
Machine Learning:
Algorithms and

Applications
CSCI 370

Spring 2022
Professor: Marina Barsky

Introduction to Data Mining
(Second Edition)

Pang-Ning Tan,
Michael Steinbach,
Anuj Karpatne,
Vipin Kumar

Basic Machine Learning Algorithms

Selected Book Chapters

Optimizations.
Genetic Algorithm.
Genetic Programming.

From:
Programming Collective Intelligence
by Toby Segaran

86

Chapter 5CHAPTER 5

Optimization 5

This chapter will look at how to solve collaboration problems using a set of tech-
niques called stochastic optimization. Optimization techniques are typically used in
problems that have many possible solutions across many variables, and that have
outcomes that can change greatly depending on the combinations of these variables.
These optimization techniques have a wide variety of applications: we use them in
physics to study molecular dynamics, in biology to predict protein structures, and
in computer science to determine the worst possible running time of an algorithm.
NASA even uses optimization techniques to design antennas that have the right oper-
ating characteristics, which look unlike anything a human designer would create.

Optimization finds the best solution to a problem by trying many different solutions
and scoring them to determine their quality. Optimization is typically used in cases
where there are too many possible solutions to try them all. The simplest but least
effective method of searching for solutions is just trying a few thousand random
guesses and seeing which one is best. More effective methods, which will be dis-
cussed in this chapter, involve intelligently modifying the solutions in a way that is
likely to improve them.

The first example in this chapter concerns group travel planning. Anyone who has
planned a trip for a group of people, or perhaps even for an individual, realizes that
there are a lot of different inputs required, such as what everyone’s flight schedule
should be, how many cars should be rented, and which airport is easiest. Many out-
puts must also be considered, such as total cost, time spent waiting at airports, and
time taken off work. Because the inputs can’t be mapped to the outputs with a sim-
ple formula, the problem of finding the best solution lends itself to optimization.

The other examples in the chapter show the flexibility of optimization by considering
two completely different problems: how to allocate limited resources based on peo-
ple’s preferences, and how to visualize a social network with minimal crossed lines.
By the end of the chapter, you’ll be able to spot other types of problems that can be
solved using optimization.

Group Travel | 87

Group Travel
Planning a trip for a group of people (the Glass family in this example) from different
locations all arriving at the same place is always a challenge, and it makes for an
interesting optimization problem. To begin, create a new file called optimization.py
and insert the following code:

import time
import random
import math

people = [('Seymour','BOS'),
 ('Franny','DAL'),
 ('Zooey','CAK'),
 ('Walt','MIA'),
 ('Buddy','ORD'),
 ('Les','OMA')]

LaGuardia airport in New York
destination='LGA'

The family members are from all over the country and wish to meet up in New York.
They will all arrive on the same day and leave on the same day, and they would like
to share transportation to and from the airport. There are dozens of flights per day to
New York from any of the family members’ locations, all leaving at different times.
The flights also vary in price and in duration.

You can download a sample file of flight data from http://kiwitobes.com/optimize/
schedule.txt.

This file contains origin, destination, departure time, arrival time, and price for a set
of flights in a comma-separated format:

LGA,MIA,20:27,23:42,169
MIA,LGA,19:53,22:21,173
LGA,BOS,6:39,8:09,86
BOS,LGA,6:17,8:26,89
LGA,BOS,8:23,10:28,149

Load this data into a dictionary with the origin and destination (dest) as the keys
and a list of potential flight details as the values. Add this code to load the data into
optimization.py:

flights={}
#
for line in file('schedule.txt'):
 origin,dest,depart,arrive,price=line.strip().split(',')
 flights.setdefault((origin,dest),[])

 # Add details to the list of possible flights
 flights[(origin,dest)].append((depart,arrive,int(price)))

88 | Chapter 5: Optimization

It’s also useful at this point to define a utility function, getminutes, which calculates
how many minutes into the day a given time is. This makes it easy to calculate flight
times and waiting times. Add this function to optimization.py:

def getminutes(t):
 x=time.strptime(t,'%H:%M')
 return x[3]*60+x[4]

The challenge now is to decide which flight each person in the family should take. Of
course, keeping total price down is a goal, but there are many other possible factors
that the optimal solution will take into account and try to minimize, such as total
waiting time at the airport or total flight time. These other factors will be discussed
in more detail shortly.

Representing Solutions
When approaching a problem like this, it’s necessary to determine how a potential
solution will be represented. The optimization functions you’ll see later are generic
enough to work on many different types of problems, so it’s important to choose a
simple representation that’s not specific to the group travel problem. A very common
representation is a list of numbers. In this case, each number can represent which
flight a person chooses to take, where 0 is the first flight of the day, 1 is the second,
and so on. Since each person needs an outbound flight and a return flight, the length
of this list is twice the number of people.

For example, the list:

[1,4,3,2,7,3,6,3,2,4,5,3]

Represents a solution in which Seymour takes the second flight of the day from Bos-
ton to New York, and the fifth flight back to Boston on the day he returns. Franny
takes the fourth flight from Dallas to New York, and the third flight back.

Because it will be difficult to interpret solutions from this list of numbers, you’ll need
a routine that prints all the flights that people decide to take in a nice table. Add this
function to optimization.py:

def printschedule(r):
 for d in range(len(r)/2):
 name=people[d][0]
 origin=people[d][1]
 out=flights[(origin,destination)][r[d]]
 ret=flights[(destination,origin)][r[d+1]]
 print '%10s%10s %5s-%5s $%3s %5s-%5s $%3s' % (name,origin,
 out[0],out[1],out[2],
 ret[0],ret[1],ret[2])

The Cost Function | 89

This will print a line containing each person’s name and origin, as well as the depar-
ture time, arrival time, and price for the outgoing and return flights. Try this function
in your Python session:

>>> import optimization
>>> s=[1,4,3,2,7,3,6,3,2,4,5,3]
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 12:08-14:05 $142
 Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
 Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
 Walt Miami 15:34-18:11 $326 14:08-16:09 $232
 Buddy Chicago 14:22-16:32 $126 15:04-17:23 $189
 Les Omaha 15:03-16:42 $135 6:19- 8:13 $239

Even disregarding price, this schedule has some problems. In particular, since the
family members are traveling to and from the airport together, everyone has to arrive
at the airport at 6 a.m. for Les’s return flight, even though some of them don’t leave
until nearly 4 p.m. To determine the best combination, the program needs a way of
weighting the various properties of different schedules and deciding which is the
best.

The Cost Function
The cost function is the key to solving any problem using optimization, and it’s usu-
ally the most difficult thing to determine. The goal of any optimization algorithm is
to find a set of inputs—flights, in this case—that minimizes the cost function, so the
cost function has to return a value that represents how bad a solution is. There is no
particular scale for badness; the only requirement is that the function returns larger
values for worse solutions.

Often it is difficult to determine what makes a solution good or bad across many vari-
ables. Consider a few of the things that can be measured in the group travel example:

Price
The total price of all the plane tickets, or possibly a weighted average that takes
financial situations into account.

Travel time
The total time that everyone has to spend on a plane.

Waiting time
Time spent at the airport waiting for the other members of the party to arrive.

Departure time
Flights that leave too early in the morning may impose an additional cost by
requiring travelers to miss out on sleep.

Car rental period
If the party rents a car, they must return it earlier in the day than when they
rented it, or be forced to pay for a whole extra day.

90 | Chapter 5: Optimization

It’s not too hard to think of even more aspects of a particular schedule that could
make the experience more or less pleasant. Any time you’re faced with finding the
best solution to a complicated problem, you’ll need to decide what the important
factors are. Although this can be difficult, the big advantage is that once it’s done,
you can use the optimization algorithms in this chapter on almost any problem with
minimal modification.

After choosing some variables that impose costs, you’ll need to determine how to
combine them into a single number. In this example, it’s necessary to decide, for
instance, how much money that time on the plane or time waiting in the airport is
worth. You might decide that it’s worth spending $1 for every minute saved on air
travel (this translates into spending an extra $90 for a direct flight that saves an hour
and a half), and $0.50 for every minute saved waiting in the airport. You could also
add the cost of an extra day of car rental if everyone returns to the airport at a later
time of the day than when they first rented the car.

There are a huge number of possibilities for the getcost function defined here. This
function takes into account the total cost of the trip and the total time spent waiting
at airports for the various members of the family. It also adds a penalty of $50 if the
car is returned at a later time of the day than when it was rented. Add this function
to optimization.py, and feel free to add additional costs or to tweak the relative
importance of money and time:

def schedulecost(sol):
 totalprice=0
 latestarrival=0
 earliestdep=24*60

 for d in range(len(sol)/2):
 # Get the inbound and outbound flights
 origin=people[d][1]
 outbound=flights[(origin,destination)][int(sol[d])]
 returnf=flights[(destination,origin)][int(sol[d+1])]

 # Total price is the price of all outbound and return flights
 totalprice+=outbound[2]
 totalprice+=returnf[2]

 # Track the latest arrival and earliest departure
 if latestarrival<getminutes(outbound[1]): latestarrival=getminutes(outbound[1])
 if earliestdep>getminutes(returnf[0]): earliestdep=getminutes(returnf[0])

 # Every person must wait at the airport until the latest person arrives.
 # They also must arrive at the same time and wait for their flights.
 totalwait=0
 for d in range(len(sol)/2):
 origin=people[d][1]
 outbound=flights[(origin,destination)][int(sol[d])]
 returnf=flights[(destination,origin)][int(sol[d+1])]
 totalwait+=latestarrival-getminutes(outbound[1])
 totalwait+=getminutes(returnf[0])-earliestdep

Random Searching | 91

 # Does this solution require an extra day of car rental? That'll be $50!
 if latestarrival>earliestdep: totalprice+=50

 return totalprice+totalwait

The logic in this function is quite simplistic, but it illustrates the point. It can be
enhanced in several ways—right now, the total wait time assumes that all the family
members will leave the airport together when the last person arrives, and will all go
to the airport for the earliest departure. This can be modified so that anyone facing a
two-hour or longer wait rents his own car instead, and the prices and waiting time
can be adjusted accordingly.

