Minimum Spanning Trees

Lecture 05.03
by Marina Barsky

Motivation

- Connect all the computers in a new office building using the least amount of cable
- Road repair: repair only min-cost roads such that all the cities are still connected

- Airline: downsize operations but preserve connectivity

Definition

- A Spanning Tree of a graph G, is a subgraph of G which is a tree and contains all vertices of G
- A Minimum Spanning Tree (MST) of a weighted graph G is a spanning tree with the smallest total weight

Graph

Spanning Tree Cost $=13$

Minimum Spanning
Tree, Cost = 7

Problem: compute MST of Graph G

Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and the weight w_{e} for each edge Output: minimum-cost tree $T \in E$ that spans all the vertices V

Simplifying assumptions:
$\square G$ is undirected and simple (that is, it has no self-loops and no parallel edges)
I Input graph G is connected

Tree means:

Thas no cycles
Thas exactly n -1 edges

- T is connected (for any two nodes u, v, \exists path $u \sim>v$ (and by design $v \sim>u$ undirected graph)

Problem: compute MST of Graph G

Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and the weight w_{e} for each edge Output: minimum-cost tree $T \in E$ that spans all the vertices V

Tree means:

- T has no cycles
- T has exactly $n-1$ edges
- T is connected (for any two nodes u, v, \exists path $u \sim>v$ (and by design $v \sim>u$ undirected graph)

Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest Path algorithm.

Grows a tree starting from a single (arbitrarily selected) vertex.

- Start from an arbitrary vertex
- Span another vertex by choosing the edge with the min cost (greedy move)
- Now have a tree of 2 vertices
- Check all edges out of this tree and choose the one with min-cost ...

Algorithm Prim_MST (graph G(V,E))

initialize tree $\mathrm{T}:=\varnothing$
X: = \{vertex s\}
\# X contains vertices spanned by the tree-so-far
while $|\mathrm{X}|!=|\mathrm{V}|$:
let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ be the cheapest edge of G with $\mathrm{u} \in \mathrm{X}$ and $\mathrm{v} \notin \mathrm{X}$ add e to T
add v to X
\# that increases the number of spanned vertices

Prim: illustration

MST cost: $3+1+2+3+4+4=17$

Algorithm by Kruskal

Sort all edges by weight (from smaller to larger - ascending)

Add the next smallest edge to the spanning tree, but only if adding it does not create a cycle

Sorted edges:
(a,b)
(a, c)
(a,d)
(b,d) ©
(c,d) \odot

Algorithm Kruskal_MST (graph G(V,E))

E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
for ifrom 1 to m :
if T U $\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
return T

Kruskal illustration

Note that at this point T is not even a spanning tree (not connected)

Kruskal illustration

MST cost: $1+2+3+3+4+4=17$

MST algorithms are greedy

All the algorithms follow some greedy strategy.

Algorithm MST (graph G(V,E))

$\mathrm{T}:=\varnothing \quad \#$ collects edges of the future MST
while $|\mathrm{T}| \leq|\mathrm{V}|-1$: select next edge e from $\mathrm{E} \quad$ \# some greedy move $\mathrm{T}:=\mathrm{T} \cup e$
return T

We must prove correctness!
See next lecture

