Recursive algorithms Separate and conquer
 Lecture 06.01
 by Marina Barsky

Recap: recursion

```
algorithm print_num(count):
    if count < 1:
        return
    print(count)
    print_num(count-1)
print_num(4)
```

What is printed?

Recap: recursion

```
algorithm print_num(count):
    if count < 1:
        return
    print(count)
    print_num(count-1)
print_num(4)
```

What is printed?

Recap: recursion

algorithm print_num (count):
if count < 1:
return
print_num(count-1)
print(count)
print_num(4)

What is printed now?

When to use recursion

1. The structure is defined recursively
2. The problem is defined recursively

1. Recursively defined structure: tree

Name	Manager
Betty	Sam
Bob	Sally
Dilbert	Nathan
Joseph	Sally
Nathan	Veronica
Sally	Veronica
Sam	Joseph
Susan	Bob
Veronica	

Employee names are stored as pairs of names in list A

They represent a hierarchical organizational structure: X reports to Y

Problem: Count Under

Input: list A of pairs (x, y) meaning x reports directly to y, and an employee name S.

Output: count of all employees who report to S (directly or indirectly)

Designing solution

Name	Manager
Betty	Sam
Bob	Sally
Dilbert	Nathan
Joseph	Sally
Nathan	Veronica
Sally	Veronica
Sam	Joseph
Susan	Bob
Veronica	

- We want to find all people who work under S='Sally'
- We can iterate over list A and count the pairs where Sally is a manager
- But then we also need to iterate over A again and count and collect people working under Bob and Joseph
- Then all people who work under Sam
- It seems that we need to have several nested loops - but how many levels?

The easiest solution: use recursion!

Recursive solution

Algorithm count_under(list A of pairs, name S)
count: = 0
for each pair (name, manager) in A:
if manager $=\mathrm{S}$:

$$
\text { count: += } 1 \text { + count_under(name) }
$$

return count

2. Recursively defined problem: factorial

Definition

factorial(1) $=1$
factorial(n) $=n^{*}$ factorial($n-1$)

$$
F_{n}=n * F_{n-1}
$$

Problem: compute factorial Input: n
Output: factorial(n)

Algorithm factorial(n)
if $n=1$ return 1
return n^{*} factorial ($n-1$)

When recursion feels natural

Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms

$$
F_{n}=n * F_{n-1}
$$

Definition

A recurrence relation is an equation recursively defining a sequence of values

$$
F_{n}=\left\{\begin{array}{l}
1, \text { if } \mathrm{n}=0 \\
1, \text { if } \mathrm{n}=1 \\
n^{*} F_{n-1} \text { if } \mathrm{n}>1
\end{array}\right] F_{n}=\left\{\begin{array}{l}
0, \text { if } \mathrm{n}=0 \\
1, \text { if } \mathrm{n}=1 \\
F_{n-1}+F_{n-2} \text { if } \mathrm{n}>1
\end{array}\right.
$$

Note how the function $F(n)$ is defined through $F(n-1)$

Fibonacci numbers

Natural recursive solution?

Fibonacci numbers

Golden ratio

Fibonacci rabbits

1 month

Fibonacci rabbits

Leonardo
Fibonacci
c1175-1250

Fibonacci rabbits

Fibonacci rabbits

Fibonacci rabbits

Fibonacci rabbits

It all started with a single pair...

University of Victoria, BC, Canada, 2010

Fibonacci numbers grow exponentially

Proof: By induction
Base case: $n=6,7$ (by direct computation).

Inductive step:
Assume that it is true for $F_{n-1}: F_{n-1}>=2^{(n-1) / 2}$.

