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Repeatedly add a minimum-cost edge 

that does not create a cycle

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST 

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal algorithm



Stop when 

N-1 edges have been selected

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST 

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1: # we can stop once we have a tree

break

return T

Kruskal algorithm



Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. 
O(m log m). This is the same as O(m 
log n) Why?

Line 3: outer for loop. O(m). We 
check all m edges in the worst case.
Line 4: need to find if edge E’[i]= 
(u,v) creates a cycle.
Find out if there is already a path 
from u  to v in T by any graph 
traversal (DFS or BFS). DFS of T with 
n vertices and n-1 edges is O(n + n ) 
= O(n).
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Running time

Thus, total time of the for loop is O(m)*O(n) =  O(mn)   

Kruskal MST runs in time O(m log n) + O(mn) = O (mn)



Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T
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Running time

Kruskal MST runs in time O (mn)

Can we do better?

Bottleneck: 

detecting a 

cycle



Kruskal as union of sets
We can look at Kruskal from a Set point of view

• First we have n sets: each vertex i is in its own set Si – we 
need to be able to MAKE-SET for a single element

• Next we combine two sets of vertices Si and Sj into one set: 
we perform UNION (Si and Sj), adding an edge (u,v) such 
that u ∈ Si and v ∈ Sj

• However we do the union only if Si ≠ Sj. In other words, we 
need to know if u and v are already in the same set, in the 
same connected component, we need to FIND out set 
names for u and for v and compare them for equality

Note that all the sets are disjoint: each node belongs to a 
single set during the execution of the algorithm



Kruskal as union of sets
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Kruskal as union of sets
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Kruskal as union of sets
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Kruskal as union of sets
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Kruskal as union of sets
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Kruskal as union of sets
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Kruskal as union of sets
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Set spanning all vertices of G with selected edges:

MST of G



New ADT: UNION-FIND 
(= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the 
following operations:

• MAKESET(x): Creates a new set X containing a single 
element x.

• UNION(X, Y): Creates a new set containing the elements of 
sets X and Y in their union and deletes the previous sets X 
and Y.

• FIND(x): Returns the name of the set to which element x 
belongs.



UNION-FIND fits all our needs

• Initially, the vertices are a collection of n sets, each with 
one element. We can use MAKE-SET n times. Each set has 
a different element, so that Si ∩ Sj= ∅. The sets are 
disjoint.

• To introduce a new edge connecting Si and Sj using edge 
(x,y), we first check whether x and y are already 
connected: perform FIND(x) and FIND(y) and check if x 
and y already belong to the same set.

• If they are not, then we apply UNION. This operation 
merges the two sets containing x and y and replaces them 
with a new set Sk = Si ∪ Sj .



Implementing UNION-FIND: Array

• We can implement UNION-FIND using a physical 
array

• We can assign each vertex an ID from 1 to n, and 
assume that the name of the set to which vertex i
belongs is stored at position i of this array



Array implementation: MAKE-SET

• For n elements, we can generate single-element sets in 
time O(n)

• The name of each set initially is set to the name of the 
element itself: which corresponds to its position i in the 
array

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Array index 

represents 

node ID

Index in this array uniquely identifies each of n graph vertices

Set affiliations

Originally 

vertex 6 

belongs to 

set named 6



Array implementation: 
super-fast FIND
• With this representation FIND(x) takes O(1), since for any 

element we can find the set name by accessing its array 
location in time O(1)

1 2 6 2 5 6 7 6

1 2 3 4 5 6 7 8Array index

Set affiliation

We can find set affiliations of 

nodes 3 and 8 in time O(1)



Array implementation: 
slow UNION
• To perform UNION(u, v) [assuming that u ∈ Si and v ∈ Sj] 

we need to scan the complete array and change all i’s to j. 
This takes O(n) time

• A sequence of n – 1 unions required by the algorithm 
takes O(n2) time in the worst case!

