Kruskal Algorithm:
Performance. UNION-FIND

Lecture 05.05

Kruskal algorithm

Algorithm Kruskal MST (graph G(V,E))

E’ := edges of G sorted by weights
T:=0 # collects edges of the future MST

forifrom 1 to m:
if T U {E’[i]} has no cycles
add E'[i]jto T

return T

Repeatedly add a minimum-cost edge
that does not create a cycle

Kruskal algorithm

Algorithm Kruskal MST (graph G(V,E))

E’ := edges of G sorted by weights
T:=0 # collects edges of the future MST

forifrom 1 to m:
if T U {E’[i]} has no cycles
add E'[i]to T

if |T| =|V]|-1: # we can stop once we have a tree
break

return T

Stop when
N-1 edges have been selected

Running time

Line 1: sorting m edges by weight.
O(m log m). This is the same as O(m

Kruskal MST (graph G(V,E))

E’ := edges of G sorted by weights log n) Why?
T:=0
for i from 1 to m: Line 3: outer for loop. O(m). We
if T U {E’[i]} has no cycles check all m edges in the worst case.
add E'fi] to T Line 4: need to find if edge E’[i]=
(u,v) creates a cycle.
if |T| = |V] - 1: Find out if there is already a path
break fromu tovinT by any graph
traversal (DFS or BFS). DFS of T with
return T n vertices and n-1 edgesis O(n+n)
= O(n). s
o

Thus, total time of the for loop is O(m)*O(n) = O(mn)« =**

Kruskal MST runs in time O(m log n) + O(mn) = O (mn)

Running time
Kruskal MST (graph G(V,E))

E’ := edges of G sorted by weights
2 T:=0
3 forifrom 1 to m: Bottleneck:
if TU{E'[i]} hasno cycles < (oteciing a
5 add E’'[i] to T cycle
if |T| =[|V] - 1:
7 break

8 returnT

Kruskal MST runs in time O (mn)

Can we do better?

Kruskal as union of sets

We can look at Kruskal from a Set point of view

First we have n sets: each vertexiisin its own set S, —we
need to be able to MAKE-SET for a single element

Next we combine two sets of vertices S;and S, into one set:
we perform UNION (S; and S), adding an edge (u,v) such
thatu € S;and v €S,

However we do the union only if S; # S;. In other words, we
need to know if u and v are already in the same set, in the
same connected component, we need to FIND out set
names for u and for v and compare them for equality

Note that all the sets are disjoint: each node belongs to a
single set during the execution of the algorithm

Kruskal as union of sets

/3 1\ /2 5\
R P
N~ N

Kruskal as union of sets

/3 1\ /2 5\
Se“*@\4 37 @\7 | 4/ @
N~ N

Kruskal as union of sets

/3]\ /2 5\
®\ /@\ | /@
4\ /3 7\ /4

Kruskal as union of sets

/3 1\ /2 5\
&,
4\ /3 7\ A

Kruskal as union of sets

3] 2 5
/ \ N\
of X
N~ N A

Kruskal as union of sets

3] 2 5
/ \ N\
of)W
N~ N A

Kruskal as union of sets

/3 1\ /2 5\
OB GEIN0

4 3
\@/_ 4_\@4,%

Set spanning all vertices of G with selected edges:
MST of G

New ADT: UNION-FIND
(= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the
following operations:

MAKESET(x): Creates a new set X containing a single
element x.

UNION(X, Y): Creates a new set containing the elements of

sets X and Y in their union and deletes the previous sets X
and Y.

FIND(x): Returns the name of the set to which element x
belongs.

UNION-FIND fits all our needs

Initially, the vertices are a collection of n sets, each with
one element. We can use MAKE-SET n times. Each set has
a different element, so that S; N S;= @. The sets are
disjoint.

To introduce a new edge connecting S; and S, using edge
(x,y), we first check whether x and y are already

connected: perform FIND(x) and FIND(y) and check if x
and y already belong to the same set.

If they are not, then we apply UNION. This operation
merges the two sets containing x and y and replaces them
with a new setS, =S, US,.

Implementing UNION-FIND: Array

- We can implement UNION-FIND using a physical
array

- We can assign each vertex an ID from 1 to n, and
assume that the name of the set to which vertex i
belongs is stored at position i of this array

Array implementation: MAKE-SET

- For n elements, we can generate single-element sets in
time O(n)

- The name of each set initially is set to the name of the
element itself: which corresponds to its position i in the

darray
Originally
vertex 6
Set affiliations belongs to
set named 6
/
1 |2 3 4 5 6 ¥ |7 8
1 2 3 4 5 6 7 8
Array index
represents
node ID

Index in this array uniquely identifies each of n graph vertices

Array implementation:
super-fast FIND

With this representation FIND(x) takes O(1), since for any
element we can find the set name by accessing its array
location in time O(1)

We can find set affiliations of
nodes 3 and 8 in time O(1)

Set affiliation | 1 2 6 2 5 6 7 6

Array index 1 2 3 4 5 6 7 8

Array implementation:
slow UNION

+ To perform UNION(u, v) [assuming that u € S;and v € §]]
we need to scan the complete array and change all i’s to j.
This takes O(n) time

- A sequence of n—1 unions required by the algorithm
takes O(n?) time in the worst case!

