
Exhaustive Computation. Generate every possible candidate solution and 
select an optimal solution.

● Greedy. Create next candidate solution one step at a time by using some 
greedy choice.

● Divide and Conquer.  Divide the problem into non-overlapping 
subproblems of the same type, solve each subproblem with the same 
algorithm, and combine sub-solutions into a solution to the entire 
problem.

● Dynamic Programming.  Start with the smallest subproblem and combine 
optimal solutions to smaller subproblems into optimal solution for larger 
subproblems, until the optimal solution for the entire problem is 
constructed.

Main algorithm design strategies



There is always an easy solution to every human problem -
neat, plausible, and wrong.

H. L. Mencken, “The Divine Afflatus”,
New York Evening Mail (November 16, 1917)

The point is, ladies and gentlemen, greed is good. 

Greed works, greed is right.

Greed clarifies, cuts through, and captures the essence of the 

evolutionary spirit.

Greed in all its forms, greed for life, money, love, knowledge 

has marked the upward surge in mankind. 

And greed—mark my words—will save not only Teldar Paper 

but the other malfunctioning corporation called the USA.

Gordon Gekko [Michael Douglas], Wall Street (1987)

https://www.youtube.com/watch?v=VVxYOQS6ggk

https://www.youtube.com/watch?v=VVxYOQS6ggk


Greedy algorithms: 
a gentle introduction

Lecture 05.01
by Marina Barsky



Greedy Algorithms

• Optimization problem: search through all candidate 
configurations to find a solution with some min/max value 
of an objective function

• The goal: to find this optimal solution (configuration)

• We can do it with Exhaustive Search, but we hope that a 
Greedy Algorithm can lead us to the goal faster

• A greedy algorithm repeatedly takes the next step that is 
'best' according to some “greedy choice” 

• It hopes that with each choice it will move closer to the goal



Greedy Algorithms

Disadvantages:
● They are often incorrect
● Since the intuitive idea rarely 

works in practice, you  have to 
prove that your greedy 
algorithm produces an optimal 
solution!

Advantages:
● They are easy to discover
● They are easy to describe
● They are often easy to 

implement
● They are often efficient



The Change Making Problem

Cashier algorithm

SAMPLE Problem 1



Change Making Problem

• When a customer pays for an 
item there is often a surplus 
that must be returned as 
change 

• The goal of the Change 
Making Problem is to refund a 
target surplus value using as 
few coins as possible

US Currency includes the 
following coins:

1￠, 5￠, 10￠, 25￠, 50￠, 
100￠



Change Making: example

US Currency includes the 
following coins:

1￠, 5￠, 10￠, 25￠, 50￠, 
100￠

• For example, if the target is 45￠, 
then an optimal solution is 
25￠,10￠,10￠

• Another solution that is not optimal 
is 10￠,10￠,10￠,10￠,5￠

• Notice that we count the total 
number of coins and not the 
number of distinct coins 

Link to play

https://www.mathsisfun.com/money/money-master.html


Input: An integer target and an array of d denominations 
c =  (c1, c2, . . . , cd ), 
in decreasing order of value (c1 > c2 > · · · > cd ). 
Output: A list of d integers i1, i2, . . . , id such that 

c1 · i1 + c2 · i2 +· · · + cd · id = target, 
and i1 + i2 + · · · + id is as small as possible.

Change Problem: formalized
Convert some amount of money into given denominations, 
using the smallest possible number of coins

Change Problem

objective function

We are looking for a configuration which minimizes objective function



Designing a greedy algorithm
When designing a greedy algorithm we think what could be the 
‘best’ next step in the current situation 

We call this single step a greedy move

What could the greedy step be for the change-making problem?
● We need to choose one coin at a time
● The goal is to use the fewest number of coins



Designing a greedy algorithm
When designing a greedy algorithm we think what could be the 
‘best’ next step in the current situation 

We call this single step a greedy move

What could the greedy step be for the change-making problem?
● We need to choose one coin at a time
● The goal is to use the fewest number of coins

● It seems that we make the most progress by choosing the 
largest-valued coin that doesn't exceed the surplus that 
currently remains



Greedy Algorithm in English

● At each step, add to the solution the largest-valued coin that 
doesn't exceed the surplus that currently remains

● Until the surplus is 0 



The greedy algorithm on target value 48￠with coin set 
[100￠, 50￠, 25￠, 10￠, 5￠, 1￠]

Example of Greedy Change Making

25￠, 10￠, 10￠, 1￠, 1￠, 1￠- 6 coins  for 48￠
This is an optimal solution!

