# Minimum Spanning Trees

Lecture 05.03 by Marina Barsky

## Motivation

 Connect all the computers in a new office building using the least amount of cable



 Road repair: repair only min-cost roads such that all the cities are still connected  Airline: downsize operations but preserve connectivity

## Definition

- A Spanning Tree of a graph G, is a subgraph of G which is a tree and contains all vertices of G
- A Minimum Spanning Tree (MST) of a weighted graph G is a spanning tree with the smallest total weight



#### Problem: compute MST of Graph G

**Input:** undirected graph G=(V, E) and the weight  $w_e$  for each edge **Output:** minimum-cost tree  $T \in E$  that spans all the vertices V

Simplifying assumptions:
G is undirected and simple (that is, it has no self-loops and no parallel edges)

Input graph G is connected

Tree means:

- □ T has no cycles
- □ *T* has exactly n-1 edges
- T is connected (for any two nodes u, v, ∃ path u ~>v (and by design v ~> u undirected graph)



#### Problem: compute MST of Graph G

**Input:** undirected graph G=(V, E) and the weight  $w_e$  for each edge

**Output:** minimum-cost tree  $T \in E$  that spans all the vertices V

*Tree* means:

- □ T has no cycles
- □ T has exactly n-1 edges
- T is connected (for any two nodes u, v, ∃ path u ~>v (and by design v ~> u undirected graph)



## Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest Path algorithm.

Grows a tree starting from a single (arbitrarily selected) vertex.

- Start from an arbitrary vertex
- Span another vertex by choosing the edge with the min cost (greedy move)
- Now have a tree of 2 vertices
- Check all edges out of this tree and choose the one with min-cost ...



#### Algorithm Prim\_MST (graph G(V,E))

- initialize tree T: =  $\emptyset$ # set of tree edgesX: = {vertex s}# s  $\in$  V, chosen arbitrarily
- # X contains vertices spanned by the tree-so-far

```
while |X|!=|V|:
    let e=(u,v) be the cheapest edge of G with u ∈ X and v ∉ X
    add e to T
    add v to X
    # that increases the number of spanned vertices
```















MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17

## Algorithm by Kruskal

Sort all edges by weight (from smaller to larger – ascending)

Add the next smallest edge to the spanning tree, but only if adding it does not create a cycle



Sorted edges: (a,b)  $\checkmark$ (a,c)  $\checkmark$ (a,d)  $\checkmark$ (b,d)  $\bigotimes$ (c,d)  $\bigotimes$ 

#### Algorithm Kruskal\_MST (graph G(V,E))

E' := edges of G sorted by weights T : = Ø

for i from 1 to m: if T U {E'[i]} has no cycles add E'[i] to T

return T











Note that at this point T is not even a spanning tree (not connected)



MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17

#### MST algorithms are greedy

All the algorithms follow some greedy strategy.

#### Algorithm MST (graph G(V,E))

 $T: = \emptyset$  # collects edges of the future MST

```
while |T| \leq |V| - 1:
   select next edge e from E # some greedy move
   T := T U e
```

return T

We must prove correctness! See next lecture