
Kruskal Algorithm:
Performance. UNION-FIND

Lecture 05.05

by Marina Barsky

Repeatedly add a minimum-cost edge

that does not create a cycle

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

return T

Kruskal algorithm

Stop when

N-1 edges have been selected

Algorithm Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅ # collects edges of the future MST

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1: # we can stop once we have a tree

break

return T

Kruskal algorithm

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight.
O(m log m). This is the same as O(m
log n) Why?

Line 3: outer for loop. O(m). We
check all m edges in the worst case.
Line 4: need to find if edge E’[i]=
(u,v) creates a cycle.
Find out if there is already a path
from u to v in T by any graph
traversal (DFS or BFS). DFS of T with
n vertices and n-1 edges is O(n + n)
= O(n).

1

2

3

4

5

6

7

8

Running time

Thus, total time of the for loop is O(m)*O(n) = O(mn)

Kruskal MST runs in time O(m log n) + O(mn) = O (mn)

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to m:

if T U {E’[i]} has no cycles

add E’[i] to T

if |T| = |V| - 1:

break

return T

1

2

3

4

5

6

7

8

Running time

Kruskal MST runs in time O (mn)

Can we do better?

Bottleneck:

detecting a

cycle

Kruskal as union of sets
We can look at Kruskal from a Set point of view

• First we have n sets: each vertex i is in its own set Si – we
need to be able to MAKE-SET for a single element

• Next we combine two sets of vertices Si and Sj into one set:
we perform UNION (Si and Sj), adding an edge (u,v) such
that u ∈ Si and v ∈ Sj

• However we do the union only if Si ≠ Sj. In other words, we
need to know if u and v are already in the same set, in the
same connected component, we need to FIND out set
names for u and for v and compare them for equality

Note that all the sets are disjoint: each node belongs to a
single set during the execution of the algorithm

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set C

Set G Set D

Set E

Set B = UNION (B, G)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set C

Set D

Set E

Set B = UNION (B, C)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set A

Set B

Set F

Set D

Set E

Set B = UNION (B, A)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set F

Set D

Set E

Set B = UNION (B, F)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set D

Set E

Set E = UNION (D, E)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set B

Set E

Set E = UNION (B, E)

Kruskal as union of sets

A

B C

D

EF

G

3

4

3

1 5

5

2

4

4

73

Set E

Set spanning all vertices of G with selected edges:

MST of G

New ADT: UNION-FIND
(= Disjoint Set ADT)

UNION-FIND is an Abstract Data Type that supports the
following operations:

• MAKESET(x): Creates a new set X containing a single
element x.

• UNION(X, Y): Creates a new set containing the elements of
sets X and Y in their union and deletes the previous sets X
and Y.

• FIND(x): Returns the name of the set to which element x
belongs.

UNION-FIND fits all our needs

• Initially, the vertices are a collection of n sets, each with
one element. We can use MAKE-SET n times. Each set has
a different element, so that Si ∩ Sj= ∅. The sets are
disjoint.

• To introduce a new edge connecting Si and Sj using edge
(x,y), we first check whether x and y are already
connected: perform FIND(x) and FIND(y) and check if x
and y already belong to the same set.

• If they are not, then we apply UNION. This operation
merges the two sets containing x and y and replaces them
with a new set Sk = Si ∪ Sj .

Implementing UNION-FIND: Array

• We can implement UNION-FIND using a physical
array

• We can assign each vertex an ID from 1 to n, and
assume that the name of the set to which vertex i
belongs is stored at position i of this array

Array implementation: MAKE-SET

• For n elements, we can generate single-element sets in
time O(n)

• The name of each set initially is set to the name of the
element itself: which corresponds to its position i in the
array

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Array index

represents

node ID

Index in this array uniquely identifies each of n graph vertices

Set affiliations

Originally

vertex 6

belongs to

set named 6

Array implementation:
super-fast FIND
• With this representation FIND(x) takes O(1), since for any

element we can find the set name by accessing its array
location in time O(1)

1 2 6 2 5 6 7 6

1 2 3 4 5 6 7 8Array index

Set affiliation

We can find set affiliations of

nodes 3 and 8 in time O(1)

Array implementation:
slow UNION
• To perform UNION(u, v) [assuming that u ∈ Si and v ∈ Sj]

we need to scan the complete array and change all i’s to j.
This takes O(n) time

• A sequence of n – 1 unions required by the algorithm
takes O(n2) time in the worst case!