1 2 2 1 1 2 1 2

1 2 3 4 5 6 7 8

Next edge to be added: (3,4)

We check that FIND(3) ≠ FIND(4) 

UNION(1,2) will need to iterate over the array and replace all 2 with 1

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Now vertices 3 and 4 belong to the same set, they are connected

Current set affiliations

Set 1:

Contains 

1,4,5,7

Set 2:

Contains 

2,3,6,8



Implementing UNION-FIND: Tree

• We can implement each set as a tree, because in the tree 
each element has only one root, and that is where we will 
store the name of the set to which all elements in this tree 
belong

• The tree idea is rather conceptual. We do not have to 
create a physical tree: we can use a parent array where 
for each node i we store the name of its parent in the tree



Tree implementation: MAKE-SET
• To differentiate the root of the tree, let us assume that if 

the parent in position i is i, then node i is a root of the tree 
– and it also serves as a set name for all nodes in its 
subtrees

• MAKE-SET creates n sets each containing a single element 
i and the parent of i is recorded as i. That means root (set 
name) of i is i.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

Create a collection of tiny trees, but still store them in the array



Tree implementation: fast UNION

• To replace the two sets containing u and v by their union 
– update a parent of u to node v

6

1

After UNION (1,6)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

1 2 3 4 5 1

1 2 3 4 5 6

2 3 4 5

Parent array



Tree implementation: fast UNION

• To replace the two sets containing u and v by their union 
– update a parent of u to node v

6

1

After UNION (3,1)

1 2 3 4 5 1

1 2 3 4 5 6

2 3 4 5

Parent array

3 2 3 4 5 1

1 2 3 4 5 6

2 4 5

Parent array
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Tree implementation: fast UNION

• To replace the two sets containing u and v by their union 
– update a parent of v to node u

• Important to note: UNION operation is changing the root’s 
parent only, but not the parent for all the elements in the 
second set 

• Therefore, the time complexity of UNION is O(1)



Tree implementation: slow FIND

• A FIND(x) on node x is performed by returning the root of 
the tree containing x 

• The time to perform this operation is proportional to the 
depth of the node representing x

• It is possible to create a tree of depth n - 1 (Skewed Tree). 

• Hence, the worst-case running time of a FIND is O(n) and 
m consecutive FIND operations take O(mn) time in the 
worst case. (not an improvement comparing to O(n) DFS 
algorithm to check for a cycle that we had before)



The goal: 
Fast UNION + Quick FIND

• The main problem with the previous approach is 
that we might get skewed trees and as a result 
the FIND operation takes O(n) time 

• We want to keep the height of each tree at most 
log n



UNION by Size

Simple heuristic:

• Always make the smaller tree a subtree of the 
larger tree



We use the same parent array

• We identify the root element of each tree by storing a 
negative integer representing the size of the tree rooted 
at node i

-1 -1 -1 -1 -1 -1

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

After n calls to MAKE-SET

Each node is a parent of a tree. Each tree has size 1



-1 -1 -1 -1 -1 -1

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

-2 -1 -1 -1 -1 1

1 2 3 4 5 6
1

2 3 4 5
6

Parent array

-3 -1 1 -1 -1 1

1 2 3 4 5 6
1

2
3

4 5
6

Parent array

After UNION (1,3)

After UNION (1,6)root



-3 -1 1 -1 -1 1

1 2 3 4 5 6
1

2
3

4 5
6

Parent array

-3 4 1 -2 -1 1

1 2 3 4 5 6
1

2 3

4

5 6

Parent array

-5 4 1 1 -1 1

1 2 3 4 5 6
1

2

345 6

Parent array

After UNION (4,1)

After UNION (4,2)



UNION by size: quick FIND

• With UNION by size, the depth of any node is never more 
than log n. This is because each node is initially at depth 0. 
When its depth increases as a result of a UNION, it is placed 
in a tree that is at least twice as large as before. 

• That means that the depth of each node can be increased at 
most log n times until it becomes a part of a tree with n 
nodes (there are at most log n UNIONs per each node). 

• This gives the running time for a FIND operation as O(log n)

• A sequence of m FINDs and UNIONs takes O(m log n).



There are other methods that achieve 
the same and even better performance

• UNION by Height (UNION by Rank)

• Path Compression

• …

You do not have to know all of them for this course



Running time of UNION-FIND ADT 
implemented as a Tree (parent array)

Operation

MAKE-SET(x) O(1)

FIND(x) O(log n)

UNION(x,y) O(1)

Fast UNION – Quick FIND



Kruskal running time with UNION-FIND

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for  i from 1 to n:

MAKE-SET (node i)

for each edge (u,v) in E’:

if FIND(u) ≠ FIND(v):

T: = T U (u,v)

UNION(u, v)

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. O(m log n). 

Line 3: Making an array of size n: O(n). 

Line 5: O(m) edges in the worst case. 
For each edge: perform FIND O(log n) and 

sometimes  UNION in time O(1)
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Thus, total time of the for loop is 
O(m log n)

Kruskal MST with UNION-FIND runs in 
time O(m log n) + O(n) + O(m log n) 
= O (m log n)