You can try this function in your Python session:

>>> reload(optimization)
>>> optimization.schedulecost(s)
5285

Now that the cost function has been created, it should be clear that the goal is to
minimize cost by choosing the correct set of numbers. In theory, you could try every
possible combination, but in this example there are 16 flights, all with 9 possibilities,
giving a total of 916 (around 300 billion) combinations. Testing every combination
would guarantee you’d get the best answer, but it would take a very long time on
most computers.

Random Searching
Random searching isn’t a very good optimization method, but it makes it easy to
understand exactly what all the algorithms are trying to do, and it also serves as a
baseline so you can see if the other algorithms are doing a good job.

The function takes a couple of parameters. Domain is a list of 2-tuples that specify the
minimum and maximum values for each variable. The length of the solution is the
same as the length of this list. In the current example, there are nine outbound flights
and nine inbound flights for every person, so the domain in the list is (0,8) repeated
twice for each person.

The second parameter, costf, is the cost function, which in this example will be
schedulecost. This is passed as a parameter so that the function can be reused for
other optimization problems. This function randomly generates 1,000 guesses and
calls costf on them. It keeps track of the best guess (the one with the lowest cost)
and returns it. Add it to optimization.py:

def randomoptimize(domain,costf):
 best=999999999
 bestr=None
 for i in range(1000):
 # Create a random solution
 r=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]

92 | Chapter 5: Optimization

 # Get the cost
 cost=costf(r)

 # Compare it to the best one so far
 if cost<best:
 best=cost
 bestr=r
 return r

Of course, 1,000 guesses is a very small fraction of the total number of possibilities.
However, this example has many possibilities that are good (if not the best), so with
a thousand tries, the function will likely come across a solution that isn’t awful. Try
it in your Python session:

>>> reload(optimization)
>>> domain=[(0,8)]*(len(optimization.people)*2)
>>> s=optimization.randomoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
3328
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 12:08-14:05 $142
 Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
 Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
 Walt Miami 15:34-18:11 $326 14:08-16:09 $232
 Buddy Chicago 14:22-16:32 $126 15:04-17:23 $189
 Les Omaha 15:03-16:42 $135 6:19- 8:13 $239

Due to the random element, your results will be different from the results here. The
results shown are not great, as they have Zooey waiting at the airport for six hours
until Walt arrives, but they could definitely be worse. Try running this function
several times to see if the cost changes very much, or try increasing the loop size to
10,000 to see if you find better results that way.

Hill Climbing
Randomly trying different solutions is very inefficient because it does not take advan-
tage of the good solutions that have already been discovered. In our example, a
schedule with a low overall cost is probably similar to other schedules that have a
low cost. Because random optimization jumps around, it won’t automatically look at
similar schedules to locate the good ones that have already been found.

An alternate method of random searching is called hill climbing. Hill climbing starts
with a random solution and looks at the set of neighboring solutions for those that
are better (have a lower cost function). This is analogous to going down a hill, as
shown in Figure 5-1.

Imagine you are the person shown in the figure, having been randomly dropped into
this landscape. You want to reach the lowest point to find water. To do this, you
might look in each direction and walk toward wherever the land slopes downward

Hill Climbing | 93

most steeply. You would continue to walk in the most steeply sloping direction until
you reached a point where the terrain was flat or began sloping uphill.

You can apply this hill climbing approach to the task of finding the best travel
schedule for the Glass family. Start with a random schedule and find all the neigh-
boring schedules. In this case, that means finding all the schedules that have one per-
son on a slightly earlier or slightly later flight. The cost is calculated for each of the
neighboring schedules, and the one with the lowest cost becomes the new solution.
This process is repeated until none of the neighboring schedules improves the cost.

To implement this, add hillclimb to optimization.py:

def hillclimb(domain,costf):
 # Create a random solution
 sol=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]

 # Main loop
 while 1:

 # Create list of neighboring solutions
 neighbors=[]
 for j in range(len(domain)):

 # One away in each direction
 if sol[j]>domain[j][0]:
 neighbors.append(sol[0:j]+[sol[j]+1]+sol[j+1:])
 if sol[j]<domain[j][1]:
 neighbors.append(sol[0:j]+[sol[j]-1]+sol[j+1:])

 # See what the best solution amongst the neighbors is
 current=costf(sol)
 best=current
 for j in range(len(neighbors)):
 cost=costf(neighbors[j])
 if cost<best:
 best=cost
 sol=neighbors[j]

Figure 5-1. Seeking the lowest cost on a hill

Lower cost Higher cost

94 | Chapter 5: Optimization

 # If there's no improvement, then we've reached the top
 if best==current:
 break

 return sol

This function generates a random list of numbers within the given domain to create
the initial solution. It finds all the neighbors for the current solution by looping over
every element in the list and then creating two new lists with that element increased
by one and decreased by one. The best of these neighbors becomes the new solution.

Try this function in your Python session to see how it compares to randomly
searching for a solution:

>>> s=optimization.hillclimb(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
3063
>>> optimization.printschedule(s)
 Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
 Franny DAL 10:30-14:57 $290 10:51-14:16 $256
 Zooey CAK 10:53-13:36 $189 10:32-13:16 $139
 Walt MIA 11:28-14:40 $248 12:37-15:05 $170
 Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
 Les OMA 11:08-13:07 $175 18:25-20:34 $205

This function runs quickly and usually finds a better solution than randomly search-
ing. There is, however, one major drawback to hill climbing. Look at Figure 5-2.

From this figure it’s clear that simply moving down the slope will not necessarily lead
to the best solution overall. The final solution will be a local minimum, a solution
better than those around it but not the best overall. The best overall is called the
global minimum, which is what optimization algorithms are ultimately supposed to
find. One approach to this dilemma is called random-restart hill climbing, where the
hill climbing algorithm is run several times with random starting points in the hope
that one of them will be close to the global minimum. The next two sections, “Simu-
lated Annealing” and “Genetic Algorithms,” show other ways to avoid getting stuck
in a local minimum.

Figure 5-2. Stuck in a local minimum

Cost

Simulated Annealing | 95

Simulated Annealing
Simulated annealing is an optimization method inspired by physics. Annealing is the
process of heating up an alloy and then cooling it down slowly. Because the atoms
are first made to jump around a lot and then gradually settle into a low energy state,
the atoms can find a low energy configuration.

The algorithm version of annealing begins with a random solution to the problem. It
uses a variable representing the temperature, which starts very high and gradually
gets lower. In each iteration, one of the numbers in the solution is randomly chosen
and changed in a certain direction. In our example, Seymour’s return flight might be
moved from the second of the day to the third. The cost is calculated before and after
the change, and the costs are compared.

Here’s the important part: if the new cost is lower, the new solution becomes the
current solution, which is very much like the hill-climbing method. However, if the
cost is higher, the new solution can still become the current solution with a certain
probability. This is an attempt to avoid the local minimum problem shown in
Figure 5-2.

In some cases, it’s necessary to move to a worse solution before you can get to a bet-
ter one. Simulated annealing works because it will always accept a move for the
better, and because it is willing to accept a worse solution near the beginning of the
process. As the process goes on, the algorithm becomes less and less likely to accept
a worse solution, until at the end it will only accept a better solution. The probabil-
ity of a higher-cost solution being accepted is given by this formula:

p=e((-highcost–lowcost)/temperature)

Since the temperature (the willingness to accept a worse solution) starts very high,
the exponent will always be close to 0, so the probability will almost be 1. As the
temperature decreases, the difference between the high cost and the low cost
becomes more important—a bigger difference leads to a lower probability, so the
algorithm will favor only slightly worse solutions over much worse ones.

Create a new function in optimization.py called annealingoptimize, which implements
this algorithm:

def annealingoptimize(domain,costf,T=10000.0,cool=0.95,step=1):
 # Initialize the values randomly
 vec=[float(random.randint(domain[i][0],domain[i][1]))
 for i in range(len(domain))]

 while T>0.1:
 # Choose one of the indices
 i=random.randint(0,len(domain)-1)

 # Choose a direction to change it
 dir=random.randint(-step,step)

96 | Chapter 5: Optimization

 # Create a new list with one of the values changed
 vecb=vec[:]
 vecb[i]+=dir
 if vecb[i]<domain[i][0]: vecb[i]=domain[i][0]
 elif vecb[i]>domain[i][1]: vecb[i]=domain[i][1]

 # Calculate the current cost and the new cost
 ea=costf(vec)
 eb=costf(vecb)
 p=pow(math.e,(-eb-ea)/T)

 # Is it better, or does it make the probability
 # cutoff?
 if (eb<ea or random.random()<p):
 vec=vecb

 # Decrease the temperature
 T=T*cool
 return vec

To do annealing, this function first creates a random solution of the right length with
all the values in the range specified by the domain parameter. The temperature and
the cooling rate are optional parameters. In each iteration, i is set to a random index
of the solution, and dir is set to a random number between –step and step. It calcu-
lates the current function cost and the cost if it were to change the value at i by dir.

