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Walks and Paths

• A walk in a graph is a sequence of incident edges

• The length of a walk is the number of edges in it

• A path is a walk where all edges are distinct

• A simple path is a walk where all vertices are distinct
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A walk of length 6: (e1, e2, e4, e5, e3, e1)
Is this walk also a path?
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A walk of length 6: (e1, e2, e4, e5, e3, e1)
Not a path: uses e1 twice



A path of length 4: (e7, e6, e4, e5)
Is it a simple path?

Example 2
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A path of length 4: (e7, e6, e4, e5)
Not a simple path: visits v2 twice

Example 2
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A simple path of length 4: (e7, e6, e2, e1)

Example 3
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It is sometimes more convenient to specify a path (walk) by a list 
of vertices rather than edges

A path of length 4: (v2, v1, v5, v4, v6)
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The length of the path

The length of a path is the number of traversed edges.

A path from u to v is a shortest path if there is no shorter path 
from u to v.
For example, there are two shortest paths from f to e above.

This is not a path since it is disconnected and 
also d appears multiple times.

A highlighted path
a, (a,f), f, (f,d), d, (d,c), c
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Directed Paths

In a directed graph each edge is oriented in one of two ways with 
respect to a path:
● The edge is forward if it has the form vi, (vi, vi+1), vi+1.
● The edge is backward if it has the form vi, (vi+1, vi), vi+1.

A path is a directed path if every edge is a forward edge.  

A directed path from a to c.A highlighted path
a, (a,f), f, (f,d), d, (d,c), c

where (f,d) is the only backwards edge.
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Cycles

● A cycle (sometimes called a circuit) in a graph is a path where 

the first vertex is the same as the last one

● All the edges in a cycle are distinct

● A simple cycle is a cycle where all vertices  except for the 

first=last are distinct 



Example 4
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Example 4

A cycle of length 6: (e
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5 

three times

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4e
3

e
2



Example 5

A simple cycle of length 4: (e
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• Two vertices are connected, if there is a path between 

them

• The definition is transitive: if u and v are connected 

and v and w are connected, then u and w are  

connected as well

Connectivity in undirected graphs
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• A graph is connected, if any two of its nodes are 

connected. In other words, there is a path 

between any pair of nodes

Connected graph
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This graph is connected. This graph is not connected.



The nodes of any undirected graph can be partitioned into 

subgraphs called connected components:

• Any node belongs to exactly one connected 

component

• Any two nodes from the same connected component are 

connected

• Any two nodes from different connected  components are 

not connected

Connected components



Example 6

Graph with 5 connected components



Example 7

Graph with 3 connected components



Example 8

Graph with 1 connected component
This graph is connected



Connected Components in a Maze



Connected Components in a Maze



Connected Components in a Maze



Connected Components in a Maze



Connected Components in a Maze



Connected Components in a Maze



• An edge in an undirected connected graph is a bridge iff
removing it increases number of connected components

• Bridges represent vulnerabilities in a connected network 
and are useful for designing reliable networks 

For example, in a wired computer network, a bridge 
indicates the critical wires or connections

Bridge



Questions

1. How to find out whether an undirected Graph is 
connected?

2. How to compute all connected components in 
the undirected Graph?

• Hint: traversals

• What is the running time of these algorithms?



Connectivity in Directed Graphs
Strong connectivity



Is this graph connected?

● Yes, in a sense that it cannot be broken into completely isolated components: 

for any vertex pair (v, u) there is either path v~>u OR path u~>v 

● This is called weak connectivity
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Strongly connected directed graphs

A directed graph G is strongly-connected if for any two vertices u and v there is 

a path u~>v, AND there is also a path v~>u.

It means that in strongly connected graphs information flows through 

the network in both directions: there is a way to deliver information from 

any v to any u, and vice versa
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This graph is NOT strongly-connected:
There is a path from 1 to 8, but there is no path from 8 to 1



Connectivity vs. strong connectivity

How do we test whether an undirected graph G is strongly connected?

● Start DFS (or even BFS) loop from a random vertex s

● By the end of DFS:

○ All vertices are processed → G is connected: there is a path between s 

and any other vertex, and there is also a path between any pair of 

vertices (even if this path would need to go to s first)

○ Not all vertices are processed → G is not connected: there is no path 

from s to some vertices

● Can we apply this idea to test that directed graph G is strongly connected?



