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Design and analysis of algorithms

Main focus: practical algorithms + supporting theory for solving 

fundamental computational problems:

• Sorting

• Searching

• Shortest paths

• Sequence alignment

• Spanning trees

• …

You might feel that now you can solve any problem efficiently, and 

always should try to do even better



Design and analysis of algorithms

Main focus: practical algorithms + supporting theory for solving 

fundamental computational problems:

• Sorting

• Searching

• Shortest paths

• Sequence alignment

• Spanning trees

• …

You might feel that now you can solve any problem efficiently, and 

always should try to do even better

Bad news: many important practical problems that 
you will encounter in your projects do not have 
known efficient solutions! 



We need to know how:

• Classify problems by hardness

• Identify problems that cannot be efficiently solved

• Deal with such problems



Complexity class P

We say that the problem is tractable if there is an algorithm which 

solves it in time O(nk) for some constant k, and where n represents the 

input size [More precisely – the number of bits or keystrokes needed to 

describe the input]

Tractable:

O(n), O(n2), O(n1000), O(n10,000,000) 

Class P: set of all problems solvable in polynomial time

All the algorithms we designed and implemented in this course belong to 

class P



Traveling Salesperson Problem (TSP)
Input: complete undirected graph with non-negative  

edge costs

Output: a min-cost tour – a cycle that visits each vertex 

exactly once

1

2

6

53 4

TSP path: 13

Solution (exponential):

• Try all permutations of vertices

• Select the tour with the cheapest cost

We solved shortest paths, min spanning trees, why not TSP?

60 years of research – and there is no polynomial-time algorithm?

Not in P?



Min Vertex Cover
Input: graph G (V, E)

Output: a minimum-size subset C of vertices such that 

for each edge (v,w), we have v ∈ C or w ∈ C (C covers

all the edges)

Vertex Cover of 
size 4

Solution (exponential):

• Try every subset of V 

• For each subset check if it covers all the edges. 

• Keep the subset of a minimum size

Not in P?



Knapsack 01 without repetitions
Input: set of n items with their weights and values and 

the knapsack capacity W

Output: maximum value of knapsack filled with items 

that fit into W (each item can be used only once)

Solution (exponential):

• Check 2n different subsets of items

• Verify if items fit into a knapsack and compute 

total value. Each verification takes O(n)

Time complexity O(n2n) = 4*16 = 64

[exponential in n]

Not in P?
subset total 

weight
total 
value

Ø 0 $0

{1} 7 $42

{2} 11 $12

{3} 9 $40

{4} 5 $25

{1,2} 18 $54

{1,3} 16 $82

{1,4} 12 $67

{2,3} 20 $52

{2,4} 16 $37

etc. ...

Example:

items = 

{(7 lbs, $42), 

(11 lbs, $12), 

(9 lbs, $40), 

(5 lbs, $25)} 

n=4 (4 items)

W = 20

What about our earlier DP solution?



KnapsackDP(W, n items)
initialize all maxvalue [0, i ] ← 0  
initialize all maxvalue [w, 0]  ← 0  
for i from 1 to n:

forw from 1 toW :  
maxvalue [w, i] ← maxvalue [w, i -1]   
ifwi ≤ w :

val ← maxvalue [w − wi, i − 1] + vi

if val > maxvalue [w, i]:
maxvalue [w, i] ← val

returnmaxvalue [W, N]

Exhaustive – running time: O(n2n) 4*16 = 64

DP – running time O (nW ) 20*4 = 80

1,2,3,….W

For n=4, W=20



Running Time of DP Knapsack: 

closer look

• The running time is O (nW )

• W is not the size of the input - after all, the input consists 

of a single number (total knapsack capacity) - not W

knapsacks

• For example for W=1,125,899,906,842,624 we will perform 

1,125,899,906,842,624 loop iterations, while the input still consists 

of a single number W

• We loop over all possible values between 0 and W, and the 

time is not proportional to the size of the input, which is in 

fact n+1 (n items and 1 number W)



DP Knapsack is not polynomial! 

• The running time of an algorithm is defined as a function of the input 

size

• In normal O(n) complexity we assume that reading each number takes a 

constant time (each number is using a constant number of bits)

• Say, we use m=log W bits to represent number W

• We need to loop from 0 to W=2m

• The complexity is O(n2m): we need to check 2m imaginary knapsacks!

• The algorithm is exponential in the input size – the number of bits used 

to represent the capacity: if we add just one more bit – we double W 

and double the run time

DP knapsack is exponential:

O(n2m)
Input size: number 
of bits to represent 

number W



Pseudo-polynomial running time

• The complexity of an algorithm refers to the number of input 

elements, not a value of a single element in the input 

• More precisely, the input size n is a number of keystrokes 

(alternatively number of bits) needed to describe the input

• Thus the complexity of the knapsack remains exponential in input 

size even with dynamic programming 

• The DP knapsack algorithm is pseudo-polynomial. That means: if 

W is O(n) then the algorithm is polynomial. However if W is > O(n), 

then algorithm is exponential in m – number of bits encoding W

• NP-hard problems with pseudo-polynomial solutions are called 

weakly NP-complete



Polynomial or pseudo-polynomial?