The line of code in bold shows the probability calculation, which gets lower as T gets
lower. If a random float between 0 and 1 is less than this value, or if the new solu-
tion is better, the function accepts the new solution. The function loops until the
temperature has almost reached 0, each time multiplying it by the cooling rate.

Now you can try to optimize with simulated annealing in your Python session:

>>> reload(optimization)
>>> s=optimization.annealingoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
2278
>>> optimization.printschedule(s)
 Seymour Boston 12:34-15:02 $109 10:33-12:03 $ 74
 Franny Dallas 10:30-14:57 $290 10:51-14:16 $256
 Zooey Akron 10:53-13:36 $189 10:32-13:16 $139
 Walt Miami 11:28-14:40 $248 12:37-15:05 $170
 Buddy Chicago 12:44-14:17 $134 10:33-13:11 $132
 Les Omaha 11:08-13:07 $175 15:07-17:21 $129

This optimization did a good job of reducing the overall wait times while keeping the
costs down. Obviously, your results will be different, and there is a chance that they
will be worse. For any given problem, it’s a good idea to experiment with different
parameters for the initial temperature and the cooling rate. You can also vary the
possible step size for the random movements.

Genetic Algorithms | 97

Genetic Algorithms
Another set of techniques for optimization, also inspired by nature, is called genetic
algorithms. These work by initially creating a set of random solutions known as the
population. At each step of the optimization, the cost function for the entire popula-
tion is calculated to get a ranked list of solutions. An example is shown in Table 5-1.

After the solutions are ranked, a new population—known as the next generation—is
created. First, the top solutions in the current population are added to the new
population as they are. This process is called elitism. The rest of the new population
consists of completely new solutions that are created by modifying the best
solutions.

There are two ways that solutions can be modified. The simpler of these is called
mutation, which is usually a small, simple, random change to an existing solution. In
this case, a mutation can be done simply by picking one of the numbers in the
solution and increasing or decreasing it. A couple of examples are shown in
Figure 5-3.

The other way to modify solutions is called crossover or breeding. This method
involves taking two of the best solutions and combining them in some way. In this
case, a simple way to do crossover is to take a random number of elements from one
solution and the rest of the elements from another solution, as illustrated in
Figure 5-4.

A new population, usually the same size as the old one, is created by randomly
mutating and breeding the best solutions. Then the process repeats—the new popula-
tion is ranked and another population is created. This continues either for a fixed
number of iterations or until there has been no improvement over several generations.

Table 5-1. Ranked list of solutions and costs

Solution Cost

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3] 4394

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8] 4661

… …

[0, 4, 0, 3, 8, 8, 4, 4, 8, 5, 6, 1] 7845

[5, 8, 0, 2, 8, 8, 8, 2, 1, 6, 6, 8] 8088

Figure 5-3. Examples of mutating a solution

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8]

[7, 5, 2, 3, 1, 6, 1, 5, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 1, 8]

98 | Chapter 5: Optimization

Add geneticoptimize to optimization.py:

def geneticoptimize(domain,costf,popsize=50,step=1,
 mutprod=0.2,elite=0.2,maxiter=100):
 # Mutation Operation
 def mutate(vec):
 i=random.randint(0,len(domain)-1)
 if random.random()<0.5 and vec[i]>domain[i][0]:
 return vec[0:i]+[vec[i]-step]+vec[i+1:]
 elif vec[i]<domain[i][1]:
 return vec[0:i]+[vec[i]+step]+vec[i+1:]

 # Crossover Operation
 def crossover(r1,r2):
 i=random.randint(1,len(domain)-2)
 return r1[0:i]+r2[i:]

 # Build the initial population
 pop=[]
 for i in range(popsize):
 vec=[random.randint(domain[i][0],domain[i][1])
 for i in range(len(domain))]
 pop.append(vec)

 # How many winners from each generation?
 topelite=int(elite*popsize)

 # Main loop
 for i in range(maxiter):
 scores=[(costf(v),v) for v in pop]
 scores.sort()
 ranked=[v for (s,v) in scores]

 # Start with the pure winners
 pop=ranked[0:topelite]

 # Add mutated and bred forms of the winners
 while len(pop)<popsize:
 if random.random()<mutprob:

Figure 5-4. Example of crossover

[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3]

[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8]

[7, 5, 2, 3, 1, 6, 1, 6, 5, 2, 0, 8]

Genetic Algorithms | 99

 # Mutation
 c=random.randint(0,topelite)
 pop.append(mutate(ranked[c]))
 else:

 # Crossover
 c1=random.randint(0,topelite)
 c2=random.randint(0,topelite)
 pop.append(crossover(ranked[c1],ranked[c2]))

 # Print current best score
 print scores[0][0]

 return scores[0][1]

This function takes several optional parameters:

popsize
The size of the population

mutprob
The probability that a new member of the population will be a mutation rather
than a crossover

elite
The fraction of the population that are considered good solutions and are
allowed to pass into the next generation

maxiter
The number of generations to run

Try optimizing the travel plans using the genetic algorithm in your Python session:

>>> s=optimization.geneticoptimize(domain,optimization.schedulecost)
3532
3503
...
2591
2591
2591
>>> optimization.printschedule(s)
 Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
 Franny DAL 10:30-14:57 $290 10:51-14:16 $256
 Zooey CAK 10:53-13:36 $189 10:32-13:16 $139
 Walt MIA 11:28-14:40 $248 12:37-15:05 $170
 Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
 Les OMA 11:08-13:07 $175 11:07-13:24 $171

In Chapter 11, you’ll see an extension of genetic algorithms called genetic program-
ming, where similar ideas are used to create entirely new programs.

100 | Chapter 5: Optimization

The computer scientist John Holland is widely considered to be the
father of genetic algorithms because of his 1975 book, Adaptation in
Natural and Artificial Systems (University of Michigan Press). Yet the
work goes back to biologists in the 1950s who were attempting to
model evolution on computers. Since then, genetic algorithms and
other optimization methods have been used for a huge variety of
problems, including:

• Finding which concert hall shape gives the best acoustics

• Designing an optimal wing for a supersonic aircraft

• Suggesting the best library of chemicals to research as potential
drugs

• Automatically designing a chip for voice recognition

Potential solutions to these problems can be turned into lists of num-
bers. This makes it easy to apply genetic algorithms or simulated
annealing.

Whether a particular optimization method will work depends very much on the
problem. Simulated annealing, genetic optimization, and most other optimization
methods rely on the fact that, in most problems, the best solution is close to other
good solutions. To see a case where optimization might not work, look at Figure 5-5.

The cost is actually lowest at a very steep point on the far right of the figure. Any
solution that is close by would probably be dismissed from consideration because of
its high cost, and you would never find your way to the global minimum. Most
algorithms would settle in one of the local minima on the left side of the figure.

The flight scheduling example works because moving a person from the second to
the third flight of the day would probably change the overall cost by a smaller
amount than moving that person to the eighth flight of the day would. If the flights
were in random order, the optimization methods would work no better than a
random search—in fact, there’s no optimization method that will consistently work
better than a random search in that case.

Figure 5-5. Poor problem for optimization

Real Flight Searches | 101

Real Flight Searches
Now that everything is working with the sample data, it’s time to try getting real
flight data to see if the same optimizations can be used. You’ll be downloading data
from Kayak, which provides an API for doing flight searches. The main difference
between real flight data and the sample you’ve been working with is that in the real
flight data, there are many more than nine flights per day between most major cities.

The Kayak API
Kayak, shown in Figure 5-6, is a popular vertical search engine for travel. Although
there are lots of travel sites online, Kayak is useful for this example because it has a
nice XML API that can be used to perform real travel searches from within a Python
program. To use the API, you’ll need to sign up for a developer key by going to
http://www.kayak.com/labs/api/search.

The developer key is a long string of numbers and letters that you’ll use to do flight
searches in Kayak (it can also be used for hotel searches, but that won’t be covered
here). At the time of writing, there is not a specific Python API for Kayak like there is

Figure 5-6. Screenshot of the Kayak travel search interface

102 | Chapter 5: Optimization

for del.icio.us, but the XML interface is very well explained. This chapter will show
you how to create searches using the Python packages urllib2 and xml.dom.minidom,
both of which are included with the standard Python distribution.

The minidom Package
The minidom package is part of the standard Python distribution. It is a lightweight
implementation of the Document Object Model (DOM) interface, a standard way of
treating an XML document as a tree of objects. The package takes strings or open
files containing XML and returns an object that you can use to easily extract infor-
mation. For example, enter the following in a Python session:

>>> import xml.dom.minidom
>>> dom=xml.dom.minidom.parseString('<data><rec>Hello!</rec></data>')
>>> dom
<xml.dom.minidom.Document instance at 0x00980C38>
>>> r=dom.getElementsByTagName('rec')
>>> r
[<DOM Element: rec at 0xa42350>]
>>> r[0].firstChild
<DOM Text node "Hello!">
>>> r[0].firstChild.data
u'Hello!'