Let's show that it is true for F_{n}
$F_{n}=F_{n-1}+F_{n-2}$
$\geq 2^{(n-1) / 2}+2^{(n-2) / 2} \geq 2 \cdot 2^{(n-2) / 2}=2^{n / 2}$

$$
\begin{aligned}
& \text { Theorem: } \\
& \begin{array}{l}
F_{n}=\frac{\phi^{n}}{} \frac{-(1-\phi)^{n}}{\sqrt{ } 5} \\
\phi=\frac{1+\sqrt{ }}{2} \\
\phi=1.618034 \ldots
\end{array}
\end{aligned}
$$

Recursive algorithm for computing the n-th Fibonacci number

$$
F_{n}=\left\{\begin{array}{l}
0, \text { if } \mathrm{n}=0 \\
1, \text { if } \mathrm{n}=1 \\
F_{n-1}+F_{n-2}
\end{array} \text { if } \mathrm{n}>1\right.
$$

Problem: Compute F_{n}

Input: integer $\mathrm{n}>=0$ Output: F_{n}
Algorithm Fib_recurs(n)
if $n \leq 1$: return n
return Fib_recurs $(n-1)+$ Fib_recurs $(n-2)$
What is the running time?

Recursive Fibonacci: running time

Algorithm Fib_recurs(n)

if $n \leq 1$:
return n
else:
return Fib_recurs $(n-1)+$ Fib_recurs $(n-2)$
Let $T(n)$ denote the count of lines of code executed by Fib_recurs(n).
if $n \leq 1: T(n)=2$
if $n \geq 2: T(n)=3+T(n-1)+T(n-2)$

Number of operations
n-th Fibonacci number

$$
\mathrm{T}(\mathrm{n})=\left\{\begin{array}{l}
2 \text { if } \mathrm{n}<=1 \\
3+\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)
\end{array} F_{n}=\left\{\begin{array}{l}
0, \text { if } \mathrm{n}=0 \\
1, \text { if } \mathrm{n}=1 \\
F_{n-1}+F_{n-2}
\end{array} \text { if } \mathrm{n}>1\right.\right.
$$

Therefore $T(n) \geq F_{n}$

Recursive algorithm: running time

Let $T(n)$ denote the count of lines of code executed by Fib_recurs(n).

$$
\begin{aligned}
& \text { Algorithm Fib_recurs }(n) \\
& \text { if } n \leq 1 \text { : } \\
& \text { return } n \\
& \text { else: } \\
& \quad \text { return Fib_recurs }(n-1)+\text { Fib_recurs }(n-2) \\
& \mathrm{T}(\mathrm{n})=\left\{\begin{array}{l}
2 \text { if } \mathrm{n}<=1 \\
3+\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)
\end{array}\right. \\
& T(n) \geq F_{n} \quad \text { but } F_{n} \geq 2^{n / 2} \text { for } n \geq 6!!!
\end{aligned} \quad \text { Running time } \mathbf{\Omega (2 ^ { n })} .
$$

$T(100) \approx 1.77 \cdot 10^{21}$
(1.77 sextillion)

Takes 56,000 years at 1 GHz

Why so slow?

Recursion tree
Note the repeating calls with the same arguments

Efficient iterative algorithm

Algorithm Fib_list(n)

create an array $F[0 \ldots n]$
$F[0] \leftarrow 0$
$F[1] \leftarrow 1$
for i from 2 to n :
$F[i] \leftarrow F[i-1]+F[i-2]$
return F [n]

$$
\begin{gathered}
\text { Running time } \\
T(n)=2 n+2 \\
\text { So } T(100)=202
\end{gathered}
$$

Recursion or not recursion?

Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms

- Such recursive definitions do not guarantee that a recursive algorithm is the best way to solve the problem
- The use of recursive algorithms by inappropriate examples created apprehension and antipathy toward the use of recursion in programming:
recursion = inefficiency

Recursion vs. iteration

\rightarrow Recursion

- Each recursive call requires extra space on the stack
- If we get infinite recursion, the program will eventually run out of memory, cause stack overflow, and the program will terminate
- Solutions to some problems are easier to formulate recursively
\rightarrow Iteration
- Each iteration does not require extra space
- An infinite loop could loop forever since there is no extra memory being created
- Iterative solutions to a problem may not always be as obvious as a recursive solution

Generally, recursive solutions are less efficient than iterative solutions due to the overhead of function calls

Recursive algorithms: running time

Steps:

- Draw recursion tree
- Estimate the depth of the tree
- Estimate work done at each level of the tree
- Add all level work together

Example: recursive max

Algorithm Recurs_max (non-empty linked list A)

if $\operatorname{len}(A)=1$:
return $\mathrm{A}[1]$
else:
if $A[1]<A[2]:$
remove $A[1]$ from A
else:
remove $A[2]$ from A
return Recurs_max (A)
What is time complexity?

