MST Algorithms: correctness
 Lecture 05.04
 by Marina Barsky

Problem: compute MST of Graph G

Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and the weight w_{e} for each edge Output: minimum-cost tree $T \in \mathrm{E}$ that spans all the vertices V

Assumptions:
Input graph G is connected

Tree means:
] T has no cycles
T T has exactly n - 1 edges
[T is connected (for any two nodes $\mathrm{u}, \mathrm{v}, \exists$ path $u^{\sim}>v$ (and $v^{\sim}>u$, undirected graph)

Algorithm Prim_MST (graph G(V,E))

initialize tree $\mathrm{T}:=\varnothing$
$\mathrm{X}:=\{$ vertex s$\}$
\# X contains vertices spanned by the tree-so-far
while |X|!=|V|:
let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ the cheapest edge of G with $\mathrm{u} \in \mathrm{X}$ and $\mathrm{v} \notin \mathrm{X}$ add e to T
add v to X
\# that increases the number of spanned vertices

Selecting the cheapest edge sticking out of the current spanning tree (X, T) is a greedy move.

We need to prove that this move is a safe move!

Cuts

- A cut is a partition (A, B) of G into 2 non-empty subsets (proper subsets)
- How many different cuts can be in a G with n vertices? (n, $\left.n^{2}, 2^{n}\right)$? $2^{n}-2$

Crossing Edges Lemma

If there are (at least) two crossing edges for a cut (A, B) in an undirected connected graph, then these edges must be a part of some cycle.

Proof

If there is a path from u to v from to two different partitions that includes the first crossing edge e , then the second crossing edge f offers an alternative path from u to v, thus closing the cycle on vertex v .

Cut Crossing Theorem

- Let G be a weighted connected graph, and let (A, B) be some possible cut of G.
- If e is the cheapest edge crossing cut (A, B), then e must be a part of some MST

What we are trying to prove

If we have an edge in a graph and you can find just a single cut for which this edge has the min cost among all edges crossing this cut, then this edge must belong to the MST (or one of MSTs in case when the weights are not unique)

Cut 1
Edge 1 must be in MST

Cut 2
Edge 3 must be in MST

Cut 3
Edge 2 must be in MST

Cut 4
Edge 1 must be in MST

Note that edge 4 is never min of all crossing edges, no matter how we cut - so edge 4 is not in MST

Proof

- Let T be a full minimum spanning tree of G that does not contain edge e. Then the addition of e to T must create a cycle. This is because all nodes in MST are already connected, and addition of edge e will offer an alternative path between some nodes.
- Let then consider a cut (A, B) of this MST, which has two crossing edges e and f, both on the same cycle. Edge f belongs to MST and edge e does not. Now let's assume that w(e) \leq $\mathrm{w}(\mathrm{f})$.
- If we remove f from T and replace it with e, then we obtain a spanning tree whose total weight is no more than before.
- Since T was a minimum spanning tree, this new tree must also be a minimum spanning tree.

In fact, if the weights in G are all distinct, then the minimum spanning tree is unique, and it must contain edge e instead of f

Exchange argument!

- Any nontree edge must have weight that is \geq every edge in the cycle created by that edge and a minimum spanning tree.
- Suppose edge e has weight 32 and edge f in the same cycle has weight 33. Edge f is a part of MST (shown with bold edges), and edge e is not.
- But then we could replace f by e and get a spanning tree with lower total weight, which would contradict the fact that we started with a minimum spanning tree.

Prim: cut

Theorem: Prim outputs a Minimum Spanning Tree

- If we consider a cut of G into X (MST so far) and V-X (remaining graph), then according to the Cut Crossing Theorem the cheapest crossing edge for this cut must be a part of some MST
- Therefore, choosing the crossing edge with the minimum weight is a safe move.
- Because Prim's algorithm always adds a crossing edge of min-weight, the spanning tree produced by this algorithm is a Minimum Spanning Tree

Algorithm Kruskal_MST (graph G(V,E))

E^{\prime} := edges of G sorted by weights
$\mathrm{T}:=\varnothing$
for ifrom 1 to m :
if T U $\left\{\mathrm{E}^{\prime}[\mathrm{i}]\right\}$ has no cycles add $\mathrm{E}^{\prime}[\mathrm{i}]$ to T
return T

Kruskal: correctness (sketch)

Part I. Kruskal outputs a Spanning Tree

- We explicitly check not to introduce cycles, and we add total n-1 edges connecting n nodes. Thus Kruskal produces a Spanning Tree of G

Part II. The tree is MST

- At each step, the algorithm adds a cheapest edge which does not create a cycle. This means that this is the first of crossing edges for some cut of G
- By the Cut Crossing Theorem, this edge must be a part of some MST

MST algorithms: summary

All the algorithms follow some greedy strategy.

Algorithm MST (graph G(V,E))
 $\mathrm{T}:=\varnothing \quad$ \# collects edges of the future MST

while $|\mathrm{T}| \leq|\mathrm{V}|-1$: select next edge e from E \# safe greedy move $\mathrm{T}:=\mathrm{T} \cup e$
return T

Correctness proofs are all based on the Cut Crossing Theorem