Surplus Coin

48￠

23￠

13￠

3￠

2￠

1￠

0

25￠

10￠

10￠

1￠

1￠

1￠



Cashier’s Algorithm: “pseudocode”

surplus ← target
while surplus > 0:

coin ← coin with the largest denomination 
that does not exceed surplus

give coin with denomination coin to customer
surplus ← surplus − coin

Algorithm change (target, c, d)



Cashier’s Algorithm: pseudocode

surplus ← target

Algorithm change (target, array c of d denominations)

Does choosing coins with the largest denomination 
always lead to the optimal solution?

for k from 1 to d:

ik ← ⌊ ⌋

c1 > c2 > · · · > cd

ck  

surplus ← surplus − ck · ik
return (i1, i2, . . . , id )

Running time O(d) 
(Assuming the denominations are sorted descending)

Initialize array (i1, i2, . . . , id ) with all zeros

surplus



You are in India

Consider the set of coins {1, 5, 10, 20, 25, 50} rupees and 
the target value 40 rupees.  

• The greedy change algorithm gives: 

25, 10, 5

What is an optimal solution? 

3 coins



You are in India

Consider the set of coins {1, 5, 10, 20, 25, 50} rupees and 
the target value 40 rupees.  

• The greedy change algorithm gives: 

25, 10, 5

• Optimal solution: 

20, 20

Note: in 1875  a twenty-cent coin existed in the United States

3 coins

2 coins



US postage

• Consider U.S. postage: 1¢, 10¢, 21¢, 34¢, 70¢, 100¢, 350¢, 
1225¢, 1500¢.

• change algorithm: 140¢ = 100 + 34 + 1 + 1 + 1 + 1 + 1 + 1.

• optimal: 140¢ = 70 + 70.

change is an incorrect algorithm! 



Good News / Bad News

Theorem:  The greedy change algorithm always gives an 
optimal solution when the ith greatest denomination is 
divisible by the (i+1)st greatest denomination

However, it also works in many other cases including US coins 
{100￠, 50￠, 25￠, 10￠, 5￠, 1￠} and Euro coins {100￠, 
50￠, 20￠, 10￠, 5￠, 2￠, 1￠}



When to use the “cashier” algorithm

Theorem:  The greedy change algorithm always gives an optimal 
solution when the ith greatest denomination is divisible by the (i+1)st

greatest denomination

In other words, it works when taking 1 coin with denomination ci=qci+1

is always preferred than taking q coins of denomination ci+1

Example: 
Denominations: c1 = 25, c2 = 20, c3 = 10, c4 = 5, and  c5 = 1.
Target: 40

This set does not work: when we add c1 = 25 to our solution, the next 
denomination c2 = 20 taken twice would fill more surplus and may lead 
to an overall better solution, but by taking c1 = 25 we miss this 
opportunity because there is no surplus left to fit another c2 = 20



So what is the correct algorithm?

• Exhaustive search?

• We could consider every possible  combination of coins 
with denominations c1, c2, . . . , cd that adds to target,  and 
return the combination with the fewest number of coins. 

• We only need to consider combinations with 

i1 ≤ target/c1 , i2 ≤ target/c2 ...

(in general, ik  should not exceed target/ck , because we would 
otherwise be returning an amount of money larger than 
target) 



value ←∑k =1  ik · ck
if value = target

num_coins ← ∑k=1  ik 
if num_coins < min_num_coins

min_num_coins ← num_coins 

return min_num_coins

Algorithm exhaustive_change(target, c, d):

min_num_coins ← ∞ 
for each (i1, . . . , id ) from (0, . . . , 0) to (target/c1,..., target/cd )

Consider all possible vectors [i1 , i2 , · · · id] such that
c1 · i1 + c2 · i2 +· · · + cd · id = target

Each ik can take values from 0 to target/ik

d

d



• To calculate the total number of operations in the for loop, 
we can take the approximate number of operations 
performed in each iteration and multiply this by the total 
number of iterations. 