Set 1:
Current set affiliations Contains
1,457
1 2 2 1 1 2 1 2
1 2 3 4 5 6 7 8 Set 2:
Contains
Next edge to be added: (3,4) 5368

We check that FIND(3) # FIND(4)
UNION(1,2) will need to iterate over the array and replace all 2 with 1

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Now vertices 3 and 4 belong to the same set, they are connected

Implementing UNION-FIND: Tree

We can implement each set as a tree, because in the tree
each element has only one root, and that is where we will
store the name of the set to which all elements in this tree
belong

- The tree idea is rather conceptual. We do not have to
create a physical tree: we can use a parent array where
for each node i we store the name of its parent in the tree

Tree implementation: MAKE-SET

To differentiate the root of the tree, let us assume that if

the parent in positioniis i, then node iis a root of the tree
— and it also serves as a set name for all nodes in its
subtrees

MAKE-SET creates n sets each containing a single element

i and the parent of i is recorded as i. That means root (set
name) of i is i.

Parent array | 1 2 3 4 5 6
1 2 3 4 5 6

Create a collection of tiny trees, but still store them in the array

Tree implementation: fast UNION

- Toreplace the two sets containing u and v by their union
— update a parent of u to node v

Parent array | 1 2 3 4 5 6
1 2 3 4 5 6
l After UNION (1,6)

Parent array 2 3 4 5 1

%‘ roleXoo]

Tree implementation: fast UNION

- Toreplace the two sets containing u and v by their union
— update a parent of u to node v

Parent array 2 3 4 5 1

'e. <é><é><é><é>

After UNION (3,1)

Parent array | 3 2 3 4 5 1

ol 5@5 kgl

Tree implementation: fast UNION

To replace the two sets containing u and v by their union
— update a parent of v to node u

Important to note: UNION operation is changing the root’s
parent only, but not the parent for all the elements in the
second set

Therefore, the time complexity of UNION is O(1)

Tree implementation: slow FIND

A FIND(x) on node x is performed by returning the root of
the tree containing x

The time to perform this operation is proportional to the
depth of the node representing x

It is possible to create a tree of depth n - 1 (Skewed Tree).

Hence, the worst-case running time of a FIND is O(n) and
m consecutive FIND operations take O(mn) time in the
worst case. (not an improvement comparing to O(n) DFS
algorithm to check for a cycle that we had before)

The goal:
Fast UNION + Quick FIND

- The main problem with the previous approach is
that we might get skewed trees and as a result
the FIND operation takes O(n) time

- We want to keep the height of each tree at most
log n

UNION by Size

Simple heuristic:

- Always make the smaller tree a subtree of the
larger tree

We use the same parent array

We identify the root element of each tree by storing a
negative integer representing the size of the tree rooted
at node i

After n calls to MAKE-SET

Parent array | -1 1 -1 1 1 1
1 2 3 4) 6

Each node is a parent of a tree. Each tree has size 1

Parent array | -1 -1 -1 -1 1 1
2 3 4 5 6
root\ l After UNION (1,6)

Parent array | -2 -1 -1 -1 -1 1

%% oK)

After UNION (1,3)

Y

1

Parent array | -3 -1 1 -1 -1 1

@ ‘@%@6

Parent array

Parent array

Parent array

-3 -1 -1 -1 1
1 2 4 5 6

l After UNION (4,2)
-3 4 -2 -1 1
1 2 4 5 6

l After UNION (4,1)
5 4 1 -1 1
1 2 4 5 6

UNION by size: quick FIND

With UNION by size, the depth of any node is never more
than log n. This is because each node is initially at depth 0.
When its depth increases as a result of a UNION, it is placed
in a tree that is at least twice as large as before.

That means that the depth of each node can be increased at
most log n times until it becomes a part of a tree with n
nodes (there are at most log n UNIONs per each node).

This gives the running time for a FIND operation as O(log n)

A sequence of m FINDs and UNIONs takes O(m log n).

There are other methods that achieve
the same and even better performance

- UNION by Height (UNION by Rank)

- Path Compression

You do not have to know all of them for this course

Running time of UNION-FIND ADT
implemented as a Tree (parent array)

Operation

MAKE-SET(x) | O(1)
FIND(X) O(log n)
UNION(X,Y) O(1)

Fast UNION — Quick FIND

Kruskal running time with UNION-FIND

AW

L 3 O U

Kruskal MST (graph G(V,E))

E’ := edges of G sorted by weights
T:=0

for i from 1 to n:
MAKE-SET (node i)

for each edge (u,v) in E":
if FIND(u) # FIND(v):
T:=TU (uv)
UNION(u, v)

if |IT| =|V]| - 1:
break

return T

Line 1: sorting m edges by weight. O(m log n).

Line 3: Making an array of size n: O(n).
Line 5: O(m) edges in the worst case.

For each edge: perform FIND O(log n) and
sometimes UNION in time O(1)

Thus, total time of the for loop is
O(m log n)

Kruskal MIST with UNION-FIND runs in
time O(m log n) + O(n) + O(m log n)
=0 (m logn)