Because many web sites now offer a way to access information through an XML
interface, learning how to use the Python XML packages is very useful for collective
intelligence programming. Here are the important methods of DOM objects that
you’ll be using for the Kayak API:

getElementsByTagName(name)
Returns a list of all DOM nodes by searching throughout the whole document
for elements whose tag matches name.

firstChild
Returns the first child node of this object. In the above example, the first child of
r is the node representing the text “Hello.”

data
Returns the data associated with this object, which in most cases is a Unicode
string of the text that the node contains.

Flight Searches
Begin by creating a new file called kayak.py and adding the following statements:

import time
import urllib2
import xml.dom.minidom

kayakkey='YOURKEYHERE'

Real Flight Searches | 103

The first thing you’ll need is code to get a new Kayak session using your developer
key. The function to do this sends a request to apisession with the token parameter
set to your developer key. The XML returned by this URL will contain a tag sid, with
a session ID inside it:

<sid>1-hX4lII_wS$8b06aO7kHj</sid>

The function just has to parse the XML to extract the contents of the sid tag. Add
this function to kayak.py:

def getkayaksession():
 # Construct the URL to start a session
 url='http://www.kayak.com/k/ident/apisession?token=%s&version=1' % kayakkey

 # Parse the resulting XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Find <sid>xxxxxxxx</sid>
 sid=doc.getElementsByTagName('sid')[0].firstChild.data
 return sid

The next step is to create a function to start the flight search. The URL for this search
is very long because it contains all the parameters for the flight search. The impor-
tant parameters for this search are sid (the session ID returned by getkayaksession),
destination, and depart_date.

The resulting XML has a tag called searchid, which the function will extract in the
same manner as getkayaksession. Since the search may take a long time, this call
doesn’t actually return any results—it just begins the search and returns an ID that
can be used to poll for the results.

Add this function to kayak.py:

def flightsearch(sid,origin,destination,depart_date):

 # Construct search URL
 url='http://www.kayak.com/s/apisearch?basicmode=true&oneway=y&origin=%s' % origin
 url+='&destination=%s&depart_date=%s' % (destination,depart_date)
 url+='&return_date=none&depart_time=a&return_time=a'
 url+='&travelers=1&cabin=e&action=doFlights&apimode=1'
 url+='&_sid_=%s&version=1' % (sid)

 # Get the XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Extract the search ID
 searchid=doc.getElementsByTagName('searchid')[0].firstChild.data

 return searchid

104 | Chapter 5: Optimization

Finally, you’ll need a function that requests the results until there are no more.
Kayak provides another URL, flight, which gives these results. In the returned
XML, there is a tag called morepending, which contains the word “true” until the
search is complete. The function has to request the page until morepending is no
longer true, and then the functions gets the complete results.

Add this function to kayak.py:

def flightsearchresults(sid,searchid):

 # Removes leading $, commas and converts number to a float
 def parseprice(p):
 return float(p[1:].replace(',',''))

 # Polling loop
 while 1:
 time.sleep(2)

 # Construct URL for polling
 url='http://www.kayak.com/s/basic/flight?'
 url+='searchid=%s&c=5&apimode=1&_sid_=%s&version=1' % (searchid,sid)
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Look for morepending tag, and wait until it is no longer true
 morepending=doc.getElementsByTagName('morepending')[0].firstChild
 if morepending==None or morepending.data=='false': break

 # Now download the complete list
 url='http://www.kayak.com/s/basic/flight?'
 url+='searchid=%s&c=999&apimode=1&_sid_=%s&version=1' % (searchid,sid)
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

 # Get the various elements as lists
 prices=doc.getElementsByTagName('price')
 departures=doc.getElementsByTagName('depart')
 arrivals=doc.getElementsByTagName('arrive')

 # Zip them together
 return zip([p.firstChild.data.split(' ')[1] for p in departures],
 [p.firstChild.data.split(' ')[1] for p in arrivals],
 [parseprice(p.firstChild.data) for p in prices])

Notice that at the end the function just gets all the price, depart, and arrive tags.
There will be an equal number of them—one for each flight—so the zip function can
be used to join them all together into tuples in a big list. The departure and arrival
information is given as date and time separated by a space, so the function splits the
string to get only the time. The function also converts the price to a float by passing
it to parseprice.

Real Flight Searches | 105

You can try a real flight search in your Python session to make sure everything is
working (remember to change the date to some time in the future):

>>> import kayak
>>> sid=kayak.getkayaksession()
>>> searchid=kayak.flightsearch(sid,'BOS','LGA','11/17/2006')
>>> f=kayak.flightsearchresults(sid,searchid)
>>> f[0:3]
[(u'07:00', u'08:25', 60.3),
 (u'08:30', u'09:49', 60.3),
 (u'06:35', u'07:54', 65.0)]

Flights are conveniently returned in order of price, and for flights that are the same
price, in order of time. This works out well since, like before, it means that similar
solutions are close together. The only requirement to integrate this with the rest of
the code is to create a full schedule for all the different people in the Glass family
with the same structure that was originally loaded in from the file. This is just a mat-
ter of looping over the people in the list and performing the flight search for their
outbound and return flights. Add the createschedule function to kayak.py:

def createschedule(people,dest,dep,ret):
 # Get a session id for these searches
 sid=getkayaksession()
 flights={}

 for p in people:
 name,origin=p
 # Outbound flight
 searchid=flightsearch(sid,origin,dest,dep)
 flights[(origin,dest)]=flightsearchresults(sid,searchid)

 # Return flight
 searchid=flightsearch(sid,dest,origin,ret)
 flights[(dest,origin)]=flightsearchresults(sid,searchid)

 return flights

Now you can try to optimize the flights for the family using actual flight data. The
Kayak searches can take a while, so limit the search to just the first two family mem-
bers to start with. Enter this in your Python session:

>>> reload(kayak)
>>> f=kayak.createschedule(optimization.people[0:2],'LGA',
... '11/17/2006','11/19/2006')
>>> optimization.flights=f
>>> domain=[(0,30)]*len(f)
>>> optimization.geneticoptimize(domain,optimization.schedulecost)
770.0
703.0
...
>>> optimization.printschedule(s)
 Seymour BOS 16:00-17:20 $85.0 19:00-20:28 $65.0
 Franny DAL 08:00-17:25 $205.0 18:55-00:15 $133.0

106 | Chapter 5: Optimization

Congratulations! You’ve just run an optimization on real live flight data. The search
space is much bigger, so it’s a good idea to experiment with the maximum velocity
and learning rate.

There are many ways this can be expanded. You might combine it with a weather
search to optimize for combinations of prices and warm temperatures at potential
destinations, or with a hotel search to find destinations with a reasonable combina-
tion of flight and hotel prices. There are thousands of sites on the Internet that
provide travel destination data that can be used as part of an optimization.

The Kayak API has a limit on searches per day, but it does return links to purchase
any flight or hotel directly, which means you can easily incorporate the API into any
application.

Optimizing for Preferences
You’ve seen one example of a problem that optimization can be used to solve, but
there are many seemingly unrelated problems that can be attacked using the same
methods. Remember, the primary requirements for solving with optimization are
that the problem has a defined cost function and that similar solutions tend to yield
similar results. Not every problem with these properties will be solvable with optimi-
zation, but there’s a good chance that optimization will return some interesting
results that you hadn’t considered.

This section will consider a different problem, one that clearly lends itself to optimi-
zation. The general problem is how to allocate limited resources to people who have
expressed preferences and make them all as happy as possible (or, depending on
their dispositions, annoy them as little as possible).

Student Dorm Optimization
The example problem in this section is that of assigning students to dorms depend-
ing on their first and second choices. Although this is a very specific example, it’s
easy to generalize this case to other problems—the exact same code can be used to
assign tables to players in an online card game, assign bugs to developers in a large
coding project, or even to assign housework to household members. Once again, the
purpose is to take information from individuals and combine it to produce the opti-
mal result.

There are five dorms in our example, each with two spaces available and ten stu-
dents vying for spots. Each student has first and second choices. Create a new file
called dorm.py and add the list of dorms and the list of people, along with their top
two choices:

Optimizing for Preferences | 107

import random
import math

The dorms, each of which has two available spaces
dorms=['Zeus','Athena','Hercules','Bacchus','Pluto']

People, along with their first and second choices
prefs=[('Toby', ('Bacchus', 'Hercules')),
 ('Steve', ('Zeus', 'Pluto')),
 ('Andrea', ('Athena', 'Zeus')),
 ('Sarah', ('Zeus', 'Pluto')),
 ('Dave', ('Athena', 'Bacchus')),
 ('Jeff', ('Hercules', 'Pluto')),
 ('Fred', ('Pluto', 'Athena')),
 ('Suzie', ('Bacchus', 'Hercules')),
 ('Laura', ('Bacchus', 'Hercules')),
 ('Neil', ('Hercules', 'Athena'))]

You can see immediately that every person can’t have his top choice, since there are
only two spots in Bacchus and three people want them. Putting any of these people
in their second choice would mean there wouldn’t be enough space in Hercules for
the people who chose it.

This problem is deliberately small so it’s easy to follow, but in real life, this problem
might include hundreds or thousands of students competing for many more spots in
a larger selection of dorms. Since this example only has about 100,000 possible
solutions, it’s possible to try them all and see which one is the best. But the number
quickly grows to trillions of possibilities when there are four slots in each dorm.

The representation for solutions is a bit trickier for this problem than for the flight
problem. You could, in theory, create a list of numbers, one for each student, where
each number represents the dorm in which you’ve put the student. The problem is
that this representation doesn’t constrain the solution to only two students in each
dorm. A list of all zeros would indicate that everyone had been placed in Zeus, which
isn’t a real solution at all.

