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Recap: recursion

algorithm print_num(count):

if count < 1:

return

print(count)

print_num(count-1)

print_num(4)

What is printed?



Recap: recursion

print_num(0)

print_num(1)

print_num(2)

print_num(3)

print_num(4)

What is printed?

algorithm print_num(count):

if count < 1:

return

print(count)

print_num(count-1)

print_num(4)



Recap: recursion

algorithm print_num(count):

if count < 1:

return

print_num(count-1)

print(count)

print_num(4)

What is printed now?



When to use recursion

1. The structure is defined recursively

2. The problem is defined recursively



1. Recursively defined structure:
tree

Employee names are stored as pairs of 
names in list A

They represent a hierarchical organizational 
structure: X reports to Y

Name Manager

Betty Sam

Bob Sally

Dilbert Nathan

Joseph Sally

Nathan Veronica

Sally Veronica

Sam Joseph

Susan Bob

Veronica



Problem: Count Under
Input: list A of pairs (x,y) meaning x reports directly to y, and 
an employee name S.

Output: count of all employees who report to S (directly or 
indirectly)



Designing solution

• We want to find all people who work under 
S=‘Sally’

• We can iterate over list A and count the pairs 
where Sally is a manager

• But then we also need to iterate over A 
again and count and collect people 
working under Bob and Joseph

• Then all people who work under Sam

• It seems that we need to have several nested 
loops - but how many levels?

Name Manager

Betty Sam

Bob Sally

Dilbert Nathan

Joseph Sally

Nathan Veronica

Sally Veronica

Sam Joseph

Susan Bob

Veronica

The easiest solution: use recursion!



Recursive solution

Algorithm count_under(list A of pairs, name S)  

count: = 0

for each pair (name, manager) in A:

if manager = S:

count: += 1 + count_under(name)

return count



2. Recursively defined problem:   
factorial

Definition
factorial(1) = 1
factorial(n) = n*factorial(n-1)

Problem: compute factorial
Input: n
Output: factorial(n)

Algorithm factorial(n)
if n = 1 return 1
return n*factorial(n -1)

Fn = n∗Fn-1



When recursion feels natural 

Recursive algorithms are particularly appropriate when the 
underlying problem or the data to be treated are defined in 
recursive terms

Fn = n∗Fn-1



Definition
A recurrence relation is an equation 

recursively defining a sequence of values

Fn = 

0, if n = 0
1, if n = 1
Fn−1 +  Fn−2 if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Fn = 

1, if n = 0 
1, if n = 1
n*Fn−1 if n > 1

1, 1, 2, 6, 24, 120… 

Note how the function F(n) is defined through F(n-1)



Fibonacci numbers
Natural recursive solution?



Fibonacci numbers

Fn = 

0,  if n = 0
1,  if n = 1
Fn−1 +  Fn−2 if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Golden ratio



Fibonacci rabbits

pair 

1

1 month

Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months
Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months

pair 

2

3 months

Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months

pair 

2

3 months
pair 

3

4 months

Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months

pair 

2

3 months
pair 

3

4 months
pair 

4

pair 

5

5 months

Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months

pair 

2

3 months
pair 

3

4 months
pair 

4

pair 

5

5 months

pair 

6

pair 

7

pair 

8

Leonardo 
Fibonacci 

c1175-1250



It all started with a single pair…

University of Victoria, BC, Canada, 2010



Lemma

Proof: By induction
Base case: n = 6, 7 (by direct computation).  

Inductive step: 

Assume that it is true for Fn−1:  Fn−1 >=2(n-1)/2.

Let’s show that it is true for Fn

Fn = Fn−1 + Fn−2

≥ 2(n−1)/2 + 2(n−2)/2 ≥ 2 · 2(n−2)/2 = 2n/2

Fibonacci numbers grow exponentially

Fn ≥ 2n/2  for n ≥ 6 

Theorem:
Fn =

F20 = 6765
F50 = 12586269025
F100 = 354224848179261915075
F500 = 1394232245616978801397243828

7040728395007025658769730726 
4108962948325571622863290691 
557658876222521294125

φn – (1 – φ)n

√5

φ = 1.618034… 

1+ √5
2

φ =



Recursive algorithm for computing 
the n-th Fibonacci number

Algorithm Fib_recurs(n)

if n ≤ 1:  return n

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Problem: Compute Fn

Input: integer n >= 0
Output: Fn

What is the running time?

Fn = 

0,  if n = 0
1,  if n = 1
Fn−1 +  Fn−2 if n > 1



Recursive Fibonacci: running time

Let T (n) denote the count of lines of code  executed by Fib_recurs(n).

if n ≤ 1: T (n) = 2

if n ≥ 2: T (n) = 3 + T (n − 1) + T (n − 2)

T(n) = 
2 if n <= 1
3 + T(n-1) + T(n-2)

Therefore T (n) ≥ Fn

Algorithm Fib_recurs(n)

if n ≤ 1:  

return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Number of operations n-th Fibonacci number

Fn = 

0,  if n = 0
1,  if n = 1
Fn−1 +  Fn−2 if n > 1



Recursive algorithm: running time
Let T (n) denote the count of lines of code  executed by Fib_recurs(n).

