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3 Layer Network on MNIST

Let's return to our MNIST dataset and attempt to classify it with our new network

 In last several chapters, we have learned that neural networks model correlation. In 
fact, the hidden layers (the middle one in our 3 layer network) can even create "intermedi-
ate" correlation to help solve for a task (seemingly out of mid air). How do we know that our 
network is creating good correlation? 
 Back when we learned about Stochastic Gradient Descent with Multiple Inputs, 
we ran an experiment where we froze one weight and then asked our network to continue 
training. As it was training, we watch the "dots find the bottom of the bowls" as it were. We 
were watching the weights become adjusted to minimize the error.
 When we froze the weight, however, we were surprised to see that the frozen weight 
still found the bottom of the bowl! For some reason, the bowl moved so that the frozen 
weight value becamse optimal. Furthemore, if we unfroze the weight after training to do 
some more training, it wouldn't learn! Why? Well, the error had already fallen to 0! As far as 
the network was concerned, there was nothing more to learn!
 This begs the question, what if the input to the frozen weight was actually important 
to predicting baseball victory in the real world? What if the network had figured out a way 
to accurately predict the games in the training dataset (because that's what networks do, 
they minimize the error), but somehow forgot to include a valuable input?
 This phenomenon is, unfortunately, extremely common in neural networks. In fact, 
on might say it's "The Arch Nemesis" of neural networks, Overfitting, and unfortunately, 
the more powerful your neural network's expressive power (more layers / weights), the more 
prone the network is to overfit. So, there's an everlasting battle going on in research where 
people continually find tasks that need more powerful layers but find themselves having to 
do lots of problem solving to make sure the network doesn't "overfit".
 In this chapter, we're going to study the basics of Regularization, which are key to 
combatting overfitting in neural networks. In order to do this, we're going first start with our 
most powerful neural network (3 layer network with relu hidden layer) on our most chal-
lenging task (MNIST digit classification). 
 So, to start, go ahead and train the network on the following page. You should see 
the same results as those listed below. Alas! Our network learned to perfectly predict the 
training data! Should we celebrate?
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import numpy as np

np.random.seed(1)

def relu(x):
    return (x >= 0) * x # returns x if x > 0
                       # return 0 otherwise

def relu2deriv(output):
    return output >= 0 # returns 1 for input > 0
                    # return 0 otherwise

alpha = 0.005
iterations = 300
hidden_size = 40
pixels_per_image = 784
num_labels = 10

weights_0_1 = 0.2*np.random.random((pixels_per_image,hidden_size)) - 0.1
weights_1_2 = 0.2*np.random.random((hidden_size,num_labels)) - 0.1

for j in xrange(iterations):
    
    error = 0.0
    correct_cnt = 0
    
    for i in xrange(len(images)):
        
        layer_0 = images[i:i+1]
        layer_1 = relu(np.dot(layer_0,weights_0_1))
        layer_2 = np.dot(layer_1,weights_1_2)

        error += np.sum((labels[i:i+1] - layer_2) ** 2)
        
        correct_cnt += int(np.argmax(layer_2) == \
                                        np.argmax(labels[i:i+1]))

        layer_2_delta = (labels[i:i+1] - layer_2)
        layer_1_delta = layer_2_delta.dot(weights_1_2.T)\
                                    * relu2deriv(layer_1)
        
        weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
        weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)
    

    sys.stdout.write("\r"+ \
                     " I:"+str(j)+ \
                     " Error:" + str(error/float(len(images)))[0:5] +\
                     " Correct:" + str(correct_cnt/float(len(images))))

....
I:299 Error:0.101 Correct:1.0
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Well... that was easy!

Our neural network perfectly learned to predict all 1000 images!

 So, in some ways, this is a real victory. Our neural network was able to take a dataset 
of 1000 images and learn to correlate each input image with the correct label. How did it do 
this? Well, it simply iterated through each image, made a prediction, and then updated each 
weight ever so slightly so that the prediction was better next time. Doing this long enough 
on all the images eventually reached a state where the network could correctly predict on all 
of the images! 
 Perhaps a non-obvious question: how well will the neural network do on an image 
that it hasn't seen before? In other words, how well will it do on an image that wasn't part 
of the 1000 images it was trained on? Well, our MNIST dataset has many more images than 
just the 1000 we trained on; let's try it out! In the same notebook from before "Chapter 6 
Neural Networks in the Real World" there are two variables called images_test and labels_
test. If you execute the following code, it will run the neural network on these images and 
evaluate how well the network classifies them.

