Rightarrow Medium case (N has one child): Just "splice out" node N

- Its unique child assumes the position previously occupied by N-gets promoted to its place

Delete node N with key k

Difficult case (N has 2 children):

Example: delete(3)

\triangleright Difficult case (N has 2 children):
o Promote 1?

Example: delete(3)

\Rightarrow Difficult case (N has 2 children):
o Promote 1?

Example: delete(3)

D Difficult case (N has 2 children):

- Promote 5?

Example: delete(3)

$>$ Difficult case (N has 2 children):

- Promote 5?

Delete node N with key k : difficult case

ค Difficult case (N has 2 children):
o We want to make as little changes to the tree structure as possible
o Replace node N with its successor (with the next largest key)

Delete node N with key k : difficult case

\rightarrow Difficult case (N has 2 children):
o Replace node N with its successor (with the next largest key)

- Luckily we know that N has the right child
o To find successor - look for a min in its right subtree

Example: delete(3)

\Rightarrow Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree

Example: delete(3)

$>$ Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree
- Swap values in N and its successor

Example: delete(3)

\rightarrow Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree
- Swap values in N and its successor

Example: delete(3)

\rightarrow Difficult case (N has 2 children):

- Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree
- Swap values in N and its successor
o Remove successor: this would be easy - why?

Example: delete(3)

\Rightarrow Difficult case (N has 2 children):
o Replace node N with its successor (with the next largest key)
o To find successor - look for a min in its right subtree

- Swap values in N and its successor
o Remove successor: this would be easy - why?
The successor does not have a left child!
(it was a min in the right subtree - which was the last possible left node)