• Is prime (num)

• Naïve GCD (a,b)

• Money change (target)

• Subset sum (A of size n, target sum)

• Edit distance (S1 of size m, S2 of size n)

• Bellman-Ford (G(V,E), source s)

wikipedia link

https://en.wikipedia.org/wiki/Knapsack_problem#Computational_complexity


Polynomial or pseudo-polynomial?

• Is prime (num) – pseudo-polynomial

• Naïve GCD (a,b) – pseudo-polynomial

• Money change (target) – pseudo-polynomial

• Subset sum (A of size n, target sum) – pseudo-polynomial

• Edit distance (S1 of size m, S2 of size n) –polynomial

• Bellman-Ford (G(V,E), source s) – polynomial



Intractable problems

Not all problems are tractable=can be solved in polynomial time

What is common to all the above problems: they can be solved 

via exhaustive search



Problem types

Most existing computational problems belong to one of 

three types:

• Decision problems: return Boolean answer Yes/No

• Optimization problems: return min/max of some function 

[subject to constraints]

• Construction problems: return a structure with desired 

properties



Problem types: examples

• Decision problems: return Boolean answer Yes/No

• Is there a subset with sum = k? Yes or no?

• Is there a cycle in the graph which passes through all vertices and 
visits every edge exactly once?

• Optimization problems: return min/max of some function

• What is the value of the min-cost path from s to t?

• What is the max possible value in a knapsack?

• Construction problems: return a structure with desired 

properties

• Produce a shortest path from s to t

• Produce a sequence of items in knapsack of maximum value



Complexity theory considers

decision problems only
Decision problems: return Boolean answer Yes/No

They are the most fundamental computational problems.

Problem of any other type can be reduced to a decision problem 

or a sequence of decision problems



Example 1: Optimization problem

Problem p1: Max value of knapsack (optimization problem)

Problem p2: Is there a knapsack of value at least k (decision 

problem)

Reduction of p1 to p2:

• We ask: is there a knapsack with value V = (vi+v2+v3+…vn)?
• If the answer is yes, this is the max value – we fit all the available 

items
• If the answer is no, next decision problem: is there knapsack with 

value V/2?
• Binary search until we find the max value



Example 2: Construction problem

Problem p1: Sequence of items in max-valued knapsack 

(construction)

Problem p2: Max value of knapsack (optimization)

Problem p3: Is there a knapsack of value at least k (decision)

Reduction of p1 to p2 (which in turn reduces to p3)

• After we found max value Vmax (see previous slide), we start 

removing one item i at a time and ask: is there still knapsack with 

value Vmax?

• If the answer is no, the solution has to include item i

• We check for all n items in turn



Complexity class NP

The complexity class NP is defined to include all the decision 

problems from class P but allows for the inclusion of problems 

that may not be in P

Every problem in NP can be solved in exponential time via 

Exhaustive Search

The solution must be efficiently verifiable: 

• Solutions (certificates) always have length polynomial in 

input size

• Proposed solution can be verified in polynomial time

Checking a given solution is polynomial, 

number of candidates to check can be exponential!



Checking solution to Sudoku can be done in 

polynomial time. So sudoku is in NP

Class NP—example



Class NP—example

Checking the total value of a proposed knapsack can 

be done in polynomial time. So knapsack is in NP

Problem: is there a knapsack with value $40?

• {3, 4} has value $40 (and weight 11)

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance 

(weight limit W = 11)



Which problems in NP are tractable?

The definitions seem very similar…

Min vertex coverSpanning tree

Hamiltonian Cycle

Shortest path Longest path

Eulerian cycle



Defining Intractability

• Complexity class NP contains different problems: some 

of them we know to be tractable and others 

intractable: a polynomial-time algorithm is unknown 

• Problems in NP are still decidable (solvable): if only we 

could magically guess the right solution, we could then 

quickly verify it

• How do we formally define intractability?

• Evidence of intractability: relative difficulty

TSP is “at least as hard as” the list of really hard 

problems



Use of reductions

• Reduction from one problem to 

another is a routine approach in 

algorithm design

• For any new problem Y we first ask: 

• Maybe I already know how to solve 

it? Maybe I can rephrase it as a 

shortest-path problem X? 

• Maybe I can invoke a known 

algorithm for X multiple times?

• Or use a known algorithm to solve 

part of a new problem?