error = 0.0
correct_cnt = 0

for i in xrange(len(test_images)):

    layer_0 = test_images[i:i+1]
    layer_1 = relu(np.dot(layer_0,weights_0_1))
    layer_2 = np.dot(layer_1,weights_1_2)

    error += np.sum((test_labels[i:i+1] - layer_2) ** 2)

    correct_cnt += int(np.argmax(layer_2) == \
                                    np.argmax(test_labels[i:i+1]))
sys.stdout.write("\r"+ \
                 " Error:" + str(error/float(len(test_images)))[0:5] +\
                 " Correct:" + str(correct_cnt/float(len(test_images))))

Error:0.803 Correct:0.601

The network did horribly! It only predicted with an accuracy of 60.1%. Why does it do so 
terribly on these new testing images when it learned to predict with 100% accuracy on the 
training data? How strange! We call this 60.1% number the test accuracy. It's the accuracy of 
the neural network on data that the network was NOT trained on. This number is important 
because it simulates how well our neural network will perform if we tried to use it in the real 
world (which only gives us images we haven't seen before). This is the score that matters!
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Memorization vs Generalization

"Memorizing" 1000 images is easier than "Generalizing" to all images.

 Let's consider again how the neural network learns. It adjusts each weight in each 
matrix so that the network is better able to take specific inputs and make a specific predic-
tion. Perhaps a better question might be, "If we train it on 1000 images which it learns to 
predict perfectly, why does it work on other images at all?" As you might expect, when our 
fully trained neural network is applied to a new image, it is only guaranteed to work well if 
the new image is nearly identical to an image from the training data. Why? Well, the neural 
network only learned to transform input data to output data for very specific input configura-
tions. If you give it something that doesn't look familiar, then it will predict randomly!
 Well this makes neural networks kindof pointless! What's the point in a neural 
network only working on the data you trained it on! You already know the correct classifica-
tions for those datapoints! Neural networks are only useful if they work on data we don't al-
ready know the answer to! As it turns out, there's a way to combat this. For a clue, below I've 
printed out BOTH the training and testing accuracy of the neural network as it was training 
(every 10 iterations). Notice anything interesting? You should see a clue to better networks!

I:0 Test-Err:0.650 Test-Acc:0.595 Train-Err:0.743 Train-Acc:0.511
I:10 Test-Err:0.471 Test-Acc:0.746 Train-Err:0.293 Train-Acc:0.917
I:20 Test-Err:0.478 Test-Acc:0.753 Train-Err:0.222 Train-Acc:0.952
I:30 Test-Err:0.501 Test-Acc:0.74 Train-Err:0.189 Train-Acc:0.974
I:40 Test-Err:0.527 Test-Acc:0.728 Train-Err:0.170 Train-Acc:0.986
I:50 Test-Err:0.552 Test-Acc:0.708 Train-Err:0.158 Train-Acc:0.991
I:60 Test-Err:0.574 Test-Acc:0.692 Train-Err:0.150 Train-Acc:0.992
I:70 Test-Err:0.595 Test-Acc:0.676 Train-Err:0.144 Train-Acc:0.993
I:80 Test-Err:0.614 Test-Acc:0.661 Train-Err:0.138 Train-Acc:0.995
I:90 Test-Err:0.633 Test-Acc:0.651 Train-Err:0.134 Train-Acc:0.996
I:100 Test-Err:0.650 Test-Acc:0.645 Train-Err:0.129 Train-Acc:0.996
I:110 Test-Err:0.667 Test-Acc:0.635 Train-Err:0.126 Train-Acc:0.997
I:120 Test-Err:0.682 Test-Acc:0.633 Train-Err:0.123 Train-Acc:0.998
I:130 Test-Err:0.697 Test-Acc:0.631 Train-Err:0.121 Train-Acc:0.998
I:140 Test-Err:0.711 Test-Acc:0.627 Train-Err:0.119 Train-Acc:0.999
I:150 Test-Err:0.722 Test-Acc:0.627 Train-Err:0.117 Train-Acc:0.999
I:160 Test-Err:0.733 Test-Acc:0.625 Train-Err:0.116 Train-Acc:0.999
I:170 Test-Err:0.742 Test-Acc:0.62 Train-Err:0.114 Train-Acc:0.999
I:180 Test-Err:0.750 Test-Acc:0.616 Train-Err:0.112 Train-Acc:0.999
I:190 Test-Err:0.758 Test-Acc:0.614 Train-Err:0.111 Train-Acc:0.999
I:200 Test-Err:0.765 Test-Acc:0.612 Train-Err:0.110 Train-Acc:0.999
I:210 Test-Err:0.771 Test-Acc:0.611 Train-Err:0.108 Train-Acc:0.999
I:220 Test-Err:0.776 Test-Acc:0.612 Train-Err:0.107 Train-Acc:0.999
I:230 Test-Err:0.779 Test-Acc:0.611 Train-Err:0.106 Train-Acc:0.999
I:240 Test-Err:0.783 Test-Acc:0.61 Train-Err:0.105 Train-Acc:0.999
I:250 Test-Err:0.786 Test-Acc:0.605 Train-Err:0.104 Train-Acc:0.999
I:260 Test-Err:0.790 Test-Acc:0.606 Train-Err:0.103 Train-Acc:0.999
I:270 Test-Err:0.793 Test-Acc:0.603 Train-Err:0.103 Train-Acc:0.999
I:280 Test-Err:0.796 Test-Acc:0.6 Train-Err:0.102 Train-Acc:0.999
I:290 Test-Err:0.800 Test-Acc:0.602 Train-Err:0.101 Train-Acc:1.0
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Overfitting in Neural Networks

