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Recap: Depth-First Search (Recursive)

Recursive implementation implicitly replaces the todo stack

with the call stack.

This is an exhaustive algorithm, because it visits every node and every 

edge of graph G

It runs in time O(n + m) if implemented using adjacency list

Algorithm DFS(G, current)

current.state:= “discovered”

for each u in neighbors(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(G, start)  // start is a vertex in G



Algorithm DFS(digraph G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(digraph G, start)  // start is a vertex in G

DFS in Directed Graphs
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The algorithm for Directed Graphs is 

exactly the same

By the end we discover all the nodes in 

digraph G that are reachable from the 

source node start



The time of discovery and finishing time

● Unlike in BFS (with its removal 

from the front of a queue) the 

order in which we discover a 

new unprocessed vertex differs 

from the order in which we mark 

vertices as processed

● Imagine that we have a global 

clock, and before we begin: 

clock = 1 

● The moment that we mark 

some node as processed, we 

also mark it with the current 

value of the clock, and we 

increment the clock value by 1 
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Definition

Let finishing time f(v) of node v be the 

value of clock variable at the moment 

that v was marked as processed by 

the DFS algorithm

In essence f(v) is the count of all the 

vertices processed before v



Example of computing finishing time

b

h
c

e

a

d

g

f

● Let’s start DFS from an 

arbitrary vertex, say, vertex d

● We traverse the graph and 

recursively call DFS on all 

nodes reachable from d

● The node is marked as 

processed when there are no 

more undiscovered nodes 

that can be reached from it

clock = 1



Example of computing finishing time
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Example of computing finishing time
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clock = 1

There is nowhere to go from g:

Node g is processed



Example of computing finishing time
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clock = 2

There is nowhere to go from g:

Node g is processed

Its finishing time is 1 (first to finish)
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Example of computing finishing time
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clock = 2
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We return from the call stack and the next 

node marked as processed is node f



Example of computing finishing time
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clock = 3

1

We return from the call stack and the next 

node marked as processed is node f

Its finishing time is 2
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Example of computing finishing time
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clock = 3

1

Node d is not done yet: 

We move to its next neighbor h
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Example of computing finishing time
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clock = 3

1

Node d is not done yet: 

We move to its next neighbor h, and then to e
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Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 3

1

Node d is not done yet: 

We move to its next neighbor h, and then to e, 

and then to c
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Example of computing finishing time
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We mark every node with its finishing time
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Example of computing finishing time
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clock = 7
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All nodes reachable from d have been processed

We can continue from any remaining 

unprocessed vertex, say, a
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Example of computing finishing time
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All nodes reachable from d have been processed

We can continue from any remaining 

unprocessed vertex, say, a

2

3 4
5

6



Example of computing finishing time
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All nodes reachable from a are now processed

Mark remaining finishing time.
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Finishing time for all vertices
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Note that this order of processing is not unique, 

because we selected the next starting vertex arbitrarily

(try to start from vertex h)



Directed graphs can model ordering constrains:

● Clothes: we cannot wear boots before socks, and a coat before dress

● Course prerequisite structure at universities: some courses must be taken 

before others

Modeling order constraints with DAG

Algo

Unix

DS

DB
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A directed edge v → w indicates that course v must be completed before 

course w

Such ordering of vertices can only be modeled with a Directed Acyclic

Graph [DAG]



● Topological sorting is an ordering of vertices in a 

Directed Acyclic Graph [DAG] in which each node 

comes before all nodes to which it has outgoing 

edges.

● Each node is assigned a label t(v):

○ t(v) is a unique order of node v from 1 to n

○ If there is a directed edge u → v, then t(u)<t(v)

For example, topological ordering for courses is 

the sequence which does not violate the 

prerequisite requirement

● Topological sorting is not possible if the graph 

has a cycle, since for two vertices u and v on the 

cycle, it is not possible to create a sequence where 

t(u)<t(v) and at the same time t(v)<t(u)

Topological Order
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Topological Order is not 

unique



Computing Topological Order with DFS

The topological order is exactly opposite to the finishing time:

● The finishing time of the vertex indicates that all nodes reachable from it have 

been processed, that means it is not a prerequisite for any one of them

● Thus the node without prerequisites (with the smallest t(v)) finishes last (has 

the largest f(v))

Algorithms:

● We can compute finishing time (as before) and sort vertices in descending 

order of finishing time

● We also can generate topological ordering during the DFS directly, by adding 

a processed node in front of a Linked List (see next slide)

● There is an alternative algorithm which uses in-degree of vertices (read the 

textbook Chapter 13.4)



Topological Sort with DFS
global sorted_nodes:= empty linked list

global clock: = 1 

Algorithm DFS(DAG G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

current.finishing_time: = clock

clock: = clock + 1

sorted_nodes.add_in_front(current)

Algorithm DFS_loop(DAG G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS(DAG G, u)



Example
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current_vertex Recursion stack: d

Sorted list

clock = 1

Finishing time
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Example
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current_vertex Recursion stack: d f g
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Example
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current_vertex g Recursion stack: d f

Sorted list

clock = 1

Finishing time



Example
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current_vertex g Recursion stack: d f

Sorted list g

clock = 2

Finishing time 1



Example
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current_vertex f Recursion stack: d

Sorted list g

clock = 2

Finishing time 1



Example
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current_vertex f Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1



Example
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current_vertex Recursion stack: d h

Sorted list f g

clock = 3

Finishing time 2 1



Example
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current_vertex h Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1



Example
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current_vertex h Recursion stack: d

Sorted list h f g

clock = 4

Finishing time 3 2 1



Example
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current_vertex d Recursion stack:

Sorted list h f g

clock = 4

Finishing time 3 2 1



Example
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current_vertex d Recursion stack:

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex Recursion stack: a b

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex b Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1



Example
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current_vertex Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1



Example
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current_vertex Recursion stack: a c

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1



Example
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current_vertex c Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1



Example
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current_vertex Recursion stack: a

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1



Example
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current_vertex a Recursion stack:

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1



Example
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current_vertex a Recursion stack:

Sorted list a c b d h f g

Finishing time 7 6 5 4 3 2 1



Question

● How can we use the same DFS loop to determine if the graph is 

cycle-free?