Recap: DFS on Directed Graph

By the end we discover all the nodes in digraph G that are reachable 

from the source node s

Algorithm DFS(digraph G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(digraph G, s)  // s is a vertex in G
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Running time O(n + m)



Testing digraph G for strong connectivity

We can try running DFS:

DFS (G, s)

● Pick any node s - arbitrarily

● Perform DFS from s: every node which is reachable from s will be discovered during 

this DFS, and marked as processed

● If there are no unprocessed nodes by the end of DFS1, then there is a one-way path 

from s to any other node in G

● This however does not guarantee that there is a path from any node to s, or that there 

is a path between any pair of nodes 
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All nodes of G are reachable from a, 

but there is not even a one-way path between g and f, or h and d

One DFS is not enough!



Testing digraph G for strong connectivity

We can do it using two runs of DFS:

DFS1 (G, v)

● Pick any node s - arbitrarily

● Perform DFS from s: every node which is reachable from s will be discovered during 

this DFS, and marked as processed

● If there are no unprocessed nodes by the end of DFS1, then there is a one-way path 

from s to any other node in G

DFS2 (GT, v)

● Now we need to check if there is also a path from any vertex in G to s (this is required 

for strong connectivity)

● We want to know if there is a path from any vertex in G to s – should we do DFS from 

every vertex? 

● To check if there is a path towards s from any other vertex, we perform DFS using 

backward edges from s. We create a transpose of digraph G - graph GT, which 

consists of the same vertices, but where each edge is reversed 

● During DFS on GT we discover a path from every vertex in G towards s



Testing digraph G for strong connectivity

We can do it using two runs of DFS:

DFS1 (G, v)

● Pick any node s - arbitrarily

● Perform DFS from s: every node which is reachable from s will be discovered during 

this DFS, and marked as processed

● If there are no unprocessed nodes by the end of DFS1, then there is a one-way path 

from s to any other node in G

DFS2 (GT, v)

● Now we need to check if there is also a path from any vertex in G to s (this is required 

for strong connectivity)

● We want to know if there is a path from any vertex in G to s – should we do DFS from 

every vertex? 

● To check if there is a path towards s from any other vertex, we perform DFS on a 

transpose of digraph G - graph GT, which consists of the same vertices, but 

where each edge is reversed 

● During DFS on GT we discover a path connecting every vertex in G with s in the 

opposite direction

This also guarantees that G is strongly connected

Can you see why?



● All the nodes are processed with DFS1 (G, a)
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Graph G

Graph GT
Start here

● All the nodes are processed with DFS2 (GT, a)

Conclusion: this graph is strongly-connected

Is this graph strongly-connected?



Is this graph strongly-connected?

● If we do DFS1(G, 1) we reach all the nodes

● DFS2 in GT tells us if there is a return path in G from any node to node 1

● If we do DFS2(GT, 1) we will only reach nodes 2, 7, 6

Conclusion: this graph is not strongly-connected
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● The entire graph is not strongly-connected

● Is there any sub-graph that is strongly-connected?

● Given digraph G = (V, E), we define a strongly connected component 

(SCC) of G to be a maximal subset C of vertices V, such that for all u, v in C, 

both u ~> v and v ~> u – that is, both u and v are reachable from each other. 

In other words, two vertices of directed graph are in the same SCC if and only 

if they are reachable from each other.

● There are 4 strongly-connected components in this graph
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Strongly Connected Components (SCCs)



What are SCCs in the following graph?
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What are SCCs in the following graph?

A

B

C D

E

F G

H

I K

C ABDHI
E

FGK

This graph has 4 SCCs



Discovering Strongly Connected Components

● The problem of finding connected components is at the heart of many graph 

applications. Generally speaking, the connected components of the graph 

correspond to different classes of objects.

For example, in social networks these are groups of people who can 

communicate with each other freely and have a limited connectivity to 

other groups.
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Can we use DFS loop?

