
MST Algorithms: 
correctness

Lecture 05.04
by Marina Barsky



Input: undirected graph G=(V, E) and the weight we for each edge

Output: minimum-cost tree T ∈ E that spans all the vertices V

Problem: compute MST of Graph G
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Tree means:

❑ T has no cycles
❑ T has exactly n-1 edges
❑ T is connected (for any two nodes u, v, ∃

path u ~>v (and v ~> u, undirected graph)
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Assumptions:
❑ Input graph G is connected



Algorithm Prim_MST (graph G(V,E))

initialize tree T: = ∅ # set of tree edges 

X: = {vertex s} # s ∈ V, chosen arbitrarily

# X contains vertices spanned by the tree-so-far

while |X|!=|V|:

let e=(u,v) the cheapest edge of G with u ∈ X and v ∉  X

add e to T

add v to X 

# that increases the number of spanned vertices

Selecting the cheapest edge sticking out of the current spanning tree (X,T) 
is a greedy move.

We need to prove that this move is a safe move!



Cuts
• A cut is a partition (A, B) of G into 2 non-empty subsets 

(proper subsets)

• How many different cuts can be in a G with n vertices? (n, 
n2, 2n)?

A B

Edges crossing 

cut (A,B)

2n - 2



Crossing Edges Lemma
If there are (at least) two crossing edges for a cut (A,B) in an 
undirected connected graph, then these edges must be a 
part of some cycle.

Proof

If there is a path from u to v 
from to two different partitions 
that includes the first crossing 
edge e, then the second crossing 
edge f offers an alternative path 
from u to v, thus closing the 
cycle on vertex v. 

u v

e

f



Cut Crossing Theorem

• Let G be a weighted connected graph, and let (A, B) be 
some possible cut of G.

• If e is the cheapest edge crossing cut (A, B), then e must be 
a part of some MST

e must be 
part of some 
MST



What we are trying to prove

If we have an edge in a graph and you can find just a single 
cut for which this edge has the min cost among all edges 
crossing this cut, then this edge must belong to the MST (or 
one of MSTs in case when the weights are not unique)
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Cut 1

Edge 1 must 

be in MST

Cut 2

Edge 3 must 

be in MST

Cut 3

Edge 2 must 

be in MST

Cut 4

Edge 1 must 

be in MST

Note that edge 4 is never min of all crossing edges, no matter how we 

cut – so edge 4 is not in MST



Proof
• Let T be a full minimum spanning tree of G that does not 

contain edge e. Then the addition of e to T must create a 
cycle. This is because all nodes in MST are already connected, 
and addition of edge e will offer an alternative path between 
some nodes.

• Let then consider a cut (A,B) of this MST, which has two 
crossing edges e and f, both on the same cycle. Edge f belongs 
to MST and edge e does not. Now let’s assume that w(e) ≤ 
w(f). 

• If we remove f from T and replace it with e, then we obtain a 
spanning tree whose total weight is no more than before. 

• Since T was a minimum spanning tree, this new tree must also 
be a minimum spanning tree.

In fact, if the weights in G are all distinct, then the minimum 
spanning tree is unique, and it must contain edge e instead of f



Exchange argument!

• Any nontree edge must have weight 
that is ≥ every edge in the cycle 
created by that edge and a minimum 
spanning tree. 

• Suppose edge e has weight 32 and 
edge f in the same cycle has weight 
33. Edge f is a part of MST (shown 
with bold edges), and edge e is not.

• But then we could replace f by e and 
get a spanning tree with lower total 
weight, which would contradict the 
fact that we started with a minimum 
spanning tree.



Prim: cut
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Theorem: Prim outputs a 
Minimum Spanning Tree

• If we consider a cut of G into X (MST so far) and V-X 
(remaining graph), then according to the Cut Crossing 
Theorem the cheapest crossing edge for this cut must be 
a part of some MST

• Therefore, choosing the crossing edge with the minimum 
weight is a safe move. 

• Because Prim’s algorithm always adds a crossing edge of 
min-weight, the spanning tree produced by this algorithm 
is a Minimum Spanning Tree



Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T



Kruskal: correctness (sketch)

Part I. Kruskal outputs a Spanning Tree

• We explicitly check not to introduce cycles, and we add 
total n-1 edges connecting n nodes. Thus Kruskal 
produces a Spanning Tree of G

Part II. The tree is MST

• At each step, the algorithm adds a cheapest edge which 
does not create a cycle. This means that this is the first of 
crossing edges for some cut of G

• By the Cut Crossing Theorem, this edge must be a part of 
some MST



MST algorithms: summary

Algorithm MST (graph G(V,E))

T : = ∅ # collects edges of the future MST 

while |T| ≤ |V| - 1:

select next edge e from E  # safe greedy move

T: = T U e

return T

All the algorithms follow some greedy strategy.  

Correctness proofs are all based on the 

Cut Crossing Theorem