Neural networks can get worse if we train them too much?

 For some reason, our test accuracy went up for the first 20 iterations, and then 
slowly decreased as the network trained more and more (during which time the training 
accuracy was still improving). This is very common in neural networks. Let me explain the 
phenomenon via analogy.

 Imagine that you are creating a mold for a common dinner fork, but instead of using 
it to create other forks you want to use it to identify if a particular utensil is in fact, a fork. 
If an object fits in the mold, you would conclude that the object is a fork, and if it does not, 
then you would conclude that it is not a fork. 

 Let's say you set out to make this mold, and you start with a wet piece of clay and 
a big bucket of 3-pronged forks, spoons, and knives. You then press each of the forks into 
the same place in the mold to create an outline, which sortof looks like a mushy fork. You 
repeatedly place all the forks in the clay over and over, hundreds of times. When you let 
the clay dry, you then find that none of the spoons or knives fit into this mold, but all of the 
forks fit into this mold. Awesome! You did it! You correctly made a mold that can only fit the 
shape of a fork!

 However, what happens if someone hands you a 4-pronged fork? You look in your 
mold and notice that there is a specific outlines for three, thin prongs in your clay. Your 
4-pronged fork doesn't fit! Why not? It's still a fork!

 This is because the clay wasn't molded on any 4-pronged forks. It was only molded 
on the on 3-pronged variety. In this way, the clay has overfit to only recognize the types of 
forks that it was "trained" to shape. 

 This is exactly the same phenomenon that we just witnessed in our neural new-
tork. It's actually an even closer parallel than you might think. In truth, one way to view the 
weights of a neural network is as a high dimensional shape. As you train, this shape molds 
around the shape of your data, learning to distinguish one pattern from another. Unfor-
tunately, the images in our testing dataset were slightly different than the patterns in our 
training dataset. This caused our network to fail on many of our testing examples.

 This phenomenon is known as Overfitting. A more official definition of a neural 
network that overfits is a neural network that has learned the noise in the dataset instead of 
only making decisions based on the true signal. 
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 Where Overfi tting Comes From

What causes our neural networks to overfi t?

  Let's alter this scenario just a bit. Picture the fresh clay in your head again (unmo-
lded). What if you only pushed a single fork into it? Assuming the clay was very thick, it 
wouldn't have as much detail as the previous mold did (which was in-printed many times) 
Th us, it would be only a very general shape of a fork. Th is shape might, in fact, be compatible 
with both the 3 and 4 pronged variety of fork, because it's still a very fuzzy imprint.

 Assuming this information, our mold actually got worse at our testing dataset as we 
imprinted more forks because it learned more detailed information about the training dataset 
that it was being molded to.  Th is caused it to reject images that were even the slightest bit off  
from what it had repeatedly seen in the training data. So, what is this detailed information in 
our images that is incompatible with our test data? In our fork analogy, this was the number 
of prongs on the fork. In images, it's generally referred to as noise. In reality, it's a bit more 
nuanced. Consider these two dog pictures.