● We might think of applying the DFS loop (or 2 DFS loops) to test for 

reachability from any vertex of G

● However this time we will get different results depending which node do we 

use as a start

○ For example if we start DFS at vertex 5, we will indeed discover the SCC 

{5,10} and nothing else

○ If we start with vertex 8, we will discover {3,4,5,10,9} – which is not SCC

○ Moreover, if we start with vertex 1, then we will reach all the vertices of G 

and will not discover any SCCs
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Recap: finishing time

● The node is marked as processed only when none of its outgoing arcs lead 

to an undiscovered vertex

● The DFS loop will continue exploring undiscovered vertices until none left

● Finishing time f(v) of node v is defined to be the number of nodes that were 

marked as processed before v 
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Recap: DFS loop with finishing time

global clock: = 1 

Algorithm DFS(DAG G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

current.f: = clock

clock: = clock + 1

Algorithm DFS_loop(DAG G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS(DAG G, u)



Two-pass algorithm for discovering SCCs 

(Kosaraju and Sharir, 1981)

● General idea:

Step 1

● Run DFS-loop on GT and compute finishing time for each vertex

Use this finishing time as a “magic” number to guide the order of the 

second DFS loop

Step 2

● Run DFS-loop on G, processing nodes in reverse order of their finishing times

● Each time we collected all nodes reachable from v, we discovered a new 

SCC



Step-by-step example of 2P-SCC algorithm
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First, generate GT

● Reverse every edge of G
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Perform DFS loop 1 on GT

● Run DFS-loop on GT

● Compute finishing time for each vertex

GT
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Computing finishing times in GT

Finishing times after calling DFS1 from node 1

GT
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Computing finishing times in GT

Finishing times after calling DFS1 from node 3
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Computing finishing times in GT

Finishing times after calling DFS1 from node 5
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DFS loop 2

Traversing G in reverse order of finishing times

Leader: node 5

SCC1: {5,10}

GT
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DFS loop 2

Traversing G in reverse order of finishing times

Leader: node 9

SCC2: {9}

GT
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DFS loop 2

Traversing G in reverse order of finishing times

Leader: node 3

SCC3: {3, 4, 8} etc.
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2P-SCC: pseudocode

Algorithm SCC(digraph G)

call DFS_loop1(GT)     # this will compute array F of finishing times     

call DFS_loop2(G, F)   # this will discover SCCs in G



First DFS loop performed on GT

global clock: = 1 

# nodes indexed by finishing time
global F: = array of size n

Algorithm DFS1(G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS1(G, u)

current.state:=“processed”

F[clock]: = current

clock: = clock + 1

Algorithm DFS_loop1(G)

mark all nodes of G as “undiscovered”

for each u in vertices of G

if u.state = “undiscovered”

DFS1(GT, u)



Second loop performed on G
# the leading node with which we started SCC
global leader: = null 

# nodes indexed by finishing time
global F: = array of size n

Algorithm DFS2(G, current)

current.state:= “discovered”

for each u in out_arcs(current)

if u.state = “undiscovered” then

DFS2(G, u)

current.state:=“processed”

current.leader: = leader

Algorithm DFS_loop2(G, F)

mark all nodes of G as “undiscovered”

for i from n downto 1:

u = F[i]

if u.state = “undiscovered”

leader: = u

DFS2(G, u)



Try it out: Activity 10
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Finishing times in GT after DFS loop 1
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DFS loop 2
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Why is the 2P-SCC algorithm correct?

We run several examples of 2P-SCC and obtained the desired SCCs

Now we want to make sure that a simple DFS loop 2 discovers all SCC, if it 

processes nodes according to the “magic” ordering discovered by the DFS loop 1 

Would it work for any input graph G?



Meta-graph of SCCs

Each directed graph can be seen at two levels of granularity:

● Fine-grained: consists of all the original nodes and arcs

● Coarse-grained: nodes are SCCs, and we have only arcs from one SCC to another 

(this must be a DAG – why?)
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Meta-graph of SCCs

Meta-graph is always a DAG (Directed Acyclic Graph)

● Because there will be only one-directional edges from each meta-node to each other 

meta-node. For if there would be also back edges – then all nodes in 2 SCCs would be 

reachable from each other in both directions and 2 SCCs would collapse into one
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The desired order of SCC discovery

● Meta-graph is always a DAG → it has Topological Ordering. In particular, we have (at 

least one) sink SCC – an SCC which does not have any outgoing arcs in the meta-graph

● We should start DFS loop 2 with this sink SCC. After we mark all its nodes as processed, 

we essentially remove this SCC from further consideration. We then continue with a next 

sink SCC etc.

