
Abstract Data Types and Data Structures
Used in Algorithm Design

___________________________________________________________________________

ADT Operation Op.
type

Best Data
Structure

Big O Alt data
structure

Big O

Stack
(LIFO
Queue)

Top R Dynamic
Array

O(1) Linked List O(1)

Push W Dynamic
Array

O(1) Linked List O(1)

Pop W Dynamic
Array

O(1) Linked List O(1)

Queue
(FIFO
Queue)

Top R Linked List
with tail

O(1) Circular Array with
2 pointers

O(1)

Enqueue W Linked List
with tail

O(1) Circular Array with
2 pointers

O(1)

Dequeue W Linked List
with tail

O(1) Circular Array with
2 pointers

O(1)

Priority
Queue

Top R Binary Heap O(1) Balanced Binary
Search Tree

O(log n)

Enqueue W Binary Heap O(log n) Balanced Binary
Search Tree

O(log n)

Dequeue W Binary Heap O(log n) Balanced Binary
Search Tree

O(log n)

Set HasKey R Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)

Insert W Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)

Delete W Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)



Map Get R Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)

Set W Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)

Delete W Hash Table O(n),
Expected
O(1)

Balanced Binary
Search Tree

Guaranteed
O(log n)

Local
Range

Range R Balanced
Binary Search
Tree (for
example, B+
tree)

O(log n) +
output
size

Nearest
Neighbors

R Balanced
Binary Search
Tree (for
example, B+
tree)

O(log n) +
k, where k
is the
number of
neighbors

Predecess
or

R Balanced
Binary Search
Tree

O(log n)

Successor R Balanced
Binary Search
Tree

O(log n)

Insert W Balanced
Binary Search
Tree

O(log n)

Delete W Balanced
Binary Search
Tree

O(log n)