One way to resolve this is to make the cost function return a very high value for
invalid solutions, but this makes it very difficult for the optimization algorithm to
find better solutions because it has no way to determine if it’s close to other good or
even valid solutions. In general, it’s better not to waste processor cycles searching
among invalid solutions.

A better way to approach the issue is to find a way to represent solutions so that
every one is valid. A valid solution is not necessarily a good solution; it just means
that there are exactly two students assigned to each dorm. One way to do this is to
think of every dorm as having two slots, so that in the example there are ten slots in
total. Each student, in order, is assigned to one of the open slots—the first person
can be placed in any one of the ten, the second person can be placed in any of the
nine remaining slots, and so on.

108 | Chapter 5: Optimization

The domain for searching has to capture this restriction. Add this line to dorm.py:

[(0,9),(0,8),(0,7),(0,6),...,(0,0)]
domain=[(0,(len(dorms)*2)-i-1) for i in range(0,len(dorms)*2)]

The code to print the solution illustrates how the slots work. This function first
creates a list of slots, two for each dorm. It then loops over every number in the solu-
tion and finds the dorm number at that location in the slots list, which is the dorm
that a student is assigned to. It prints the student and the dorm, and then it removes
that slot from the list so no other student will be given that slot. After the final itera-
tion, the slots list is empty and every student and dorm assignment has been printed.
Add this function to dorm.py:

def printsolution(vec):
 slots=[]
 # Create two slots for each dorm
 for i in range(len(dorms): slots+=[i,i]

 # Loop over each students assignment
 for i in range(len(vec)):
 x=int(vec[i])

 # Choose the slot from the remaining ones
 dorm=dorms[slots[x]]
 # Show the student and assigned dorm
 print prefs[i][0],dorm
 # Remove this slot
 del slots[x]

In your Python session, you can import this and try printing a solution:

>>> import dorm
>>> dorm.printsolution([0,0,0,0,0,0,0,0,0,0])
Toby Zeus
Steve Zeus
Andrea Athena
Sarah Athena
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Pluto
Neil Pluto

If you change the numbers around to view different solutions, remember that each
number must stay in the appropriate range. The first item in the list can be between
0 and 9, the second between 0 and 8, etc. If you set one of the numbers outside the
appropriate range, the function will throw an exception. Since the optimization func-
tions will keep the numbers in the ranges specified in the domain parameter, this
won’t be a problem when optimizing.

Optimizing for Preferences | 109

The Cost Function
The cost function works in a way that is similar to the print function. A list of slots is
constructed and slots are removed as they are used up. The cost is calculated by
comparing a student’s current dorm assignment to his top two choices. The total
cost will increase by 0 if the student is currently assigned to his top choice, by 1 if he
is assigned to his second choice, and by 3 if he is not assigned to either of his choices:

def dormcost(vec):
 cost=0
 # Create list a of slots
 slots=[0,0,1,1,2,2,3,3,4,4]

 # Loop over each student
 for i in range(len(vec)):
 x=int(vec[i])
 dorm=dorms[slots[x]]
 pref=prefs[i][1]
 # First choice costs 0, second choice costs 1
 if pref[0]==dorm: cost+=0
 elif pref[1]==dorm: cost+=1
 else: cost+=3
 # Not on the list costs 3

 # Remove selected slot
 del slots[x]

 return cost

A useful rule when creating a cost function is, if possible, to make the perfect solu-
tion (which in this example is everyone being assigned to their top choice) have a
cost of zero. In this case, you’ve already determined that the perfect solution is
impossible, but knowing that its cost is zero gives you an idea of how close you are
to it. The other advantage of this rule is that you can tell an optimization algorithm
to stop searching for better solutions if it ever finds a perfect solution.

Running the Optimization
With a solution representation, a cost function, and a function to print the results,
you have enough to run the optimization functions that you defined earlier. Enter the
following in your Python session:

>>> reload(dorm)
>>> s=optimization.randomoptimize(dorm.domain,dorm.dormcost)
>>> dorm.dormcost(s)
18
>>> optimization.geneticoptimize(dorm.domain,dorm.dormcost)
13
10
...
4
>>> dorm.printsolution(s)

110 | Chapter 5: Optimization

Toby Athena
Steve Pluto
Andrea Zeus
Sarah Pluto
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Athena
Neil Zeus

Again, you can tweak the parameters to see if you can make the genetic optimization
find a good solution more quickly.

Network Visualization
The final example in this chapter shows another way in which optimization can be
used on problems that are completely unrelated to one another. In this case, the
problem is the visualization of networks. A network in this case is any set of things
that are connected together. A good example in online applications is a social net-
work like MySpace, Facebook, or LinkedIn, where people are connected because
they are friends or have a professional relationship. Each member of the site chooses
to whom they are connected, and collectively this creates a network of people. It is
interesting to visualize such networks to determine their structure, perhaps in order
to find the people who are connectors (those who know a lot of people or who serve
as a link between otherwise self-contained cliques).

The Layout Problem
When drawing a network to visualize a big group of people and the links between
them, one problem is deciding where each name (or icon) should be placed in the
picture. For example, consider the network in Figure 5-7.

Figure 5-7. A confusing network layout

Miranda

Willy

Charlie

Joe

Augustus

Mike

Violet

Network Visualization | 111

In this figure, you can see that Augustus is friends with Willy, Violet, and Miranda.
But the layout of the network is a bit messy, and adding more people would make it
very confusing. A much cleaner layout is shown in Figure 5-8.

This section will look at how optimization can be used to create better, less confus-
ing visuals. To begin, create a new file called socialnetwork.py and add some facts
about a subsection of the social network:

import math

people=['Charlie','Augustus','Veruca','Violet','Mike','Joe','Willy','Miranda']

links=[('Augustus', 'Willy'),
 ('Mike', 'Joe'),
 ('Miranda', 'Mike'),
 ('Violet', 'Augustus'),
 ('Miranda', 'Willy'),
 ('Charlie', 'Mike'),
 ('Veruca', 'Joe'),
 ('Miranda', 'Augustus'),
 ('Willy', 'Augustus'),
 ('Joe', 'Charlie'),
 ('Veruca', 'Augustus'),
 ('Miranda', 'Joe')]

The goal here is to create a program that can take a list of facts about who is friends
with whom and generate an easy-to-interpret network diagram. This is usually done
with a mass-and-spring algorithm. This type of algorithm is modeled on physics
because the different nodes exert a push on each other and try to move apart, while
the links try to pull connected nodes closer together. Thus, the network slowly
assumes a layout where unconnected nodes are pushed apart and connected nodes
are pulled close together—but not too close together.

Unfortunately, the mass-and-spring algorithm doesn’t stop lines from crossing. In a
network with a great number of links, this makes it difficult to see which nodes are
connected because visually tracking the lines as they cross can be tricky. However,

Figure 5-8. A clean network layout

Miranda

Willy

Charlie

Joe

Augustus
Mike

Violet

112 | Chapter 5: Optimization

when you use optimization to create the layout, all you need to do is decide on a cost
function and then try to minimize it. In this case, one interesting cost function to try
is the number of lines that cross each other.

Counting Crossed Lines
In order to use the same optimizing functions that were defined earlier, it’s neces-
sary to represent a solution as a list of numbers. Fortunately, this particular problem
is represented as a list of numbers very easily—every node has an x and y coordi-
nate, so the coordinates for all the nodes can be put into a long list:

sol=[120,200,250,125 ...

In this solution, Charlie is placed at (120,200), Augustus at (250,125), and so on.

Right now, the new cost function will simply count the number of lines that cross
each other. The derivation of the formula for two lines crossing is a bit beyond the
scope of this chapter, but the basic idea is to calculate the fraction of the line where
each line is crossed. If this fraction is between 0 (one end of the line) and 1 (the other
end), for both lines, then they cross each other. If the fraction is not between 0 and 1,
then the lines do not cross.

This function loops through every pair of links and uses the current coordinates of
their endpoints to determine whether they cross. If they do, the function adds 1 to
the total score. Add crosscount to socialnetwork.py:

def crosscount(v):
 # Convert the number list into a dictionary of person:(x,y)
 loc=dict([(people[i],(v[i*2],v[i*2+1])) for i in range(0,len(people))])
 total=0

 # Loop through every pair of links
 for i in range(len(links)):
 for j in range(i+1,len(links)):

 # Get the locations
 (x1,y1),(x2,y2)=loc[links[i][0]],loc[links[i][1]]
 (x3,y3),(x4,y4)=loc[links[j][0]],loc[links[j][1]]

 den=(y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)

 # den==0 if the lines are parallel
 if den==0: continue

 # Otherwise ua and ub are the fraction of the
 # line where they cross
 ua=((x4-x3)*(y1-y3)-(y4-y3)*(x1-x3))/den
 ub=((x2-x1)*(y1-y3)-(y2-y1)*(x1-x3))/den

Network Visualization | 113

 # If the fraction is between 0 and 1 for both lines
 # then they cross each other
 if ua>0 and ua<1 and ub>0 and ub<1:
 total+=1
 return total

The domain for this search is the range for each coordinate. For this example, you can
assume that the network will be laid out in a 400 × 400 image, so the domain will be
a little less than that to allow for a slight margin. Add this line to the end of
socialnetwork.py:

domain=[(10,370)]*(len(people)*2)

Now you can try actually running some of the optimizations to find a solution where
very few lines cross. Import socialnetwork.py to your Python session and try a couple
of the optimization algorithms:

>>> import socialnetwork
>>> import optimization
>>> sol=optimization.randomoptimize(socialnetwork.domain,socialnetwork.crosscount)
>>> socialnetwork.crosscount(sol)
12
>>> sol=optimization.annealingoptimize(socialnetwork.domain,

socialnetwork.crosscount,step=50,cool=0.99)
>>> socialnetwork.crosscount(sol)
1
>>> sol
[324, 190, 241, 329, 298, 237, 117, 181, 88, 106, 56, 10, 296, 370, 11, 312]

Simulated annealing is likely to find a solution where very few of the lines cross, but
the list of coordinates is difficult to interpret. The next section will show you how to
automatically draw the network.

