
Proving relative hardness

(by reduction)

Lecture 08.02
by Marina Barsky

The proof by reductions

Suppose we can reduce problem Y to problem X in polynomial time

• If Y is in P then nothing is known about X – we can always encode the

easy instance into a hard one

• If X is in P then Y is also in P: solve X in poly time + poly time of

reduction

• If Y is not in P then X is not in P (contrapositive): suppose X is in P then Y

should also be in P – but we know it is not

• If X is not in P then nothing known about Y – Y might still have a poly

solution – we could have encoded an easy problem Y into a hard problem

X

Y ≤ p X

Known problem New problem

To prove that a new problem X is NP-complete,

reduce a known NP complete problem Y to X

Proving NP-hardness

The new problem X is NP-complete if:

1. X is in NP (solution is verifiable in polynomial time)

2. A known NP-complete problem is polynomial-time reducible to X

3-SAT. Given a CNF formula ϕ where each clause contains

exactly 3 literals, does it have a satisfying truth assignment?

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Satisfying instance: x1 = 1, x2 = 1, x3 = 0, x4 = 0

Let’s assume that we know that 3-SAT is NP-hard

Recap: 3-SAT problem

Sample reduction

Reduction of 3-SAT to Vertex Cover

New problem X: Vertex cover

So if we can show that Y≤pX AND we know that Y is hard (NP-complete),

then X must be NP-complete.

As an example, we will prove that Vertex-Cover is NP-complete

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover

Input: undirected graph G(V,E) and an integer k

Output: Yes, if there is a subset C of k vertices such that, for every

edge (v,w) of G, v ∈ C or w ∈ C (possibly both). No, otherwise.

VERTEX-COVER as a decision problem

Y X

1. Vertex-Cover is in NP

We need to show that there exists a poly-size certificate and verification is

in polynomial time

Let’s number vertices of G from 1 to N.

If somebody hands us a collection C of k numbers each in interval from 1 to

N, we can verify if this is a vertex cover in polynomial time

For this, we insert all the numbers of C into a dictionary, and then we

examine each of the edges in G to make sure that, for each edge (v,w) in G, v

is in C or w is in C.

• If we ever find an edge with neither of its end-vertices in G, then we

output “no”

• If we run through all the edges of G so that each has an end-vertex in C,

then we output “yes”

Such a verification runs in polynomial time O(m) = O(n2).

Thus, VERTEX-COVER is in NP.

2. Reduction of 3-SAT to Vertex-Cover

We take a general instance of 3-SAT problem

Each 3-SAT instance contains n literals x1, x2, … xn and m clauses

𝜙 = (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

4 literals

3 clauses

We convert the instance into a graph as following:

For each literal i, we create 2 nodes 𝑥𝑖 and ഥ𝑥𝑖 with an edge between

them: truth-setting component

For each clause we create 3 nodes connected into a triangle. Each node

has an additional edge to the corresponding literal: clause-satisfying

component

For each literal, create a pair of nodes

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

For each clause, create a triangle

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Connect each variable in the clause to the

corresponding literal

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This construction clearly runs in polynomial time

Instance of Vertex Cover constructed from

instance of 3-SAT

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Example graph G as an instance of the VERTEX-COVER problem
constructed from the formula 𝜙

Truth-
setting

component

Clause-
satisfying

component

Claim: If we can find a vertex cover of size at most k=n + 2m (n-

number of literals, m-number of clauses), then this vertex cover

represents a truth assignment for 3-SAT problem

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Proof: 1/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain at least two vertices from each clause-
satisfying component (to cover all three edges of a triangle).

Proof: 2/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain two vertices from each clause-satisfying
component (to cover all edges of a triangle).

Now all the outgoing edges from yellow vertices are covered automatically.