 Everything that makes these pictures unique beyond what captures the essence of 
"dog" is included in this term noise. In the picture on the left , the pillow and the background 
are both noise. In the picture on the right, the empty, middle blackness of the dog is actually 
a form of noise as well. It's really the edges that tell us that it's a dog. Th e middle blackness 
doesn't really tell us anything. On the picture on the left , however, the middle of the dog has 
the furry texture and color of a dog, which could help the classifi er correctly identify it. 

 So, how do we get our neural networks to train only on the signal (the essence of a 
dog) and ignore the noise (other stuff  irrelevant to the classifi cation)? Well, one way of doing 
this is by early stopping. It turns out that a large amount of noise comes in the fi ne grained 
detail of an image, and most of the signal (for objects) is found in the general shape and per-
haps color of the image. 
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The Simplest Regularization: Early Stopping

Stop training the network when it starts getting worse.

So, how do we get our neural networks to train only on the signal (the essence of a dog) and 
ignore the noise (other stuff irrelevant to the classification)? Well, one way of doing this is by 
early stopping. It turns out that a large amount of noise often comes in the fine grained de-
tail present in input data, and most of the signal is found in the more general characteristics 
of your input data (for images, this is things like big shapes and color). 

 So, how do we get our neural network to ignore the fine grained detail and only 
capture the general information present in our data (i.e. the general shape of dog or of an 
MNIST digit)? Well, we don't let the network train long enough to learn it! Just like in the 
"fork mold" example, it takes many forks imprinted many times to create the perfect outline 
of a 3 pronged fork. The first few imprints only generally capture the shallow outline of a 
fork. The same can be said for neural networks. As a result, early stopping is the cheapest 
form of "regularization", and if you're in a pinch, it can be quite effective. 

 This brings us to the subject that this chapter is all about, Regularization. Regu-
larization is a subfield of methods for getting your model to generalize to new data points 
(intead of just memorize the training data). It's a subset of methods that help your neural 
network learn the signal and ignore the noise. In our case, it's a toolset at our disposal to 
create neural networks that have these properties.

 
 So, the next question might be, how do we know when to stop? In truth, the only 
real way to know is to run the model on data that isn't in your training dataset. This is typi-
cally done using a second test dataset called a "validation set". In some circumstances, if we 
used our test set for knowing when to stop, we could actually overfit to our test set. So, as a 
general rule, we don't use it to control training. We use a validation set instead. 
 You can see an example of validation being used in the github notebook "Chapter 6: 
Early Stopping", causing our previous net to stop at iteration 20.

A subset of methods used to encourage generalization in learned models, often by 
increasing the difficulty for a model to learn the fine-grained details of training data.

Regularization
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Industry Standard Regularization: Dropout

The Method: randomly turning neurons off (setting to 0) during training.

 
 So, this regularization technique really is as simple as it sounds. During training, 
you randomly set neurons in your network to zero (and usually the deltas on the same 
nodes during backpropagation, but you technically don't have to). This causes the neural 
network to train exclusively using random subsections of the neural network. Believe it or 
not, this regularization technique is generally accepted as the go-to, state-of-the-art regular-
ization technique for the vast majority of networks. It's methodology is simple and inexpen-
sive, although the intuitions behind why it works are a bit more complex.

 

 
 
 
 It turns out that the smaller a neural network is, the less it is able to overfit. Why? 
Well, small neural networks don't have very much expressive power. They can't latch onto 
the more granular details (i.e. noise) that tend to be the source of overfitting. They only have 
"room" to capture the big, obvious, high level features. 
 This notion of "room" or "capacity" is actually a really important one for you to keep 
in your mind. You can think of it like this. Remember our "clay" analogy from a few pages 
ago? Imagine if your clay was actually made of "sticky rocks" that were the size of dimes. 
Would that clay be able to make a very good imprint of a fork? Of course not! Why? Well, 
those stones are much like our weights. They form around our data, capturing the patterns 
we're interested in. If we only have a few, larger stones, then it can't capture nuanced detail. 
Each stone instead is pushed on by large parts of the fork, more or less averaging the shape 
(ignoring fine creases and corners). 
 Imagine again clay made up of very fine-grained sand. It's actually made up of mil-
lions and millions of small stones that can fit into every nook and cranny of a fork. This is 
what gives big neural networks the expressive power they often use to overfit to a dataset.
 So, how do we have the power of a large neural network with the resistance to 
overfitting of the small neural network? We take our big neural network and turn off nodes 
randomly. What happens when you take a big neural network and only use a small part of 
it? Well, it behaves like a small neural network! However, when we do this randomly over 
potentailly millions of different "sub-networks", the sum total of the entire network still 
maintains its expressive power! Neat, eh?