● But we don’t know which nodes belong to the sink SCC yet. How to discover sink SCC?
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What does DFS loop 1 discover? 

● When we do DFS on GT with the edges reversed, the max finishing time will be always in 

the sink vertex – the vertex to which we found a path from all other vertices

● This is the vertex where we start DFS 1, and discover all two-way paths in a given SCC.
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Max finishing time after DFS loop 1 is in the sink SCC

● Consider two adjacent SCC nodes A and B in a meta-graph.

● The nodes may have a one-way arc, from a to b, say

● Because there is a complete two-way reachability between all nodes inside each 

SCC, we have a path to any vertex in B from any vertex in A, but not in the 

opposite direction

● If we consider only one pair of adjacent SCCs, then one of them is a sink (SCC B 

is a sink in this example)

● We want to prove that the max finishing time in GT among all vertices in B will be 

greater than the max finishing time among all vertices in A

● We will then use the max finishing time to identify and collect the first sink SCC

a b

SCC A SCC B



Theorem

Given two adjacent SCC components in a meta-graph of all SCCs of graph G, 

and the finishing times F of all vertices obtained by DFS loop on GT, the 

maximum finishing time among all nodes in the sink SCC will be greater than the 

maximum finishing time among all nodes in the source SCC:

max (F(v), v ∈ B)  > max (F(u), u ∈ A) 

u v

SCC A SCC B

x y

SCC A SCC B

max (F(v), v ∈ B) = F(y) max (F(u), u ∈ A)  = F(x)>

G GT



Proof

Prove that: max (F(v), v ∈ B)  > max (F(u), u ∈ A) 

● Let x be the vertex with the largest finishing time F among all vertices of A, 

and y be the vertex with the largest F among all vertices of B

● We show that F(y) > F(x), no matter of the order in which we perform the DFS 

loop 1

u v

SCC A SCC B

x y

SCC A SCC B

max (F(v), v ∈ B) = F(y) max (F(u), u ∈ A)  = F(x)>

G GT



Proof

Prove that: max (F(v), v ∈ B)  > max (F(u), u ∈ A) 

There are only two possible cases for the order in which x and y are processed:

● Case 1. vertex y was picked before vertex x in DFS loop 1

Because there is a path from y to x in GT and because x has not been discovered yet, the 

DFS will discover and process node x before node y: y would need to wait until all 

undiscovered nodes reachable from it have been processed. Thus in this case F(y) > F(x)

● Case 2. vertex x was picked first in DFS loop 1. 

But in this case y cannot be reached from x in GT, x will be processed once all vertices 

reachable from it have been processed, and only after that the DFS traversal will start from 

node y. Thus finishing time F(x) < F(y) 

u v

SCC A SCC B

x y

SCC A SCC B

max (F(v), v ∈ B) = F(y) max (F(u), u ∈ A)  = F(x)>

G GT



Correctness of 2P-SCC algorithm (sketch)

● Because for a pair of adjacent SCCs F(y) > F(x), if we apply the result of our theorem to  

all pairs of adjacent SCCs, the max finishing time will be in the sink SCC

● In DFS loop 2 we pick the node with max finishing time, and this node is guaranteed to 

be in the sink SCC. We collect all the nodes in the first sink, then remove all vertices in 

the first sink SCC from consideration, and move to the max F of all remaining vertices.

● Thus, performing the DFS loop in reverse order of these finishing times allows us to 

discover and peel off each sink SCC of G: one-by-one

u v

SCC A SCC B

x y

SCC A SCC B

max (F(v), v ∈ B) = F(y) max (F(u), u ∈ A)  = F(x)>

G GT



SCC application: Bowtie Structure of the Web

Read here

https://computersciencewiki.org/index.php/Graph_theory_and_connectivity_of_the_web#Bowtie_structure


Question
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Are the SCCs in GT exactly the same as in G?

Can you prove this for a general directed graph?