Drawing the Network
You’ll need the Python Imaging Library that was used in Chapter 3. If you haven’t
installed it yet, please consult Appendix A for instructions on getting the latest ver-
sion and installing it with your Python instance.

The code for drawing the network is quite straightforward. All the code has to do is
create an image, draw the links between the different people, and then draw the
nodes for the people. The people’s names are drawn afterward so that the lines don’t
cover them. Add this function to socialnetwork.py:

def drawnetwork(sol):
 # Create the image
 img=Image.new('RGB',(400,400),(255,255,255))
 draw=ImageDraw.Draw(img)

 # Create the position dict
 pos=dict([(people[i],(sol[i*2],sol[i*2+1])) for i in range(0,len(people))])

114 | Chapter 5: Optimization

 # Draw Links
 for (a,b) in links:
 draw.line((pos[a],pos[b]),fill=(255,0,0))

 # Draw people
 for n,p in pos.items():
 draw.text(p,n,(0,0,0))

 img.show()

To run this function in your Python session, just reload the module and call this
function on your solution:

>>> reload(socialnetwork)
>>> drawnetwork(sol)

Figure 5-9 shows one possible outcome of the optimization.

Of course, your solution will look different from this. Sometimes the solution will
look pretty wacky—since the objective is just to minimize the number of crossed
lines, the cost function never penalizes the layout for things like very tight angles
between the lines or two nodes being very close together. In this respect,

Figure 5-9. Layout resulting from a no-crossed-lines optimization

Miranda

Willy

Charlie

Joe

Augustus

Mike

Violet

Veruca

Other Possibilities | 115

optimization is like a genie who grants your wishes very literally, so it’s always
important to be clear about what you want. There is often a solution that fits the
original criteria of “best” but looks nothing like what you had in mind.

A simple way to penalize a solution that has put two nodes too close together is to cal-
culate the distance between the nodes and divide by a desired minimum distance. You
can add this code to the end of crosscount (before the return statement) to provide an
additional penalty.

 for i in range(len(people)):
 for j in range(i+1,len(people)):
 # Get the locations of the two nodes
 (x1,y1),(x2,y2)=loc[people[i]],loc[people[j]]

 # Find the distance between them
 dist=math.sqrt(math.pow(x1-x2,2)+math.pow(y1-y2,2))
 # Penalize any nodes closer than 50 pixels
 if dist<50:
 total+=(1.0-(dist/50.0))

This creates a higher cost for every pair of nodes that is less than 50 pixels apart, in
proportion to how close together they are. If they are in exactly the same place, the
penalty is 1. Run the optimization again to see if this results in a more spread-out
layout.

Other Possibilities
This chapter has shown three completely different applications for optimization
algorithms, but that’s only a small fraction of what is possible. As stated throughout
the chapter, the important steps are deciding on a representation and a cost func-
tion. If you can do these things, there’s a good chance you can use optimization to
find solutions to your problem.

An interesting activity might be to take a large group of people and divide them into
teams in which the skills of the members are evenly divided. In a trivia contest, it
might be desirable to create teams from a set of people so that each team has ade-
quate knowledge of sports, history, literature, and television. Another possibility is to
assign tasks in group projects by taking a combination of people’s skills into account.
Optimization can determine the best way to divide the tasks so that the task list is
completed in the shortest possible time.

Given a long list of web sites tagged with keywords, it might be interesting to find an
optimal group of web sites for a user-supplied set of keywords. The optimal group
would contain a set of web sites that don’t have many keywords in common with
each other but represent as many of the user-supplied keywords as possible.

116 | Chapter 5: Optimization

Exercises
1. Group travel cost function. Add total flight time as a cost equal to $0.50 per

minute on the plane. Next try adding a penalty of $20 for making anyone get to
the airport before 8 a.m.

2. Annealing starting points. The outcome of simulated annealing depends heavily
on the starting point. Build a new optimization function that does simulated
annealing from multiple starting solutions and returns the best one.

3. Genetic optimization stopping criteria. A function in this chapter runs the genetic
optimizer for a fixed number of iterations. Change it so that it stops when there
has been no improvement in any of the best solutions for 10 iterations.

4. Round-trip pricing. The function for getting flight data from Kayak right now only
looks for one-way flights. Prices are probably cheaper when buying round-trip
tickets. Modify the code to get round-trip prices, and modify the cost function to
use a price lookup for a particular pair of flights instead of just summing their
one-way prices.

5. Pairing students. Imagine if instead of listing dorm preferences, students had to
express their preferences for a roommate. How would you represent solutions to
pairing students? What would the cost function look like?

6. Line angle penalization. Add an additional cost to the network layout algorithm
cost function when the angle between two lines attached to the same person is
very small. (Hint: you can use the vector cross-product.)

250

Chapter 11CHAPTER 11

Evolving Intelligence 11

Throughout this book you’ve seen a number of different problems, and in each case
you used an algorithm that was suited to solve that particular problem. In some of
the examples, you had to tweak the parameters or use optimization to search for a
good set of parameters. This chapter will look at a different way to approach
problems. Instead of choosing an algorithm to apply to a problem, you’ll make a
program that attempts to automatically build the best program to solve a problem.
Essentially, you’ll be creating an algorithm that creates algorithms.

To do this, you will use a technique called genetic programming. Since this is the last
chapter in which you’ll learn a completely new type of algorithm, I’ve picked a topic
that is new, exciting, and being actively researched. This chapter is a little different
from the others because it doesn’t use any open APIs or public datasets, and because
programs that can modify themselves based on their interactions with many people
are an interesting and different kind of collective intelligence. Genetic programming
is a very large topic about which many books have been written, so you’ll only get an
introduction here, but I hope it’s enough to get you excited about the possibilities
and perhaps to research and experiment on your own.

The two problems in this chapter are recreating a mathematical function given a
dataset, and automatically creating an AI (artificial intelligence) player for a simple
board game. This is just a very small sampling of the possibilities of genetic
programming—computational power is really the only constraint on the types of
problems it can be used to solve.

What Is Genetic Programming?
Genetic programming is a machine-learning technique inspired by the theory of bio-
logical evolution. It generally works by starting with a large set of programs (referred
to as the population), which are either randomly generated or hand-designed and are
known to be somewhat good solutions. The programs are then made to compete in
some user-defined task. This may be a game in which the programs compete against

What Is Genetic Programming? | 251

each other directly, or it may be an individual test to see which program performs
better. After the competition, a ranked list of the programs from best to worst can be
determined.

Next—and here’s where evolution comes in—the best programs are replicated and
modified in two different ways. The simpler way is mutation, in which certain parts
of the program are altered very slightly in a random manner in the hope that this will
make a good solution even better. The other way to modify a program is through
crossover (sometimes referred to as breeding), which involves taking a portion of one
of the best programs and replacing it with a portion of one of the other best pro-
grams. This replication and modification procedure creates many new programs that
are based on, but different from, the best programs.

At each stage, the quality of the programs is calculated using a fitness function. Since
the size of the population is kept constant, many of the worst programs are elimi-
nated from the population to make room for the new programs. The new popula-
tion is referred to as “the next generation,” and the whole procedure is then
repeated. Because the best programs are being kept and modified, it is expected that
with each generation they will get better and better, in much the same way that teen-
agers can be smarter than their parents.

New generations are created until a termination condition is reached, which,
depending on the problem, can be that:

• The perfect solution has been found.

• A good enough solution has been found.

• The solution has not improved for several generations.

• The number of generations has reached a specified limit.

For some problems, such as determining a mathematical function that correctly
maps a set of inputs to an output, a perfect solution is possible. For others, such as a
board game, there may not be a perfect solution, since the quality of a solution
depends on the strategy of the program’s adversary.

An overview of the genetic programming process is shown as a flowchart in
Figure 11-1.

Genetic Programming Versus Genetic Algorithms
Chapter 5 introduced a related set of algorithms known as genetic algorithms.
Genetic algorithms are an optimization technique that use the idea of evolutionary
pressure to choose the best result. With any form of optimization, you have already
selected an algorithm or metric and you’re simply trying to find the best parameters
for it.

252 | Chapter 11: Evolving Intelligence

Like optimization, genetic programming requires a way to measure how good a solu-
tion is; but unlike optimization, the solutions are not just a set of parameters being
applied to a given algorithm. Instead, the algorithm itself and all its parameters are
designed automatically by means of evolutionary pressure.