Why does Dropout Work? (perhaps oversimplified)
Dropout makes our big network act like a little one by randomly training 

little subsections of the network at a time, and little networks don't overfit.
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Why Dropout Works: Ensembling Works

Dropout is actually a form of training a bunch of networks and averaging them

 
 Something to keep in mind: neural networks always start out randomly. Why does 
this matter? Well, since neural networks learn by trial and error, this ultimately means that 
every neural network learns just a little bit differently. It might learn equally effectively, but 
no two neural networks are ever exactly the same (unless they start out exactly the same for 
some random or intentional reason). 
 This has an interesting property. When you overfit two neural networks, no two 
neural networks overfit in exactly the same way. Why? Well, overfitting only occurs until 
every training image can be predicted perfectly, at which point the error == 0 and the net-
work stops learning (even if you keep iterating). However, since each neural network starts 
by predicting randomly, then adjusting its weights to make better predictions, each network 
inevitably makes different mistakes, resulting in different updates. This culminates in a core 
concept.

While it is very likely for large, unregularized neural networks to overfit to noise, it is 
very unlikely for them to overfit to the same noise.

 Why do they not overfit to the same noise? Well, they start randomly, and they stop 
training once they have learned enough noise to disambiguate between all the images in 
the training set. Truth be told, our MNIST network only needs to find a handful of random 
pixels that happen to correlate with our output labels to overfit. However, this is contrasted 
with, perhaps, an even more important concept. 

Neural networks, even tough they are randomly generated, still start by learning the 
biggest, most broad sweeping features before learning much about the noise. 

  The takeaway is this; if you train 100 neural networks (all initialized randomly), 
they will each tend to latch onto different noise but similar broad signal. Thus, when they 
make mistakes, they often make differing mistakes.  This means that if we allowed them to 
vote equally, their noise would tend to cancel out, revealing only what they have all learned 
in common, the signal. 
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Dropout In Code

Here's how you actually use Dropout in the real world

 
 In our MNIST classification model, we're going to add Dropout to our hidden layer, 
such that 50% of the nodes are turned off (randomly) during training. Perhaps you will be 
surprised that this is actually only a 3 line change in our code. Below you can see a familiar 
snippet from our previous neural network logic with our dropout mask added.

layer_0 = images[i:i+1]
dropout_mask = np.random.randint(2,size=layer_1.shape)

layer_1 *= dropout_mask * 2
layer_2 = np.dot(layer_1, weights_1_2)

error += np.sum((labels[i:i+1] - layer_2) ** 2)

correct_cnt += int(np.argmax(layer_2) == \
      np.argmax(labels[i+i+1]))

layer_2_delta = (labels[i:i+1] - layer_2)
layer_1_delta = layer_2_delta.dot(weights_1_2.T)\
      * relu2deriv(layer_1)

layer_1_delta *= dropout_mask

weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)

  Indeed, to implement Dropout on a layer (in this case layer_1), one simply mul-
tiplies the layer_1 values by a random matrix of 1s and 0s. This has the affect of randomly 
"turning off " nodes in layer_1 by setting them to equal 0. Note that our dropout_mask uses 
what's called a "50% bernoulli distribution" such that 50% of the time, each value in the 
dropot_mask is a 1, and (1 - 50% = 50%) of the time, it is a 0.
 This is followed by something that may seem a bit peculiar. We multiply layer_1 by 
two! Why do we do this? Well, remember that layer_2 is going to perform a weighted sum of 
layer_1. Even though it's weighted, it's still a sum over the values of layer_1. Thus, if we turn 
off half the nodes in layer_1, then that sum is going to be cut in half! Thus, layer_2 would 
increase its sensitivity to layer_2, kindof like a person leaning closer to a radio when the 
volume is too low to better hear it. However, at test time, when we no longer use Dropout, 
the volume would be back up to normal! You may be surprised to find that this throws off 
layer_2's ability to listen to layer_1. Thus, we need to counter this by multiplying layer_1 by 
(1 / the percentage of turned on nodes). In this case, that's 1/0.5 which equals 2. In this way, 
the volume of layer_1 is the same between training and testing, despite Dropout.
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import numpy, sys
np.random.seed(1)
def relu(x):
  return (x >= 0) * x # returns x if x > 0
        # returns 0 otherwise

def relu2deriv(output):
  return output >= 0 #returns 1 for input > 0

alpha, iterations, hidden_size = (0.005, 300, 100)
pixels_per_image, num_labels = (784, 10)