1 2 2 1 1 2 1 2

1 2 3 4 5 6 7 8

Next edge to be added: (3,4)

We check that FIND(3) ≠ FIND(4)

UNION(1,2) will need to iterate over the array and replace all 2 with 1

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Now vertices 3 and 4 belong to the same set, they are connected

Current set affiliations

Set 1:

Contains

1,4,5,7

Set 2:

Contains

2,3,6,8

Implementing UNION-FIND: Tree

• We can implement each set as a tree, because in the tree
each element has only one root, and that is where we will
store the name of the set to which all elements in this tree
belong

• The tree idea is rather conceptual. We do not have to
create a physical tree: we can use a parent array where
for each node i we store the name of its parent in the tree

Tree implementation: MAKE-SET
• To differentiate the root of the tree, let us assume that if

the parent in position i is i, then node i is a root of the tree
– and it also serves as a set name for all nodes in its
subtrees

• MAKE-SET creates n sets each containing a single element
i and the parent of i is recorded as i. That means root (set
name) of i is i.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

Create a collection of tiny trees, but still store them in the array

Tree implementation: fast UNION

• To replace the two sets containing u and v by their union
– update a parent of u to node v

6

1

After UNION (1,6)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

1 2 3 4 5 1

1 2 3 4 5 6

2 3 4 5

Parent array

Tree implementation: fast UNION

• To replace the two sets containing u and v by their union
– update a parent of u to node v

6

1

After UNION (3,1)

1 2 3 4 5 1

1 2 3 4 5 6

2 3 4 5

Parent array

3 2 3 4 5 1

1 2 3 4 5 6

2 4 5

Parent array

3

6

1

Tree implementation: fast UNION

• To replace the two sets containing u and v by their union
– update a parent of v to node u

• Important to note: UNION operation is changing the root’s
parent only, but not the parent for all the elements in the
second set

• Therefore, the time complexity of UNION is O(1)

Tree implementation: slow FIND

• A FIND(x) on node x is performed by returning the root of
the tree containing x

• The time to perform this operation is proportional to the
depth of the node representing x

• It is possible to create a tree of depth n - 1 (Skewed Tree).

• Hence, the worst-case running time of a FIND is O(n) and
m consecutive FIND operations take O(mn) time in the
worst case. (not an improvement comparing to O(n) DFS
algorithm to check for a cycle that we had before)

The goal:
Fast UNION + Quick FIND

• The main problem with the previous approach is
that we might get skewed trees and as a result
the FIND operation takes O(n) time

• We want to keep the height of each tree at most
log n

UNION by Size

Simple heuristic:

• Always make the smaller tree a subtree of the
larger tree

We use the same parent array

• We identify the root element of each tree by storing a
negative integer representing the size of the tree rooted
at node i

-1 -1 -1 -1 -1 -1

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

After n calls to MAKE-SET

Each node is a parent of a tree. Each tree has size 1

-1 -1 -1 -1 -1 -1

1 2 3 4 5 6

1 2 3 4 5 6

Parent array

-2 -1 -1 -1 -1 1

1 2 3 4 5 6
1

2 3 4 5
6

Parent array

-3 -1 1 -1 -1 1

1 2 3 4 5 6
1

2
3

4 5
6

Parent array

After UNION (1,3)

After UNION (1,6)root

-3 -1 1 -1 -1 1

1 2 3 4 5 6
1

2
3

4 5
6

Parent array

-3 4 1 -2 -1 1

1 2 3 4 5 6
1

2 3

4

5 6

Parent array

-5 4 1 1 -1 1

1 2 3 4 5 6
1

2

345 6

Parent array

After UNION (4,1)

After UNION (4,2)

UNION by size: quick FIND

• With UNION by size, the depth of any node is never more
than log n. This is because each node is initially at depth 0.
When its depth increases as a result of a UNION, it is placed
in a tree that is at least twice as large as before.

• That means that the depth of each node can be increased at
most log n times until it becomes a part of a tree with n
nodes (there are at most log n UNIONs per each node).

• This gives the running time for a FIND operation as O(log n)

• A sequence of m FINDs and UNIONs takes O(m log n).

There are other methods that achieve
the same and even better performance

• UNION by Height (UNION by Rank)

• Path Compression

• …

You do not have to know all of them for this course

Running time of UNION-FIND ADT
implemented as a Tree (parent array)

Operation

MAKE-SET(x) O(1)

FIND(x) O(log n)

UNION(x,y) O(1)

Fast UNION – Quick FIND

Kruskal running time with UNION-FIND

Kruskal_MST (graph G(V,E))

E’ := edges of G sorted by weights

T : = ∅

for i from 1 to n:

MAKE-SET (node i)

for each edge (u,v) in E’:

if FIND(u) ≠ FIND(v):

T: = T U (u,v)

UNION(u, v)

if |T| = |V| - 1:

break

return T

Line 1: sorting m edges by weight. O(m log n).

Line 3: Making an array of size n: O(n).

Line 5: O(m) edges in the worst case.
For each edge: perform FIND O(log n) and

sometimes UNION in time O(1)

1

2

3

4

5

6

7

8

9
Thus, total time of the for loop is
O(m log n)

Kruskal MST with UNION-FIND runs in
time O(m log n) + O(n) + O(m log n)
= O (m log n)

