Abstract Data Types and Data Structures

Used in Algorithm Design

ADT Operation | Op. | Best Data Big O Alt data Big O
type [Structure structure
Stack Top R Dynamic 0o(1) Linked List 0o(1)
(LIFO Array
Queue)
Push w Dynamic o(1) Linked List o(1)
Array
Pop w Dynamic o(1) Linked List o(1)
Array
Queue Top R Linked List o(1) Circular Array with | O(1)
(FIFO with tail 2 pointers
Queue)
Enqueue w Linked List o(1) Circular Array with | O(1)
with tail 2 pointers
Dequeue w Linked List o(1) Circular Array with | O(1)
with tail 2 pointers
Priority | Top R Binary Heap o(1) Balanced Binary O(log n)
Queue Search Tree
Enqueue w Binary Heap O(log n) Balanced Binary O(log n)
Search Tree
Dequeue w Binary Heap O(log n) Balanced Binary O(log n)
Search Tree
Set HasKey R Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
O(1)
Insert w Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
o(1)
Delete w Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
O(1)

Map Get Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
o(1)
Set Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
O(1)
Delete Hash Table O(n), Balanced Binary Guaranteed
Expected | Search Tree O(log n)
o(1)
Local Range Balanced O(log n) +
Range Binary Search | output
Tree (for size
example, B+
tree)
Nearest Balanced O(log n) +
Neighbors Binary Search | k, where k
Tree (for is the
example, B+ number of
tree) neighbors
Predecess Balanced O(log n)
or Binary Search
Tree
Successor Balanced O(log n)
Binary Search
Tree
Insert Balanced O(log n)
Binary Search
Tree
Delete Balanced O(log n)

Binary Search
Tree