weights_0_1 = 0.2*np.random.random((pixels_per_image,hidden_size)) - 0.1
weights_1_2 = 0.2*np.random.random((hidden_size,num_labels)) - 0.1

for j in range(iterations):
  error, correct_cnt = (0.0,0)
  for i in range(len(images)):
    layer_0 = images[i:i+1]
    layer_1 = relu(np.dot(layer_0,weights_0_1))
    dropout_mask = np.random.randint(2, size=layer_1.shape)
    layer_1 *= dropout_mask * 2
    layer_2 = np.dot(layer_1,weights_1_2)

    error += np.sum((labels[i:i+1] - layer_2) ** 2)
    correct_cnt += int(np.argmax(layer_2) == \
          np.argmax(labels[i:i+1]))
    layer_2_delta = (labels[i:i+1] - layer_2)
    layer_1_delta = layer_2_delta.dot(weights_1_2.T) * relu2deriv(layer_1)
    layer_1_delta *= dropout_mask

    weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
    weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)

  if(j%10 == 0):
    test_error = 0.0
    test_correct_cnt = 0
    
    for i in range(len(test_images)):
      layer_0 = test_images[i:i+1]
      layer_1 = relu(np.dot(layer_0,weights_0_1))
      layer_2 = np.dot(layer_1, weights_1_2)

      test_error += np.sum((test_labels[i:i+1] - layer_2) ** 2)
      test_correct_cnt += int(np.argmax(layer_2) == \
          np.argmax(test_labels[i:i+1]))

    sys.stdout.write("\n" + \
      "I:" + str(j) + \
      " Test-Err:" + str(test_error/ float(len(test_images)))[0:5] +\
      " Test-Acc:" + str(test_correct_cnt/ float(len(test_images)))+\
      " Train-Err:" + str(error/ float(len(images)))[0:5] +\
      " Train-Acc:" + str(correct_cnt/ float(len(images))))
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Dropout Evaluated on MNIST

Here's how you actually use Dropout in the real world.

 
 If you remember from before, our neural network (without Dropout) previously 
reached a test accuracy of 75.9% before falling down to finish training at 62.3% accuracy. 
When we add dropout, our neural network instead behaves this way.

I:0 Test-Err:0.681 Test-Acc:0.57 Train-Err:0.926 Train-Acc:0.388
I:10 Test-Err:0.495 Test-Acc:0.746 Train-Err:0.474 Train-Acc:0.769
I:20 Test-Err:0.454 Test-Acc:0.77 Train-Err:0.429 Train-Acc:0.824
I:30 Test-Err:0.460 Test-Acc:0.762 Train-Err:0.402 Train-Acc:0.835
I:40 Test-Err:0.467 Test-Acc:0.775 Train-Err:0.392 Train-Acc:0.836
I:50 Test-Err:0.460 Test-Acc:0.773 Train-Err:0.381 Train-Acc:0.843
I:60 Test-Err:0.458 Test-Acc:0.777 Train-Err:0.362 Train-Acc:0.869
I:70 Test-Err:0.466 Test-Acc:0.758 Train-Err:0.356 Train-Acc:0.879
I:80 Test-Err:0.454 Test-Acc:0.764 Train-Err:0.348 Train-Acc:0.879
I:90 Test-Err:0.454 Test-Acc:0.758 Train-Err:0.332 Train-Acc:0.895
I:100 Test-Err:0.452 Test-Acc:0.754 Train-Err:0.311 Train-Acc:0.905
I:110 Test-Err:0.456 Test-Acc:0.754 Train-Err:0.316 Train-Acc:0.903
I:120 Test-Err:0.450 Test-Acc:0.753 Train-Err:0.312 Train-Acc:0.903
I:130 Test-Err:0.450 Test-Acc:0.772 Train-Err:0.292 Train-Acc:0.913
I:140 Test-Err:0.455 Test-Acc:0.776 Train-Err:0.306 Train-Acc:0.918
I:150 Test-Err:0.456 Test-Acc:0.772 Train-Err:0.289 Train-Acc:0.927
I:160 Test-Err:0.464 Test-Acc:0.765 Train-Err:0.295 Train-Acc:0.917
I:170 Test-Err:0.462 Test-Acc:0.762 Train-Err:0.284 Train-Acc:0.928
I:180 Test-Err:0.466 Test-Acc:0.764 Train-Err:0.282 Train-Acc:0.922
I:190 Test-Err:0.468 Test-Acc:0.766 Train-Err:0.274 Train-Acc:0.934
I:200 Test-Err:0.472 Test-Acc:0.762 Train-Err:0.283 Train-Acc:0.94
I:210 Test-Err:0.478 Test-Acc:0.753 Train-Err:0.277 Train-Acc:0.93
I:220 Test-Err:0.471 Test-Acc:0.77 Train-Err:0.263 Train-Acc:0.938
I:230 Test-Err:0.474 Test-Acc:0.772 Train-Err:0.260 Train-Acc:0.937
I:240 Test-Err:0.488 Test-Acc:0.759 Train-Err:0.272 Train-Acc:0.935
I:250 Test-Err:0.480 Test-Acc:0.778 Train-Err:0.258 Train-Acc:0.939
I:260 Test-Err:0.488 Test-Acc:0.768 Train-Err:0.262 Train-Acc:0.943
I:270 Test-Err:0.487 Test-Acc:0.769 Train-Err:0.254 Train-Acc:0.945
I:280 Test-Err:0.503 Test-Acc:0.772 Train-Err:0.262 Train-Acc:0.938
I:290 Test-Err:0.509 Test-Acc:0.77 Train-Err:0.247 Train-Acc:0.949