• Since there are roughly

Running time of exhaustive_change

possible vectors of size d,  the algorithm performs about
d × targetd

c1c2···cd

operations, and thus the running time is exponential in the 
number of different coin denominations d.

×c1 c2 cd
×

target target target
× …

We will revisit this problem in the Dynamic Programming Unit

Can we do better?



Make some greedy choice  

Reduce to a smaller problem  

Iterate (or Recur) on a smaller problem

Greedy Strategy



Definition

A greedy choice is called a safe move if 

there is an optimal solution consistent

with this first move



Maximum Loot Problem
Fractional Knapsack

SAMPLE Problem 2



Maximum Value of the Loot
• A thief breaks into a spice shop and finds 

• 4 pounds of saffron with total cost $20,000
• 3 pounds of vanilla with total cost $600
• 5 pounds of cinnamon with total cost $50

• His backpack fits at most 9 pounds, so he cannot take 
everything 

• The thief would like to maximize the total value of spices in 
his backpack



Problem: Fractional knapsack

Input: The capacity of a backpack W as well
as the weights (w1,..., wn) and
total benefit values (v1,..., vn) for n

different items.

Output: The set of items (or their fractions) 
with the maximum benefit that fits into  
the backpack.



● Fill with the most expensive item first

● First take an item that fills least space

● First take an item that fills most space

● ?

Possible greedy moves



Move 1: fill with the most expensive first

$20 $18 $14

4 3 2

knapsack

7



$20 $18 $14

4 3 2

knapsack

4

$20

total: $383

$18

Move 1: fill with the most expensive first



Move 1 is not safe: counterexample

$20 $18 $14

4 3 2

$20

total: $40

knapsack

4 2 1

$14  $18/3

> $38



Optimal solution

$20 $18 $14

4 3 2

$14

total: $42

knapsack

$18

2 3 2

$20/2

What is the correct greedy move?



4 3 2

$14

total: $42

knapsack

2 3 2

4

$20

$5/unit

3

$18

$6/unit

$18 $20/2

2

$14

$7/unit

Optimal solution

Greedy choice: fill with max price per unit



Greedy Fractional Knapsack: 
proof of correctness

Theorem

There exists an optimal solution that uses as  much 

as possible of an item with the maximum value per 

unit of weight

Note the following:

• We do not claim that every optimal solution must contain item A

with this property

• There might be another optimal solution, but this other optimal 

solution will be no better than the one containing A



Proof

4 3 24

$20

$5/unit

3

$18

$6/unit

2

$14

$7/unit



Proof

4 3 24

$20

$5/unit

3

$18

$6/unit

2

$14

$7/unit

4

$20

total: $383

$18

The proof is by contradiction: 
Let’s assume that there exists an optimal solution which does 
not include the item with the highest value per unit (blue 
item).



Proof

4 3 24

$20

3

$18

$6/unit

2

$14

$7/unit

total: $38

$5/unit

$20/2   $20/2

2 2 3

$18

However, because we can take fractions, we can split the 
green item into fractions…



Proof

4 3 24

$20

3

$18

$6/unit

2

$14

$7/unit

total: $38

$5/unit

2 2 3

$18

total: $42

$14 $20/2

2 2 3

$18

And we can improve the “optimal solution” with the blue item 
fractions – so that was not an optimal solution - contradiction

$20/2    $20/2



● The proof uses an exchange argument to show 
that the greedy move will lead to an optimal 
solution

● The general structure of such an argument is a 
proof by contradiction, where we assume, for the 
sake of reaching a contradiction, that there is a 
better solution than one that includes our greedy 
move

● We then argue that there is an exchange that we 
could make among the components of this solution 
that would lead to a better (or the same) solution

Exchange argument



What is the max loot?