T(n) = 
2 if n <= 1
3 + T(n-1) + T(n-2)

T (n) ≥ Fn

(1.77 sextillion)
T (100) ≈ 1.77 · 1021

Takes 56,000 years at 1GHz

Algorithm Fib_recurs(n)

if n ≤ 1:  

return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Running time 𝝮(2n)



Why so slow?

Recursion tree

Note the repeating calls with the same arguments

F6

F5
F4

F4
F3 F3 F2

F3 F2 F2 F1 ...



Efficient iterative algorithm

Algorithm Fib_list(n)

create an array F [0 . . . n]  

F [0] ← 0

F [1] ← 1

for i from 2 to n:

F [i ] ← F [i − 1] + F [i − 2]

return F [n]

T (n) = 2n + 2

So T (100) = 202

Running time



Recursion or not recursion?

• Such recursive definitions do not guarantee that a recursive 
algorithm is the best way to solve the problem 

• The use of recursive algorithms by inappropriate examples 
created apprehension and antipathy toward the use of 
recursion in programming:

recursion = inefficiency

Recursive algorithms are particularly appropriate when the 
underlying problem or the data to be treated are defined in 
recursive terms



Recursion vs. iteration
➔Recursion

◆Each recursive call requires extra space on the stack

◆If we get infinite recursion, the program will eventually run out of 
memory, cause stack overflow, and the program will terminate

◆Solutions to some problems are easier to formulate recursively

➔Iteration

◆Each iteration does not require extra space

◆An infinite loop could loop forever since there is no extra memory 
being created

◆Iterative solutions to a problem may not always be as obvious as a 
recursive solution

Generally, recursive solutions are less efficient than iterative solutions due 
to the overhead of function calls



Recursive algorithms: 
running time

Steps:

❏ Draw recursion tree

❏ Estimate the depth of the tree

❏ Estimate work done at each level of the tree

❏ Add all level work together



Example: recursive max

What is time complexity?

Algorithm Recurs_max (non-empty linked list  A)

if len(A) = 1:
return A[1]

else:
if A[1] < A[2]:

remove A[1] from A
else:

remove A[2] from A
return  Recurs_max (A)



Recursive Max: time complexity

..

Work at each level 

n

n − 1

c

c

cn − 2

2 c

c

Total: cn = O(n)

1



Searching Sorted 
Data

https://www.khanacademy.org/computing/computer-science/algorithms/binary-
search/a/binary-search

Separate and conquer 

https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search


Warm-up: find the fake coin 

● There are 8 identical-looking coins

● One of these coins is counterfeit and is known to be lighter than 

the genuine coins 

● What is the minimum number of weighings needed to identify the 

fake coin with a two-pan balance scale without weights?



Problem: Searching in a sorted array

Input: A sorted array A[low . . . high]  

(∀low ≤ i < high : A[i] ≤ A[i + 1]).  

A value key to search for.

Output:      An index, i , (low ≤ i ≤ high) where

A[i] = key.
Otherwise, return -1 (NOT_FOUND).



binary_search(A, low, high, key )

if high < low :
return -1

⌊︁mid ←  low + high−low
2

⌋︁

if key = A[mid ]:  
return mid

else if key < A[mid ]:
return binary_search(A, low, mid − 1, key )

else:
return binary_search(A, mid + 1, high, key )



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60
0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low high

binary_search(A, 0, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low highmid

binary_search(A, 0, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low highmid

binary_search(A, 0, 10, 50)

binary_search(A, 6, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low highmid

binary_search(A, 0, 10, 50)

binary_search(A, 6, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low highmid

binary_search(A, 0, 10, 50)

binary_search(A, 6, 10, 50)

binary_search(A, 9, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

low highmid

binary_search(A, 0, 10, 50)

binary_search(A, 6, 10, 50)

binary_search(A, 9, 10, 50)

0   1 2   3   4   5   6  7   8   9  10



Example: Searching for key 50

3 5 8 10 12 15 18 20 20 50 60

binary_search(A, 0, 10, 50)

binary_search(A, 6, 10, 50)

binary_search(A, 9, 10, 50) → 9

0   1 2   3   4   5   6  7   8   9  10



c = O(log n)

Running time of Binary Search

.

n

n/2

c

c

cn/4

2 c

c

c

1

0

Total: ∑︀ 2log  n
i =0

Work at each level



low +       high − low
2

Iterative Version
binary_search_it(A, low, high, key)

while low ≤ high:

mid ← ⌊︁ ⌋︁

if key = A[mid ]:  

return mid

else if key < A[mid ]:

high = mid − 1

else:

low = mid + 1

return -1



O(log n)O(n)

Calculating runtime of recursive algorithms 
is not always that easy

Linear search Binary search


