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The proof by reductions

Suppose we can reduce problem Y to problem X in polynomial time

• If Y is in P then nothing is known about X – we can always encode the 

easy instance into a hard one

• If X is in P then Y is also in P: solve X in poly time + poly time of 

reduction

• If Y is not in P then X is not in P (contrapositive): suppose X is in P then Y 

should also be in P – but we know it is not

• If X is not in P then nothing known about Y – Y might still have a poly 

solution – we could have encoded an easy problem Y into a  hard problem 

X 

Y ≤ p X

Known problem New problem

To prove that a new problem X is NP-complete,

reduce a known NP complete problem Y to X



Proving NP-hardness

The new problem X is NP-complete if:

1. X is in NP (solution is verifiable in polynomial time)

2. A known NP-complete problem is polynomial-time reducible to X



3-SAT. Given a CNF formula ϕ where each clause contains

exactly 3 literals, does it have a satisfying truth assignment?

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Satisfying instance: x1 = 1, x2 = 1, x3 = 0, x4 =  0

Let’s assume that we know that 3-SAT is NP-hard

Recap: 3-SAT problem



Sample reduction

Reduction of 3-SAT to Vertex Cover



New problem X: Vertex cover

So if we can show that Y≤pX AND we know that Y is hard (NP-complete), 

then X must be NP-complete. 

As an example, we will prove that Vertex-Cover is NP-complete

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover 

Input: undirected graph G(V,E) and an integer k

Output: Yes, if there is a subset C of k vertices such that, for every 

edge (v,w) of G, v ∈ C or w ∈ C (possibly both). No, otherwise. 

VERTEX-COVER as a decision problem

Y X



1. Vertex-Cover is in NP

We need to show that there exists a poly-size certificate and verification is 

in polynomial time

Let’s number vertices of G from 1 to N. 

If somebody hands us a collection C of k numbers each in interval from 1 to 

N, we can verify if this is a vertex cover in polynomial time

For this, we insert all the numbers of C into a dictionary, and then we 

examine each of the edges in G to make sure that, for each edge (v,w) in G, v 

is in C or w is in C. 

• If we ever find an edge with neither of its end-vertices in G, then we 

output “no”

• If we run through all the edges of G so that each has an end-vertex in C, 

then we output “yes” 

Such a verification runs in polynomial time O(m) = O(n2). 

Thus, VERTEX-COVER is in NP.



2. Reduction of 3-SAT to Vertex-Cover

We take a general instance of 3-SAT problem

Each 3-SAT instance contains n literals x1, x2, … xn and m clauses 

𝜙 = (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

4 literals

3 clauses

We convert the instance into a graph as following:

For each literal i, we create 2 nodes 𝑥𝑖 and ഥ𝑥𝑖 with an edge between 

them: truth-setting component

For each clause we create 3 nodes connected into a triangle. Each node 

has an additional edge to the corresponding literal: clause-satisfying 

component



For each literal, create a pair of nodes

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑



For each clause, create a triangle

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑



Connect each variable in the clause to the 

corresponding literal

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This construction clearly runs in polynomial time



Instance of Vertex Cover constructed from 

instance of 3-SAT

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Example graph G as an instance of the VERTEX-COVER problem 
constructed from the formula 𝜙

Truth-
setting 

component

Clause-
satisfying 

component



Claim: If we can find a vertex cover of size at most k=n + 2m (n-

number of literals, m-number of clauses), then this vertex cover 

represents a truth assignment for 3-SAT problem 

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑



Proof: 1/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain at least two vertices from each clause-
satisfying component (to cover all three edges of a triangle). 



Proof: 2/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

The vertex cover must contain two vertices from each clause-satisfying 
component (to cover all edges of a triangle). 

Now all the outgoing edges from yellow vertices are covered automatically.



Proof: 3/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

This leaves one edge incident to a clause-satisfying component that is not 
covered by a vertex in the clause-satisfying component (colored blue).
Hence, each blue edge must be covered by the other endpoint, which is labeled 
with a literal. 
We select this literal node from each pair of literals. This literal node will also 
cover an edge in the corresponding Truth-setting component



Proof: 4/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Now all edges are covered by 2m nodes from clause components plus n nodes –
one from each truth component. 
We constructed a vertex cover of size 2m +n

x1=1

x2=1
x3=0



Proof: 4/4

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

But if we could find a vertex cover in polynomial time for any instance of the 
problem, then we would also solve a 3SAT problem: 
Having this cover, we can now assign the literal in 𝜙 associated with each green 
node 1, and each clause in 𝜙 will be satisfied (because each clause is a 
disjunction, and it is enough that at least one of the literals is True). 