Figure 11-1. Genetic programming overview

Successes of Genetic Programming
Genetic programming has been around since the 1980s, but it is very computationally
intensive, and with the computing power that was available at the time, it couldn’t be
used for anything more than simple problems. As computers have gotten faster, how-
ever, people have been able to apply genetic programming to sophisticated problems.
Many previously patented inventions have been rediscovered or improved using
genetic programming, and recently several new patentable inventions have been
designed by computers.

The genetic programming technique has been applied in designing antennas for NASA,
and in photonic crystals, optics, quantum computing systems, and other scientific
inventions. It has also been used to develop programs for playing many games, such as
chess and backgammon. In 1998, researchers from Carnegie Mellon University entered
a robot team that was programmed entirely using genetic programming into the Robo-
Cup soccer contest, and placed in the middle of the pack.

Create random population

Rank individuals

Are any of them
good enough?

No

Yes
Done

Duplicate best individuals

Mutate Breed

New population

Programs As Trees | 253

Programs As Trees
In order to create programs that can be tested, mutated, and bred, you’ll need a way
to represent and run them from within your Python code. The representation has to
lend itself to easy modification and, more importantly, has to be guaranteed to be an
actual program—which means generating random strings and trying to treat them as
Python code won’t work. Researchers have come up with a few different ways to
represent programs for genetic programming, and the most commonly used is a tree
representation.

Most programming languages, when compiled or interpreted, are first turned into a
parse tree, which is very similar to what you’ll be working with here. (The program-
ming language Lisp and its variants are essentially ways of entering a parse tree
directly.) An example of a parse tree is shown in Figure 11-2.

Each node represents either an operation on its child nodes or an endpoint, such as a
parameter with a constant value. For example, the circular node is a sum operation
on its two branches, in this case, the values Y and 5. Once this point is evaluated, it
is given to the node above it, which in turn applies its own operation to its branches.
You’ll also notice that one of the nodes has the operation “if,” which specifies that if
its leftmost branch evaluates to true, return its center branch; if it doesn’t, return its
rightmost branch.

Traversing the complete tree, you can see that it corresponds to the Python function:

def func(x,y)
 if x>3:
 return y + 5
 else:
 return y - 2

At first, it might appear that these trees can only be used to build very simple
functions. There are two things to consider here—first, the nodes that compose the
tree can potentially be very complex functions, such as distance measures or

Figure 11-2. Example program tree

if

> –

Y 2X 3

+

Y 5

254 | Chapter 11: Evolving Intelligence

Gaussians. The second thing is that trees can be made recursive by referring to nodes
higher up in the tree. Creating trees like this allows for loops and other more compli-
cated control structures.

Representing Trees in Python
You’re now ready to construct tree programs in Python. The trees are made up of
nodes, which, depending on the functions associated with them, have some number
of child nodes. Some of the nodes will return parameters passed to the program, oth-
ers will return constants, and the most interesting ones will return operations on
their child nodes.

Create a new file called gp.py and create four new classes called fwrapper, node,
paramnode, and constnode:

from random import random,randint,choice
from copy import deepcopy
from math import log

class fwrapper:
 def __init_ _(self,function,childcount,name):
 self.function=function
 self.childcount=childcount
 self.name=name

class node:
 def __init_ _(self,fw,children):
 self.function=fw.function
 self.name=fw.name
 self.children=children

 def evaluate(self,inp):
 results=[n.evaluate(inp) for n in self.children]
 return self.function(results)

class paramnode:
 def __init_ _(self,idx):
 self.idx=idx

 def evaluate(self,inp):
 return inp[self.idx]

class constnode:
 def __init_ _(self,v):
 self.v=v
 def evaluate(self,inp):
 return self.v

Programs As Trees | 255

The classes here are:

fwrapper
A wrapper for the functions that will be used on function nodes. Its member
variables are the name of the function, the function itself, and the number of
parameters it takes.

node
The class for function nodes (nodes with children). This is initialized with an
fwrapper. When evaluate is called, it evaluates the child nodes and then applies
the function to their results.

paramnode
The class for nodes that only return one of the parameters passed to the program.
Its evaluate method returns the parameter specified by idx.

constnode
Nodes that return a constant value. The evaluate method simply returns the
value with which it was initialized.

You’ll also want some functions for the nodes to apply. To do this, you have to cre-
ate functions and then give them names and parameter counts using fwrapper. Add
this list of functions to gp.py:

addw=fwrapper(lambda l:l[0]+l[1],2,'add')
subw=fwrapper(lambda l:l[0]-l[1],2,'subtract')
mulw=fwrapper(lambda l:l[0]*l[1],2,'multiply')

def iffunc(l):
 if l[0]>0: return l[1]
 else: return l[2]
ifw=fwrapper(iffunc,3,'if')

def isgreater(l):
 if l[0]>l[1]: return 1
 else: return 0
gtw=fwrapper(isgreater,2,'isgreater')

flist=[addw,mulw,ifw,gtw,subw]

Some of the simpler functions such as add and subtract can be defined inline using
lambda, while others require you to define the function in a separate block. In each
case, they have been wrapped in an fwrapper with their names and the number of
parameters required. The last line creates a list of all the functions so that later they
can easily be chosen at random.

Building and Evaluating Trees
You can now construct the program tree shown in Figure 11-2 using the node class
you just created. Add the exampletree function to gp.py to create the tree:

256 | Chapter 11: Evolving Intelligence

def exampletree():
 return node(ifw,[
 node(gtw,[paramnode(0),constnode(3)]),
 node(addw,[paramnode(1),constnode(5)]),
 node(subw,[paramnode(1),constnode(2)]),
]
)

Start up a Python session to test your program:

>>> import gp
>>> exampletree=gp.exampletree()
>>> exampletree.evaluate([2,3])
1
>>> exampletree.evaluate([5,3])
8

The program successfully performs the same function as the equivalent code block,
so you’ve managed to build a mini tree-based language and interpreter within
Python. This language can be easily extended with more node types, and it will serve
as the basis for understanding genetic programming in this chapter. Try building a
few other simple program trees to make sure you understand how they work.

Displaying the Program
Because you’ll be creating program trees automatically and won’t know what their
structure looks like, it’s important to have a way to display them so that you can eas-
ily interpret them. Fortunately the design of the node class means every node has a
string representing the name of its function, so a display function simply has to
return that string and the display strings of the child nodes. To make it easier to read,
the display should also indent the child nodes so you can visually identify the parent-
child relationships in the tree.

Create a new method in the node class called display, which shows a string represen-
tation of the tree:

 def display(self,indent=0):
 print (' '*indent)+self.name
 for c in self.children:
 c.display(indent+1)

You’ll also need to create a display method for the paramnode class, which simply
prints the index of the parameter it returns:

 def display(self,indent=0):
 print '%sp%d' % (' '*indent,self.idx)

And finally, one for the constnode class:

 def display(self,indent=0):
 print '%s%d' % (' '*indent,self.v)

Creating the Initial Population | 257

Use these methods to print out the tree:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> exampletree=gp.exampletree()
>>> exampletree.display()
if
 isgreater
 p0
 3
 add
 p1
 5
 subtract
 p1
 2

If you’ve read Chapter 7, you’ll notice that this is similar to the way in which deci-
sion trees were displayed in that chapter. Chapter 7 also shows how to display those
trees graphically for a cleaner, easier-to-read output. If you feel so inclined, you can
use the same idea to build a graphical display of your tree programs.

Creating the Initial Population
Although it’s possible to hand-create programs for genetic programming, most of the
time the initial population consists of a set of random programs. This makes the
process easier to start, since it’s not necessary to design several programs that almost
solve a problem. It also creates much more diversity in the initial population—a set
of programs designed by a single programmer to solve a problem are likely to be very
similar, and although they may give answers that are almost correct, the ideal solu-
tion make look quite different. You’ll learn more about the importance of diversity
shortly.

Creating a random program consists of creating a root node with a random associ-
ated function and then creating as many random child nodes as necessary, which in
turn may have their own associated random child nodes. Like most functions that
work with trees, this is most easily defined recursively. Add a new function,
makerandomtree, to gp.py:

def makerandomtree(pc,maxdepth=4,fpr=0.5,ppr=0.6):
 if random()<fpr and maxdepth>0:
 f=choice(flist)
 children=[makerandomtree(pc,maxdepth-1,fpr,ppr)
 for i in range(f.childcount)]
 return node(f,children)
 elif random()<ppr:
 return paramnode(randint(0,pc-1))
 else:
 return constnode(randint(0,10))

258 | Chapter 11: Evolving Intelligence

This function creates a node with a random function and then looks to see how
many child nodes this function requires. For every child node required, the function
calls itself to create a new node. In this way an entire tree is constructed, with
branches ending only if the function requires no more child nodes (that is, if the
function returns a constant or an input variable). The parameter pc, used throughout
this chapter, is the number of parameters that the tree will take as input. The param-
eter fpr gives the probability that the new node created will be a function node, and
ppr gives that probability that it will be a paramnode if it is not a function node.

Try out this function in your Python session to build a few programs, and see what
sort of results you get with different variables:

>>> random1=gp.makerandomtree(2)
>>> random1.evaluate([7,1])
7
>>> random1.evaluate([2,4])
2
>>> random2=gp.makerandomtree(2)
>>> random2.evaluate([5,3])
1
>>> random2.evaluate([5,20])
0

If all of a program’s terminating nodes are constants, the program will not actually
reference the input parameters at all, so the result will be the same no matter what
input you pass to it. You can use the function defined in the previous section to
display the randomly generated trees:

>>> random1.display()
p0
>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

You’ll see that some of the trees get quite deep, since each branch will keep growing
until it hits a zero-child node. This is why it’s important that you include a
maximum depth constraint; otherwise, the trees can get very large and potentially
overflow the stack.