 Not only does the network instead peak out at a score of 77.8%, it also doesn't over 
fit nearly as badly,  finishing training with a testing accuracy of 77%. Notice that the dropout 
also slows down the Training-Acc, which previously went straight to 100% and then stayed 
there.
 This should point to what Dropout really is. It's noise. It makes it more difficult for 
the network to train on the training data. It's like running a marathon with weights on your 
legs. It's harder to train, but when you take them off  for the big race, you end up running 
quite a bit faster becasue you trained for something that was much more difficult.
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Batch Gradient Descent

A method for increasing the speed of training and the rate of convergence.

 
 In the context of this chapter, I would like to briefly apply a concept introduced sev-
eral chapters ago, the concept of mini-batched stochastic gradient descent. I won't go into 
too much detail, as it's something that's largely taken for granted in neural newtork train-
ing. Furthemore, it's a very simple concept that doesn't really get more advanced even with 
the most state of the art neural networks. Simply stated, previously we trained one training 
example at a time, updating the weights after each example. Now, we're going to train 100 
training examples at a time averaging the weight updates between all 100 examples.  The 
code for this training logic is on the next page, and the training/testing output is below.

I:0 Test-Err:0.849 Test-Acc:0.325 Train-Err:1.347 Train-Acc:0.159
I:10 Test-Err:0.603 Test-Acc:0.643 Train-Err:0.602 Train-Acc:0.659
I:20 Test-Err:0.547 Test-Acc:0.708 Train-Err:0.538 Train-Acc:0.726
I:30 Test-Err:0.522 Test-Acc:0.735 Train-Err:0.503 Train-Acc:0.745
I:40 Test-Err:0.502 Test-Acc:0.746 Train-Err:0.487 Train-Acc:0.746
I:50 Test-Err:0.491 Test-Acc:0.752 Train-Err:0.466 Train-Acc:0.791
I:60 Test-Err:0.485 Test-Acc:0.762 Train-Err:0.447 Train-Acc:0.789
I:70 Test-Err:0.474 Test-Acc:0.767 Train-Err:0.439 Train-Acc:0.791
I:80 Test-Err:0.473 Test-Acc:0.769 Train-Err:0.441 Train-Acc:0.794
I:90 Test-Err:0.470 Test-Acc:0.759 Train-Err:0.439 Train-Acc:0.804
I:100 Test-Err:0.470 Test-Acc:0.756 Train-Err:0.419 Train-Acc:0.815
I:110 Test-Err:0.465 Test-Acc:0.758 Train-Err:0.413 Train-Acc:0.828
I:120 Test-Err:0.467 Test-Acc:0.769 Train-Err:0.407 Train-Acc:0.814
I:130 Test-Err:0.465 Test-Acc:0.773 Train-Err:0.403 Train-Acc:0.818
I:140 Test-Err:0.469 Test-Acc:0.768 Train-Err:0.413 Train-Acc:0.835
I:150 Test-Err:0.469 Test-Acc:0.771 Train-Err:0.397 Train-Acc:0.845
I:160 Test-Err:0.469 Test-Acc:0.776 Train-Err:0.403 Train-Acc:0.84
I:170 Test-Err:0.471 Test-Acc:0.772 Train-Err:0.394 Train-Acc:0.859
I:180 Test-Err:0.468 Test-Acc:0.775 Train-Err:0.391 Train-Acc:0.84
I:190 Test-Err:0.466 Test-Acc:0.78 Train-Err:0.374 Train-Acc:0.859
I:200 Test-Err:0.469 Test-Acc:0.783 Train-Err:0.392 Train-Acc:0.862
I:210 Test-Err:0.470 Test-Acc:0.769 Train-Err:0.378 Train-Acc:0.861
I:220 Test-Err:0.466 Test-Acc:0.782 Train-Err:0.369 Train-Acc:0.864
I:230 Test-Err:0.465 Test-Acc:0.786 Train-Err:0.368 Train-Acc:0.87
I:240 Test-Err:0.469 Test-Acc:0.782 Train-Err:0.369 Train-Acc:0.869
I:250 Test-Err:0.470 Test-Acc:0.776 Train-Err:0.362 Train-Acc:0.876
I:260 Test-Err:0.466 Test-Acc:0.787 Train-Err:0.371 Train-Acc:0.859
I:270 Test-Err:0.469 Test-Acc:0.778 Train-Err:0.357 Train-Acc:0.877
I:280 Test-Err:0.469 Test-Acc:0.778 Train-Err:0.371 Train-Acc:0.878
I:290 Test-Err:0.466 Test-Acc:0.775 Train-Err:0.359 Train-Acc:0.873