In this example: x1=1, x2=1, x3=0, x4=1. All of 𝜙 becomes satisfied. 

x1=1

x2=1
x3=0



Conclusion

𝒙𝟏
𝒙𝟏

𝜙 = (𝑥1⋁𝑥2⋁𝑥3)⋀(𝑥1⋁𝑥2⋁𝑥3) ⋀ (𝑥2⋁𝑥3⋁𝑥4)

𝒙𝟐𝒙𝟐
𝒙𝟒

𝒙𝟒𝒙𝟑𝒙𝟑

𝒊𝟏𝟏

𝒊𝟏𝟐

𝒊𝟏𝟑 𝒊𝟐𝟏

𝒊𝟐𝟐

𝒊𝟐𝟑 𝒊𝟑𝟏

𝒊𝟑𝟐

𝒊𝟑𝟑

Thus, if we can find a vertex cover of size at most k=n+2m in this graph, then we 
can find a set of variables that satisfy the original 3-SAT formula.

If we knew how to solve vertex-cover, we would be able to solve 3-SAT.
But 3-Sat is NP-complete – that means vertex-cover cannot be solved in 
polynomial time – or it would make the solution to 3-SAT polynomial too

x1=1

x2=1
x3=0



We have shown that:

1. Vertex-Cover is in NP

2. 3-SAT ≤pVertex-Cover 

VERTEX-COVER is NP-complete

This reduction uses gadgets (components)

Constructing them is a skill which requires a lot of practice.
You will get this practice in the course on the Theory of Computation



Programmer’s Guide to NP-complete 

problems

• If you suspect a new problem X is NP-complete, the first 

step is to look for it in the catalogue of known NP-complete 

problems. 

• If it is not there - find there a known NP-complete problem 

Y similar to X, and prove a reduction showing that a similar 

known NP-complete problem is reducible to the one you 

want to solve. 

• If neither of these works, you probably should continue to 

try to find an efficient algorithm…

https://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455


Dealing with NP-complete problems

Algorithmic approaches to NP-complete problems: video

• Special case of NP-complete problem may have an efficient 

solution. Maybe the real-life problem you are trying to solve can 

be modeled differently. 

• Solve the problem approximately instead of exactly. Often it is 

possible to come up with a provably fast algorithm, that doesn't 

solve the problem exactly but gives a solution within some error 

from optimal. 

• Use an exponential time solution anyway. If you really have to 

solve the problem exactly, you can implement an exponential 

algorithm. In many cases you can design an exponential 

algorithm which is still better than the Brute-Force.

https://drive.google.com/file/d/14OLZ6cDHsl47le7V5rKgeI7tOE-UkLIF/view?usp=sharing


Sample algorithms
The videos are from the second course on Algorithms by Tim Roughgarden

(Stanford)

• Solve the problem approximately. 

Example: approximate solution to knapsack problem using greedy and 

dynamic programming approaches: 
• Video 1
• Video 2
• Video 3
• Video 4
• Video 5
• Video 6

• Improve exponential-time solution. 

Example: better algorithm for Vertex Cover:
• Video 1
• Video 2
• Video 3

https://drive.google.com/file/d/1jPUV7A8YHKkCzSwnLB08ezl0-FYyi_6b/view?usp=sharing
https://drive.google.com/file/d/1EaPWhLm9wzDRg8hWthhqcXbBGCG_puN3/view?usp=sharing
https://drive.google.com/file/d/1TRvXwIejVgql53HrzUfUbJhpuNGQN4x1/view?usp=sharing
https://drive.google.com/file/d/1bKkVHwmxn6Wa4KGaGO-a5TmynMCgsxDo/view?usp=sharing
https://drive.google.com/file/d/1GPTjusNCkOsYLM0aP6_U8AfCWcorzSuV/view?usp=sharing
https://drive.google.com/file/d/1s40s0t4HrwCmgzjpFftHSTgGmUB0651K/view?usp=sharing
https://drive.google.com/file/d/1xyQG9lvqn-dCy5ynp84mvbhgbhqZnu72/view?usp=sharing
https://drive.google.com/file/d/18rjSqxV_gUSzCQ76vXvLICnEHqjmkEh-/view?usp=sharing
https://drive.google.com/file/d/17P5rESs25MIJqvGIkGmu6JER0yReCHhf/view?usp=sharing