W: 50

C1:     w=60 

v=200

C2:   w=100 

v=500

C3:   w=120 

v=300

Input

?

Output

W: 10

C1: w=2

v=20

C2:    w=500 

v=3000

Input Output

?



Fractional Knapsack Algorithm in English

Choose item i with maximum
vi  
wi

If item fits into knapsack, take all of it  

Otherwise take so much as to fill the knapsack

Return total value and amounts taken

While knapsack is not full



Algorithm frac_knapsack (W , w1, v1, . . . , wn, vn)

A ← [0, 0, . . . , 0] #amount for each item

V ← 0 #total value in knapsack
repeat n times:  

if W = 0:

return (V , A)

select i with wi > 0 and max vi  
wi

a ← min(wi, W )

V ← V + a
vi

wi

wi ← wi −a 
A[i ] ← a
W ← W −a

return (V , A)



Lemma

The running time of Knapsack is O(n2).

Proof

Select best item on each step is O(n)  

Main loop is executed n times  

Overall, O(n2)

Of course, we can do better



for i from 1 to n:  

if W = 0:

return (V , A)

a ← min(wi, W ) # take next item in order

V ← V + a
wi

vn
wn

If we know:
v1  
w1

≥
v2  
w2

≥ · · · ≥

Frac_knapsack(W , w1, v1, . . . , wn, vn)

A ← [0, 0, . . . , 0]
V ← 0

vi

wi ← wi −a 
A[i ] ← A[i ]+ a
W ← W −a

return (V , A)



Improved Knapsack

Now each iteration is O(1)  

Knapsack after sorting is O(n)  

Sort + Knapsack is O(n log n)

Assuming that we know how 

to sort in O(n log n)



Maximum loot (discrete items)

No fractions allowed!

Discrete Knapsack, Knapsack 01

SAMPLE Problem 2'



Example

$30  

6

$14  

3

$16     $9

4         2

10

knapsack



Example

$30  

6

$14  

3

$16     $9

4         2

10

knapsack

$5/unit $4.7/unit $4/unit $4.5/unit



Example

$30  

6

$14  

3

$16     $9

4         2

10

$5/unit $4.7/unit $4/unit $4.5/unit

$30 $14 total: $44



Example

$30  

6

$14  

3

$16     $9

4         2
$5/unit $4.7/unit $4/unit $4.5/unit

$30 $14 total: $44

Why does greedy fail for the discrete knapsack?

greedy

best $14 total: $46

taking an element of maximum  value 

per unit of weight is not a safe move!



Car fueling
Greedy travels

Sample Problem 3



Car fueling problem

Input: A car which can travel at most L  kilometers 

with full tank, 

a source point A, a destination point B and n 

gas stations at distances

in  kilometers from A along the path  from 

A to B.

Output:      The minimum number of refills to get from A 

to B, besides refill at A.

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn



Car Fueling: problem instance

Distance with full tank = 400km

0km     200     375      550       750 950  

Minimum number of refills = 2

A B



Make some greedy choice  

Reduce to a smaller problem (subproblem)  

Iterate

Recap: Greedy Strategy



Go until there is no fuel

Refill at the the closest gas station

Refill at the farthest reachable gas station

Possible greedy choices:



Greedy Algorithm

Start at A

Refill at the farthest reachable gas  

station G

Make G the new A

Get from new A to B with minimum  

number of refills



Definition

Subproblem is a problem of the same 

type but of smaller size

Example

Min number of refills from A to B =  first 
refill at G + min number of refills  from G 
to B

problem

subproblem



Formal Definition

A greedy choice is called a safe move if 

there is an optimal solution consistent 

with this first move

Theorem

To refill at the farthest reachable gas 

station is a safe move.



Proof: setup

Route R with the minimum number 

of refills

G1 - position of first refill in R  

G2 - next stop in R (refill or B)

G - farthest refill reachable from A



Could we have done better?

A B

G1 G G2

First case: G is closer than G2

Refill at G instead of G1



A B

G1 G G2

First case: G is closer than G2

Refill at G instead of G1

Could we have done better?