 Notice that our training accuracy has a bit of a smoother trend to it than it did 
before. Furthermore, we actually reach a slightly higher testing accuracy of 78.7%! Taking 
an average weight update consistently creates this kind of phenomenon during training. As 
it turns out, individual training examples are very noisy in terms of the weight updates they 
generate.  Thus, averaging them makes for a smoother learning process.
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import numpy as np
np.random.seed(1)

def relu(x):
  return (x >= 0) * x # returns x if x > 0

def relu2deriv(output):
  return output >= 0 # returns 1 for input > 0

alpha, iterations = (0.1, 300)
pixels_per_image, num_labels, hidden_size = (784, 10, 100)

weights_0_1 = 0.2*np.random.random((pixels_per_image,hidden_size)) - 0.1
weights_1_2 = 0.2*np.random.random((hidden_size,num_labels)) - 0.1

for j in range(iterations):
  error, correct_cnt = (0.0, 0)
  for i in xrange(len(images) / batch_size):
    batch_start, batch_end = ((i * batch_size),((i+1)*batch_size))

    layer_0 = images[batch_start:batch_end]
    layer_1 = relu(np.dot(layer_0,weights_0_1))
    dropout_mask = np.random.randint(2,size=layer_1.shape)
    layer_1 *= dropout_mask * 2
    layer_2 = np.dot(layer_1,weights_1_2)

    error += np.sum((labels[batch_start:batch_end] - layer_2) ** 2)
    for k in xrange(batch_size):
      correct_cnt += int(np.argmax(layer_2[k:k+1]) == \
        np.argmax(labels[batch_start+k:batch_start+k+1]))

    layer_2_delta = (labels[batch_start:batch_end]-layer_2)/batch_size
    layer_1_delta = layer_2_delta.dot(weights_1_2.T)\
      * relu2deriv(layer_1)
    layer_1_delta *= dropout_mask

    weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
    weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)

 The first thing you'll notice when running this code is that it runs way faster.  This 
is because each "np.dot" function is now performing 100 vector dot products at a time. As it 
turns out, CPU architectures are way faster at performing dot products batched in this way.
 There's actually more going on here, however. Notice that our alpha is 20x larger 
than it ways before. We can increase this for a rather fascinating reason. Consider if you 
were trying to  find a city using a very wobbly compass. If you just looked down, got a 
heading, and then ran 2 miles, you'd likely be way off course! However, if you looked down, 
took 100 headings and then averaged them, running 2 miles would probably take you in the 
general right direction.  Thus, because we're taking an average of a noisy signal (i.e.,
the average weight change over 100 training examples), we can take bigger steps! You will 
generally see batching ranging from size 8 to as high as 256. Generally, researchers pick 
numbers randomly until they find a batch_size/alpha pair that seems to work well. 
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Conclusion

 In this chapter we have addressed two of the most widely used methods for in-
creasing the accuracy and training speed of almost any neural architecture. In the following 
chapters, we will pivot from sets of tools that are universally applicable to nearly all neural 
networks to special purpose architectures that are advantageous for modeling specific types 
of phenomeon in data. See you there!
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