Call X

Call X

Treated as 
a blackbox



Reductions: informally

Informally: 

Problem Y reduces to X if given an algorithm for solving X, we 

can use this algorithm as a subroutine for solving Y

Examples:

• Computing median reduces to sorting

• All pair shortest paths reduces to n invocations of the single-

source shortest path



Polynomial-time reductions

Formal definition: Decision problem Y is (polynomial-time) reducible to 

decision problem X if we can convert any instance of Y into an instance of X 

and the following conditions hold:

• The conversion of input of Y to input of X takes polynomial number of steps 

and the new input is polynomial in size of the original input

• All the additional operations are polynomial in the input size, and the calls to 

X can be done at most polynomial number of times

• For any instance of problem Y the reduction which uses X returns the correct 

decision

Notation: Y ≤ pX

Instance of Y Instance of X

x

Algorithm for X

Yes

No

Yes

No
Poly time

Algorithm for Y

y



Completeness, or relative hardness

• Suppose Y reduces to X in polynomial time: Y ≤ p X

• If X is tractable then Y is tractable (polynomial time is 

additive)

• If we know that Y cannot be solved efficiently in poly-time, 

then X cannot be solved in poly-time either

• Contrapositive use of reductions:

If Y is not in P then neither is X

X is at least as hard as Y

• To use this idea of comparative hardness, we need to have at 

least one problem that is not in P: this will be the hardest 

problem in NP, and we will call it NP-complete



NP-completeness

• By definition: solving 1 NP-complete problem in poly-time will 

provide a solution to all NP problems [P=NP]

• Interpretation: an NP-complete problem encodes 

simultaneously all problems for which the solution can be 

efficiently recognized (a “universal problem”)

• Can such a problem really exist? 



Cook-Levin theorem

NP-complete problems exist

Any computer program can be represented by a circuit-SAT.

Circuit-SAT is NP-complete

(Cook 71, Levin 73)

You’ll see the proof in CSCI 361



The logic of comparative hardness

Suppose we can reduce problem Y to problem X in polynomial time

• If Y is in P then nothing is known about X – we can always encode the 

easy instance into a hard one

• If X is in P then Y is also in P: solve X in poly time + poly time of 

reduction

• If Y is not in P then X is not in P (contrapositive): suppose X is in P then Y 

should also be in P – but we know it is not

• If X is not in P then nothing known about Y – Y might still have a poly 

solution – we could have encoded an easy problem Y into a  hard problem 

X 

Y ≤ p X

Known problem New problem

To prove that a new problem X is NP-complete,

reduce a known NP complete problem Y to X



Given a logical expression, can we assign “True” and “False” to the 

variables to satisfy the equation (make the expression True)?

SAT. Given a CNF formula ϕ, does it have a satisfying truth 

assignment?

3-SAT. A SAT formula where each clause contains exactly 3 literals 

(corresponding to different variables)

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Satisfying instance: x1 = 1, x2 = 1, x3 = 0, x4 =  0

SAT  ,3-SAT ∈ 𝖭𝖯

• Certificate: truth assignment to variables (poly-size)

• Verification: check if assignment makes ϕ true (poly-time)

Classic problem in NP: Satisfiability



Decision tree
Decision problems can be expressed as a tree of decisions or choices

x2

x1

x2

x3 x3 x3 x3

Alternative definition of class NP:

The decision tree may have exponential number of leaves

The height of the decision tree must be polynomial in input size

Each node of the tree must be encoded in polynomial number of bits

Each leaf represents a solution (certificate) and can be reached in polynomial 

number of steps

0 1

ϕ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)



Class NP: Non-deterministic Polynomial

• When searching for a satisfying assignment, we allow to use function 

choose(b) which randomly (non-deterministically) chooses the next 

decision

• Once all the selections have been made – the solution can be easily 

verified

• We allow a random “guess”. If we are lucky – we found the satisfying 

assignment

ϕ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

x2

x1

x2

x3 x3 x3 x3

0 1

Vast majority of natural computational problems are in NP



NP: name

Non-deterministic Polynomial (Knuth, Terminological Proposal, 1974)

Alternative name:

PET
Possibly Exponential Time (currently)

Provably Exponential Time (if proven that P ≠ NP)

Previously Exponential Time (if proven that P = NP)



P vs NP

We know that every problem in P is also in NP

What about the reverse?

• If a problem can be efficiently verified, does that mean it

can be efficiently solved in the first place?

• Or, do there exist problems that can be verified quickly 

that are provably impossible to solve quickly?

The answer: we do not know



Million Dollar Question: 

P vs NP

https://medium.com/@mpreziuso/

https://medium.com/@mpreziuso/


Is P=NP?

Widely believed: P≠ NP

But this has not been proven!

Arguments:

1. P≠ NP (psychological). Many smart people tried to solve at least 

one NP-complete problem and never succeeded 

2. P≠ NP (philosophical). To prove something is much more difficult 

than to verify somebody else’s proof. Verifying in poly-time does 

not imply that we can solve in poly-time. Can mathematical 

creativity be automated?

3. P=NP (mathematical). There are surprisingly efficient polynomial-

time algorithms (i.e. Number of inversions, Matrix multiplication) 

which seem counter-intuitive and difficult to discover. So maybe 

we just need to try harder?



23 NP-complete problems
(Karp, 72)

All proven to be at least as hard as Circuit-SAT


