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Motivation

• Connect all the 
computers in a new 
office building using 
the least amount of 
cable

• Road repair: repair 
only min-cost roads 
such that all the cities 
are still connected

• Airline: downsize
operations but preserve 
connectivity



Definition
• A Spanning Tree of a graph G, is a subgraph of G 

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a 

weighted graph G is a spanning tree with the 

smallest total weight



Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G
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❑ T has no cycles

❑ T has exactly n-1 edges

❑ T is connected (for any two nodes u, v, 

∃ path u ~>v (and by design v ~> u -
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Simplifying assumptions:

❑ G is undirected and simple (that 

is, it has no self-loops and no 

parallel edges)

❑ Input graph G is connected



Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G
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Not spanning, 

not tree

Spanning, 

not connected

Spanning 

tree!



Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest 
Path algorithm.

Grows a tree starting from a single 
(arbitrarily selected) vertex.

• Start from an arbitrary vertex

• Span another vertex by choosing 
the edge with the min cost 
(greedy move)

• Now have a tree of 2 vertices

• Check all edges out of this tree and 
choose the one with min-cost …
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Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges 

X: = {vertex s} # s ∈ V, chosen arbitrarily

# X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) be the cheapest edge of G with u ∈ X and v ∉  X

add e to T

add v to X 

# that increases the number of spanned vertices



Prim: illustration
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Prim: illustration
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MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17



Algorithm by Kruskal

Sort all edges by weight (from smaller 
to larger – ascending)

Add the next smallest edge to the 
spanning tree, but only if adding it does 
not create a cycle

Sorted edges:
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Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T



Kruskal illustration
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Note that at this point T is not even a spanning tree 

(not connected)



Kruskal illustration
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MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17



MST algorithms are greedy

Algorithm MST (graph G(V,E))

T: = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1:

select next edge e from E  # some greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.  

We must prove correctness!

See next lecture