Proof: 3/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This leaves one edge incident to a clause-satisfying component that is not
covered by a vertex in the clause-satisfying component (colored blue).
Hence, each blue edge must be covered by the other endpoint, which is labeled
with a literal.
We select this literal node from each pair of literals. This literal node will also
cover an edge in the corresponding Truth-setting component

Proof: 4/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Now all edges are covered by 2m nodes from clause components plus n nodes –
one from each truth component.
We constructed a vertex cover of size 2m +n

x1=1

x2=1
x3=0

Proof: 4/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

But if we could find a vertex cover in polynomial time for any instance of the
problem, then we would also solve a 3SAT problem:
Having this cover, we can now assign the literal in 𝜙 associated with each green
node 1, and each clause in 𝜙 will be satisfied (because each clause is a
disjunction, and it is enough that at least one of the literals is True).

In this example: x1=1, x2=1, x3=0, x4=1. All of 𝜙 becomes satisfied.

x1=1

x2=1
x3=0

Conclusion

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Thus, if we can find a vertex cover of size at most k=n+2m in this graph, then we
can find a set of variables that satisfy the original 3-SAT formula.

If we knew how to solve vertex-cover, we would be able to solve 3-SAT.
But 3-Sat is NP-complete – that means vertex-cover cannot be solved in
polynomial time – or it would make the solution to 3-SAT polynomial too

x1=1

x2=1
x3=0

We have shown that:

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover

VERTEX-COVER is NP-complete

This reduction uses gadgets (components)

Constructing them is a skill which requires a lot of practice.
You will get this practice in the course on the Theory of Computation

Programmer’s Guide to NP-complete

problems

• If you suspect a new problem X is NP-complete, the first

step is to look for it in the catalogue of known NP-complete

problems.

• If it is not there - find there a known NP-complete problem

Y similar to X, and prove a reduction showing that a similar

known NP-complete problem is reducible to the one you

want to solve.

• If neither of these works, you probably should continue to

try to find an efficient algorithm…

https://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455

Dealing with NP-complete problems

Algorithmic approaches to NP-complete problems: video

• Special case of NP-complete problem may have an efficient

solution. Maybe the real-life problem you are trying to solve can

be modeled differently.

• Solve the problem approximately instead of exactly. Often it is

possible to come up with a provably fast algorithm, that doesn't

solve the problem exactly but gives a solution within some error

from optimal.

• Use an exponential time solution anyway. If you really have to

solve the problem exactly, you can implement an exponential

algorithm. In many cases you can design an exponential

algorithm which is still better than the Brute-Force.

https://drive.google.com/file/d/14OLZ6cDHsl47le7V5rKgeI7tOE-UkLIF/view?usp=sharing

Sample algorithms
The videos are from the second course on Algorithms by Tim Roughgarden

(Stanford)

• Solve the problem approximately.

Example: approximate solution to knapsack problem using greedy and

dynamic programming approaches:
• Video 1
• Video 2
• Video 3
• Video 4
• Video 5
• Video 6

• Improve exponential-time solution.

Example: better algorithm for Vertex Cover:
• Video 1
• Video 2
• Video 3

https://drive.google.com/file/d/1jPUV7A8YHKkCzSwnLB08ezl0-FYyi_6b/view?usp=sharing
https://drive.google.com/file/d/1EaPWhLm9wzDRg8hWthhqcXbBGCG_puN3/view?usp=sharing
https://drive.google.com/file/d/1TRvXwIejVgql53HrzUfUbJhpuNGQN4x1/view?usp=sharing
https://drive.google.com/file/d/1bKkVHwmxn6Wa4KGaGO-a5TmynMCgsxDo/view?usp=sharing
https://drive.google.com/file/d/1GPTjusNCkOsYLM0aP6_U8AfCWcorzSuV/view?usp=sharing
https://drive.google.com/file/d/1s40s0t4HrwCmgzjpFftHSTgGmUB0651K/view?usp=sharing
https://drive.google.com/file/d/1xyQG9lvqn-dCy5ynp84mvbhgbhqZnu72/view?usp=sharing
https://drive.google.com/file/d/18rjSqxV_gUSzCQ76vXvLICnEHqjmkEh-/view?usp=sharing
https://drive.google.com/file/d/17P5rESs25MIJqvGIkGmu6JER0yReCHhf/view?usp=sharing