Recursive Max: time complexity

Work at each level

Total: $c n=O(n)$

Searching Sorted Data

Separate and conquer

https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search

Warm-up: find the fake coin

- There are 8 identical-looking coins
- One of these coins is counterfeit and is known to be lighter than the genuine coins
- What is the minimum number of weighings needed to identify the fake coin with a two-pan balance scale without weights?

Problem: Searching in a sorted array

Input: A sorted array A[low . . . high]
(\forall low $\leq i<$ high : $A[i] \leq A[i+1]$).
A value key to search for.
Output: An index, i, (low $\leq i \leq h i g h)$ where $A[i]=$ key .
Otherwise, return -1 (NOT_FOUND).

binary_search(A, low, high, key)

if high < low :
return-1
mid \leftarrow low $+\left\lfloor\frac{\text { high-low }}{2}\right\rfloor$
if key = A[mid]:
return mid
else if key < $A[m i d]$:
return binary_search $(A$, low, mid - 1, key)
else:
return binary_search(A, mid + 1, high, key)

Example: Searching for key 50

$$
\begin{array}{|c|c|c|c|cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 3 & 5 & 8 & 10 & 12 & 15 & 18 & 20 & 20 & 50 \\
\hline
\end{array}
$$

Example: Searching for key 50

binary_search $(A, 0,10,50)$

$$
\begin{array}{c|c|c|c|cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 3 & 5 & 8 & 10 & 12 & 15 & 18 & 20 & 20 & 50 \\
\hline
\end{array}
$$

low
high

Example: Searching for key 50

binary_search($A, 0,10,50)$

Example: Searching for key 50

binary_search $(A, 0,10,50)$ binary_search $(A, 6,10,50)$

$$
\begin{array}{|llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 3 & 5 & 8 & 10 & 12 & 15 & 18 & 20 & 20 & 50 & 60 \\
\hline
\end{array}
$$

Example: Searching for key 50

binary_search $(A, 0,10,50)$ binary_search($A, 6,10,50)$

$$
\begin{array}{|ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 3 & 5 & 8 & 10 & 12 & 15 & 18 & 20 & 20 & 50 & 60 \\
\hline
\end{array}
$$

Example: Searching for key 50

binary_search $(A, 0,10,50)$ binary_search $(A, 6,10,50)$ binary_search $(A, 9,10,50)$

0	1	2	3	4	5	6	7	8
3	9	10						
3	5	8	10	12	15	18	20	20

low
mid
high

Example: Searching for key 50

binary_search $(A, 0,10,50)$ binary_search ($A, 6,10,50$) binary_search $(A, 9,10,50)$

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10
\end{array}
\end{aligned}
$$

low
mid
high

Example: Searching for key 50

binary_search $(A, 0,10,50)$ binary_search $(A, 6,10,50)$ binary_search $(A, 9,10,50) \rightarrow 9$

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
\end{aligned}
$$

Running time of Binary Search

Work at each level

Iterative Version

binary_search_it(A, low, high, key)

while low \leq high:
mid \leftarrow low $+\left\lfloor\frac{\text { high-low }}{2}\right\rfloor$
if key = A[mid]:
return mid
else if key < A[mid]:

$$
\text { high }=\text { mid }-1
$$

else:

$$
\text { low }=\text { mid }+1
$$

return -1

Linear search

Binary search

$\mathrm{O}(n)$

O(log $n)$

Calculating runtime of recursive algorithms
is not always that easy

