
MST Algorithms:
correctness

Lecture 05.04
by Marina Barsky

Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G

a b

c d

1

2
3

4

5

Tree means:

❑ T has no cycles
❑ T has exactly n-1 edges
❑ T is connected (for any two nodes u, v, ∃

path u ~>v (and v ~> u, undirected graph)

a b

c d

1

2
3

4

5

a b

c d

1

2
3

4

5

Assumptions:
❑ Input graph G is connected

Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges

X: = {vertex s} # s ∈ V, chosen arbitrarily

X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) the cheapest edge of G with u ∈ X and v ∉ X

add e to T

add v to X

that increases the number of spanned vertices

Selecting the cheapest edge sticking out of the current spanning tree (X,T)
is a greedy move.

We need to prove that this move is a safe move!

Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets

(proper subsets)

• How many different cuts can be in a G with n vertices? (n,
n2, 2n)?

A B

Edges crossing

cut (A,B)

2n - 2

Crossing Edges Lemma
If there are (at least) two crossing edges for a cut (A,B) in an
undirected connected graph, then these edges must be a
part of some cycle.

Proof

If there is a path from u to v
from to two different partitions
that includes the first crossing
edge e, then the second crossing
edge f offers an alternative path
from u to v, thus closing the
cycle on vertex v.

u v

e

f

Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A, B) be
some possible cut of G.

• If e is the cheapest edge crossing cut (A, B), then e must be
a part of some MST

e must be
part of some
MST

What we are trying to prove

If we have an edge in a graph and you can find just a single
cut for which this edge has the min cost among all edges
crossing this cut, then this edge must belong to the MST (or
one of MSTs in case when the weights are not unique)

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

a b

c d

23

4

1

Cut 1

Edge 1 must

be in MST

Cut 2

Edge 3 must

be in MST

Cut 3

Edge 2 must

be in MST

Cut 4

Edge 1 must

be in MST

Note that edge 4 is never min of all crossing edges, no matter how we

cut – so edge 4 is not in MST

Proof
• Let T be a full minimum spanning tree of G that does not

contain edge e. Then the addition of e to T must create a
cycle. This is because all nodes in MST are already connected,
and addition of edge e will offer an alternative path between
some nodes.

• Let then consider a cut (A,B) of this MST, which has two
crossing edges e and f, both on the same cycle. Edge f belongs
to MST and edge e does not. Now let’s assume that w(e) ≤
w(f).

• If we remove f from T and replace it with e, then we obtain a
spanning tree whose total weight is no more than before.

• Since T was a minimum spanning tree, this new tree must also
be a minimum spanning tree.

In fact, if the weights in G are all distinct, then the minimum
spanning tree is unique, and it must contain edge e instead of f

Exchange argument!

• Any nontree edge must have weight
that is ≥ every edge in the cycle
created by that edge and a minimum
spanning tree.

• Suppose edge e has weight 32 and
edge f in the same cycle has weight
33. Edge f is a part of MST (shown
with bold edges), and edge e is not.

• But then we could replace f by e and
get a spanning tree with lower total
weight, which would contradict the
fact that we started with a minimum
spanning tree.

Prim: cut

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set V-X of

remaining vertices

Set X of vertices

already in MST

Theorem: Prim outputs a
Minimum Spanning Tree

• If we consider a cut of G into X (MST so far) and V-X
(remaining graph), then according to the Cut Crossing
Theorem the cheapest crossing edge for this cut must be
a part of some MST

• Therefore, choosing the crossing edge with the minimum
weight is a safe move.

• Because Prim’s algorithm always adds a crossing edge of
min-weight, the spanning tree produced by this algorithm
is a Minimum Spanning Tree

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal: correctness (sketch)

Part I. Kruskal outputs a Spanning Tree

• We explicitly check not to introduce cycles, and we add
total n-1 edges connecting n nodes. Thus Kruskal
produces a Spanning Tree of G

Part II. The tree is MST

• At each step, the algorithm adds a cheapest edge which
does not create a cycle. This means that this is the first of
crossing edges for some cut of G

• By the Cut Crossing Theorem, this edge must be a part of
some MST

MST algorithms: summary

Algorithm MST (graph G(V,E))

T : = ∅ # collects edges of the future MST

while |T| ≤ |V| - 1:

select next edge e from E # safe greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.

Correctness proofs are all based on the

Cut Crossing Theorem