We did not find an optimal solution which does not include G and has less refills



A B

G1 G2 G

Second case: G2 is closer than G

Avoid refill at G1, G2

Could we have done better?

This solution has even more refills than the one that includes G



Proof: refill at G is a safe move

Route R with the minimum number of  

refills

G1 - position of first refill in R  

G2 - next stop in R (refill or B)

G - farthest refill reachable from A

Only 2 cases to consider:

1. If G is closer than G2, refill at G instead of G1 

(same total number of refills)

2. Otherwise, avoid refill at G1, G2 (less refills)



A = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 = B

Algorithm min_refills(A , n, L)

num_refills ← 0, current_refill ← 0
while current_refill ≤ n:  

last_refill ← current_refill
while A [current_refill + 1] − A [last_refill ] ≤ L:

current_refill ← current_refill + 1
if current_refill = last_refill :

return IMPOSSIBLE
if current_refill ≤ n:  

num_refills ← num_refills + 1
return num_refills



Proof

During the entire algorithm current_refill 

changes from 0 to n + 1, one-by-one

During some of these changes num_refills 

also increases by 1

Thus, O(n) operations in total

Lemma
The running time of min_refills(A, n, L) 
is O(n).



Dramatization :) by Emma Waters

https://drive.google.com/file/d/1g1cM8Etjv9UOLVF8RHGI2bXeR7imTi7S/view?usp=sharing


More traveling
Traveling Salesman

SAMPLE Problem 3A



Sample problem: Soldering
In manufacturing it is often necessary to solder components onto 

electronic circuit boards. 

In this context we want to minimize the amount of time it takes a 

robotic arm to do the job.

A candidate solutionCircuit board Set of pointsRobotic arm

Soldering problem

Input: A set of n points in the plane.

Output: A shortest route that travels to each point exactly once and 

returns to the initial point.



Greedy idea: Nearest Neighbor Tour
A greedy solution starts at some point p0 and then 

walks to its nearest neighbor p1 first, then repeats from 

p1, etc. until  done.

Pick and visit initial point p0

p = p0

i = 0
while there are still unvisited points

i = i + 1
let pi be the closest unvisited point to pi−1

visit pi

return to p0 from pi

Algorithm NearestNeighbor (set of n points in 2D)



2 1

It works!

Correct algorithm should produce desired result for 

any instance of the problem!

2 2

7

Nearest neighbors gives 2 + 1 +2 + 2 + 7 = 14 



1
2

Correct algorithm should produce desired result for 

any instance of the problem!

It works...



1
2

The optimal solution has length 1+2+2+1+2+2 = 10.

Nearest neighbors gives 1+2+1+2+1+√17 = 11.123. 

Problem instance

It does not work.
Enough to show a counterexample



Correct algorithm: exhaustive search
We could try all possible orderings of the points, then select  

the one which minimizes the total path length:

Algorithm OptimalPath (set of n points in 2D)

d := ∞
Pmin := Null
For each of the n! paths Πi through n points  

If (cost(Πi) ≤ d) then

d = cost(Πi) and Pmin = Πi

Return Pmin

Since all possible orderings are considered, 
we are guaranteed  to end up with the shortest possible tour.



Exhaustive Search is correct but too slow!

Because it tries all n! permutations, it is much too 
slow to use when there are more than 10-20 points.

Traveling Salesman Path:

The shortest possible route that 

visits each vertex and returns to 

the origin vertex

What grows faster: 2n, n! or nn ? 



Exhaustive Search is correct but too slow!

No efficient, correct algorithm exists for the 
traveling salesman problem!

Minimum spanning tree:

Subgraph connecting each pair 

of  vertices  with min overall 

edge cost 

Traveling Salesman Path:

The shortest possible route that 

visits each vertex and returns to 

the origin vertex

Yes! No!

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Euclidean_TSP


Solution to TSP is very important:

● Drilling printed circuit boards

● Transportation and logistics (school buses, 
meals on wheels, airplane schedules, etc.)

● Analyzing crystal structure

● Clustering data


