
Minimum Spanning
Trees
Lecture 05.03

by Marina Barsky

Motivation

• Connect all the
computers in a new
office building using
the least amount of
cable

• Road repair: repair
only min-cost roads
such that all the cities
are still connected

• Airline: downsize
operations but preserve
connectivity

Definition
• A Spanning Tree of a graph G, is a subgraph of G

which is a tree and contains all vertices of G

• A Minimum Spanning Tree (MST) of a

weighted graph G is a spanning tree with the

smallest total weight

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means:

❑ T has no cycles

❑ T has exactly n-1 edges

❑ T is connected (for any two nodes u, v,

∃ path u ~>v (and by design v ~> u -

undirected graph)

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Simplifying assumptions:

❑ G is undirected and simple (that

is, it has no self-loops and no

parallel edges)

❑ Input graph G is connected

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means:

❑ T has no cycles

❑ T has exactly n-1 edges

❑ T is connected (for any two nodes u, v,

∃ path u ~>v (and by design v ~> u -

undirected graph)

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Not spanning,

not tree

Spanning,

not connected

Spanning

tree!

Algorithm by Prim (and Jarnik)

Works similar to Dijkstra Shortest
Path algorithm.

Grows a tree starting from a single
(arbitrarily selected) vertex.

• Start from an arbitrary vertex

• Span another vertex by choosing
the edge with the min cost
(greedy move)

• Now have a tree of 2 vertices

• Check all edges out of this tree and
choose the one with min-cost …

a b

c d

1

4
3

5

2

a b

c d

1

4
3

5

a b

c d

1

43

5

2

2

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) be the cheapest edge of G with u ∈ X and v ∉ X

add e to T

add v to X

that increases the number of spanned vertices

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Prim: illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 3 + 1 + 2 + 3 + 4 + 4 = 17

Algorithm by Kruskal

Sort all edges by weight (from smaller
to larger – ascending)

Add the next smallest edge to the
spanning tree, but only if adding it does
not create a cycle

Sorted edges:

(a,b)

(a,c)

(a,d)

(b,d)

(c,d)

a b

c d

1

4
3

5

2

a b

c d

1

4
3

5

a b

c d

1

43

5

2

2

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Note that at this point T is not even a spanning tree

(not connected)

Kruskal illustration

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

MST cost: 1 + 2 + 3 + 3 + 4 + 4 = 17

MST algorithms are greedy

Algorithm MST (graph G(V,E))

T: = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1:

select next edge e from E # some greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.

We must prove correctness!

See next lecture

