
Exhaustive Algorithms on Graphs:

Topological Sorting with DFS

Lecture 04.02

By Marina Barsky

Recap: Depth-First Search (Recursive)

Recursive implementation implicitly replaces the todo stack

with the call stack.

This is an exhaustive algorithm, because it visits every node and every

edge of graph G

It runs in time O(n + m) if implemented using adjacency list

Algorithm DFS(G, current)

current.state:= “discovered”

for each u in neighbors(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(G, start) // start is a vertex in G

Algorithm DFS(digraph G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(digraph G, start) // start is a vertex in G

DFS in Directed Graphs
b

h
c

e

a

d

g

f

The algorithm for Directed Graphs is

exactly the same

By the end we discover all the nodes in

digraph G that are reachable from the

source node start

The time of discovery and finishing time

● Unlike in BFS (with its removal

from the front of a queue) the

order in which we discover a

new unprocessed vertex differs

from the order in which we mark

vertices as processed

● Imagine that we have a global

clock, and before we begin:

clock = 1

● The moment that we mark

some node as processed, we

also mark it with the current

value of the clock, and we

increment the clock value by 1

b

h
c

e

a

d

g

f

Definition

Let finishing time f(v) of node v be the

value of clock variable at the moment

that v was marked as processed by

the DFS algorithm

In essence f(v) is the count of all the

vertices processed before v

Example of computing finishing time

b

h
c

e

a

d

g

f

● Let’s start DFS from an

arbitrary vertex, say, vertex d

● We traverse the graph and

recursively call DFS on all

nodes reachable from d

● The node is marked as

processed when there are no

more undiscovered nodes

that can be reached from it

clock = 1

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 1

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 1

There is nowhere to go from g:

Node g is processed

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 2

There is nowhere to go from g:

Node g is processed

Its finishing time is 1 (first to finish)

1

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 2

1

We return from the call stack and the next

node marked as processed is node f

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 3

1

We return from the call stack and the next

node marked as processed is node f

Its finishing time is 2

2

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 3

1

Node d is not done yet:

We move to its next neighbor h

2

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 3

1

Node d is not done yet:

We move to its next neighbor h, and then to e

2

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 3

1

Node d is not done yet:

We move to its next neighbor h, and then to e,

and then to c

2

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 7

1

We mark every node with its finishing time

2

3 4
5

6

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 7

1

All nodes reachable from d have been processed

We can continue from any remaining

unprocessed vertex, say, a

2

3 4
5

6

Example of computing finishing time

b

h
c

e

a

d

g

f

clock = 7

1

All nodes reachable from d have been processed

We can continue from any remaining

unprocessed vertex, say, a

2

3 4
5

6

Example of computing finishing time

b

h
c

e

a

d

g

f

1

All nodes reachable from a are now processed

Mark remaining finishing time.

2

3 4
5

67

8

Finishing time for all vertices

b

h
c

e

a

d

g

f

1

2

3 4
5

67

8

a b c d e f g h e

8 7 3 6 4 2 1 5 4

Note that this order of processing is not unique,

because we selected the next starting vertex arbitrarily

(try to start from vertex h)

Directed graphs can model ordering constrains:

● Clothes: we cannot wear boots before socks, and a coat before dress

● Course prerequisite structure at universities: some courses must be taken

before others

Modeling order constraints with DAG

Algo

Unix

DS

DB

1

2

3

4

1

2

3 4

A directed edge v → w indicates that course v must be completed before

course w

Such ordering of vertices can only be modeled with a Directed Acyclic

Graph [DAG]

● Topological sorting is an ordering of vertices in a

Directed Acyclic Graph [DAG] in which each node

comes before all nodes to which it has outgoing

edges.

● Each node is assigned a label t(v):

○ t(v) is a unique order of node v from 1 to n

○ If there is a directed edge u → v, then t(u)<t(v)

For example, topological ordering for courses is

the sequence which does not violate the

prerequisite requirement

● Topological sorting is not possible if the graph

has a cycle, since for two vertices u and v on the

cycle, it is not possible to create a sequence where

t(u)<t(v) and at the same time t(v)<t(u)

Topological Order

b

c

a

d

a b c d

a c b d

1

2

3

4

1

2

3
4

Topological Order is not

unique

Computing Topological Order with DFS

The topological order is exactly opposite to the finishing time:

● The finishing time of the vertex indicates that all nodes reachable from it have

been processed, that means it is not a prerequisite for any one of them

● Thus the node without prerequisites (with the smallest t(v)) finishes last (has

the largest f(v))

Algorithms:

● We can compute finishing time (as before) and sort vertices in descending

order of finishing time

● We also can generate topological ordering during the DFS directly, by adding

a processed node in front of a Linked List (see next slide)

● There is an alternative algorithm which uses in-degree of vertices (read the

textbook Chapter 13.4)

Topological Sort with DFS
global sorted_nodes:= empty linked list

global clock: = 1

Algorithm DFS(DAG G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

current.finishing_time: = clock

clock: = clock + 1

sorted_nodes.add_in_front(current)

Algorithm DFS_loop(DAG G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS(DAG G, u)

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d f

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d f g

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex g Recursion stack: d f

Sorted list

clock = 1

Finishing time

Example

b

hc

a

d

g

f

current_vertex g Recursion stack: d f

Sorted list g

clock = 2

Finishing time 1

Example

b

hc

a

d

g

f

current_vertex f Recursion stack: d

Sorted list g

clock = 2

Finishing time 1

Example

b

hc

a

d

g

f

current_vertex f Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: d h

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex h Recursion stack: d

Sorted list f g

clock = 3

Finishing time 2 1

Example

b

hc

a

d

g

f

current_vertex h Recursion stack: d

Sorted list h f g

clock = 4

Finishing time 3 2 1

Example

b

hc

a

d

g

f

current_vertex d Recursion stack:

Sorted list h f g

clock = 4

Finishing time 3 2 1

Example

b

hc

a

d

g

f

current_vertex d Recursion stack:

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a b

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex b Recursion stack: a

Sorted list d h f g

clock = 5

Finishing time 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a c

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex c Recursion stack: a

Sorted list b d h f g

clock = 6

Finishing time 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex Recursion stack: a

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex a Recursion stack:

Sorted list c b d h f g

clock = 7

Finishing time 6 5 4 3 2 1

Example

b

hc

a

d

g

f

current_vertex a Recursion stack:

Sorted list a c b d h f g

Finishing time 7 6 5 4 3 2 1

Question

● How can we use the same DFS loop to determine if the graph is

cycle-free?