Testing a Solution | 259

Testing a Solution
You would now have everything you’d need to build programs automatically, if you
could just generate random programs until one is correct. Obviously, this would be
ridiculously impractical because there are infinite possible programs and it’s highly
unlikely that you would stumble across a correct one in any reasonable time frame.
However, at this point it is worth looking at ways to test a solution to see if it’s
correct, and if it’s not, to determine how close it is.

A Simple Mathematical Test
One of the easiest tests for genetic programming is to reconstruct a simple mathe-
matical function. Imagine you were given a table of inputs and an output that looked
like Table 11-1.

There is some function that maps X and Y to the result, but you’re not told what it
is. A statistician might see this and try to do a regression analysis, but that requires
guessing the structure of the formula first. Another option is to build a predictive
model using k-nearest neighbors as you did in Chapter 8, but that requires keeping
all the data. In some cases, you just need a formula, perhaps to codify in another
much simpler program or to describe to other people what’s going on.

I’m sure you’re in suspense, so I’ll tell you what the function is. Add hiddenfunction
to gp.py:

def hiddenfunction(x,y):
 return x**2+2*y+3*x+5

You’re going to use this function to build a dataset against which you can test your
generated programs. Add a new function, buildhiddenset, which creates the dataset:

def buildhiddenset():
 rows=[]
 for i in range(200):
 x=randint(0,40)
 y=randint(0,40)
 rows.append([x,y,hiddenfunction(x,y)])
 return rows

Table 11-1. Data and result for an unknown function

X Y Result

26 35 829

8 24 141

20 1 467

33 11 1215

37 16 1517

260 | Chapter 11: Evolving Intelligence

And use this to create a dataset in your Python session:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> hiddenset=gp.buildhiddenset()

Of course, you know what the function used to generate the dataset looks like, but
the real test is whether genetic programming can reproduce it without being told.

Measuring Success
As with optimization, it’s necessary to come up with a way to measure how good a
solution is. In this case, you’re testing a program against a numerical outcome, so an
easy way to test a program is to see how close it gets to the correct answers for the
dataset. Add scorefunction to gp.py:

def scorefunction(tree,s):
 dif=0
 for data in s:
 v=tree.evaluate([data[0],data[1]])
 dif+=abs(v-data[2])
 return dif

This function checks every row in the dataset, calculating the output from the func-
tion and comparing it to the real result. It adds up all the differences, giving lower
values for better programs—a return value of 0 indicates that the program got every
result correct. You can now test some of your generated programs in your Python
session to see how they stack up:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.scorefunction(random2,hiddenset)
137646
>>> gp.scorefunction(random1,hiddenset)
125489

Since you only generated a few programs and they were generated completely ran-
domly, the chance that one of them is actually the correct function is vanishingly
small. (If one of your programs is the correct function, I suggest that you put the
book down and go buy yourself a lottery ticket.) However, you now have a way to
test how well a program performs on predicting a mathematical function, which is
important for deciding which programs make it to the next generation.

Mutating Programs
After the best programs are chosen, they are replicated and modified for the next
generation. As mentioned earlier, mutation takes a single program and alters it
slightly. The tree programs can be altered in a number of ways—by changing the
function on a node or by altering its branches. A function that changes the number
of required child nodes either deletes or adds new branches, as shown in Figure 11-3.

Mutating Programs | 261

The other way to mutate is by replacing a subtree with an entirely new one, as shown
in Figure 11-4.

Mutation is not something that should be done too much. You would not, for
instance, mutate the majority of nodes in a tree. Instead, you can assign a relatively
small probability that any node will be modified. Beginning at the top of the tree, if a
random number is lower than that probability, the node is mutated in one of the
ways described above; otherwise, the test is performed again on its child nodes.

To keep things simple, the code given here only performs the second kind of muta-
tion. Create a new function called mutate to perform this operation:

def mutate(t,pc,probchange=0.1):
 if random()<probchange:
 return makerandomtree(pc)
 else:
 result=deepcopy(t)
 if isinstance(t,node):
 result.children=[mutate(c,pc,probchange) for c in t.children]
 return result

Figure 11-3. Mutation by changing node functions

if

> –

Y 2X 3

+

Y 5

Original

+

–

Y 2

+

Y 5

Mutated

262 | Chapter 11: Evolving Intelligence

This function begins at the top of the tree and decides whether the node should be
altered. If not, it calls mutate on the child nodes of the tree. It’s possible that the
entire tree will be mutated, and it’s also possible to traverse the entire tree without
changing it.

Try running mutate a few times on the randomly generated programs you built
earlier, and see how it modifies the trees:

>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

Figure 11-4. Mutation by replacing subtrees

if

> –

Y 2X 3

+

Y 5

Original

if

> *

X YX 3

+

Y 5

Mutated

Replaced

Crossover | 263

>>> muttree=gp.mutate(random2,2)
>>> muttree.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 p1

See if the result of scorefunction has changed significantly, for better or worse, after
the tree has been mutated:

>>> gp.scorefunction(random2,hiddenset)
125489
>>> gp.scorefunction(muttree,hiddenset)
125479

Remember that the mutations are random, and they aren’t necessarily directed
toward improving the solution. The hope is simply that some will improve the result.
These changes will be used to continue, and over several generations the best solu-
tion will eventually be found.

Crossover
The other type of program modification is crossover or breeding. This involves tak-
ing two successful programs and combining them to create a new program, usually
by replacing a branch from one with a branch from another. Figure 11-5 shows an
example of how this works.

The function for performing a crossover takes two trees as inputs and traverses down
both of them. If a randomly selected threshold is reached, the function returns a
copy of the first tree with one of its branches replaced by a branch in the second tree.
By traversing both trees at once, the crossover happens at approximately the same
level on each tree. Add the crossover function to gp.py:

def crossover(t1,t2,probswap=0.7,top=1):
 if random()<probswap and not top:
 return deepcopy(t2)
 else:
 result=deepcopy(t1)
 if isinstance(t1,node) and isinstance(t2,node):
 result.children=[crossover(c,choice(t2.children),probswap,0)
 for c in t1.children]
 return result

264 | Chapter 11: Evolving Intelligence

Try crossover on a few of the randomly generated programs. See what they look like
after the crossover, and see if crossing over two of the best programs occasionally
leads to a better program:

>>> random1=gp.makerandomtree(2)
>>> random1.display()
multiply
 subtract
 p0
 8
 isgreater
 p0
 isgreater
 p1
 5

Figure 11-5. Crossover operation

if

> –

Y 2X 3

+

Y 5

Parent 1

if

> –

Y 2X 3

–

* 2

Offspring

Remove

*

+ –

* 2X 3

Parent 2

Y 5

Add

Y 5

Building the Environment | 265

>>> random2=gp.makerandomtree(2)
>>> random2.display()
if
 8
 p1
 2
>>> cross=gp.crossover(random1,random2)
>>> cross.display()
multiply
 subtract
 p0
 8
 2

You’ll probably notice that swapping out branches can radically change what the
program does. You may also notice that programs may be close to being correct for
completely different reasons, so merging them produces a result that’s very different
from either of its predecessors. Again, the hope is that some crossovers will improve
the solution and be kept around for the next generation.

Building the Environment
Armed with a measure of success and two methods of modifying the best programs,
you’re now ready to set up a competitive environment in which programs can evolve.
The steps are shown in the flowchart in Figure 11-1. Essentially, you create a set of
random programs and select the best ones for replication and modification, repeat-
ing this process until some stopping criteria is reached.

Create a new function called evolve to carry out this procedure:

def evolve(pc,popsize,rankfunction,maxgen=500,
 mutationrate=0.1,breedingrate=0.4,pexp=0.7,pnew=0.05):
 # Returns a random number, tending towards lower numbers. The lower pexp
 # is, more lower numbers you will get
 def selectindex():
 return int(log(random())/log(pexp))

 # Create a random initial population
 population=[makerandomtree(pc) for i in range(popsize)]
 for i in range(maxgen):
 scores=rankfunction(population)
 print scores[0][0]
 if scores[0][0]==0: break

 # The two best always make it
 newpop=[scores[0][1],scores[1][1]]

266 | Chapter 11: Evolving Intelligence

 # Build the next generation
 while len(newpop)<popsize:
 if random()>pnew:
 newpop.append(mutate(
 crossover(scores[selectindex()][1],
 scores[selectindex()][1],
 probswap=breedingrate),
 pc,probchange=mutationrate))
 else:
 # Add a random node to mix things up
 newpop.append(makerandomtree(pc))

 population=newpop
 scores[0][1].display()
 return scores[0][1]

This function creates an initial random population. It then loops up to maxgen times,
each time calling rankfunction to rank the programs from best to worst. The best
program is automatically passed through to the next generation unaltered, which is
sometimes referred to as elitism. The rest of the next generation is constructed by
randomly choosing programs that are near the top of the ranking, and then breeding
and mutating them. This process repeats until either a program has a perfect score of
0 or maxgen is reached.

The function has several parameters, which are used to control various aspects of the
environment. They are:

rankfunction
The function used on the list of programs to rank them from best to worst.

mutationrate
The probability of a mutation, passed on to mutate.

breedingrate
The probability of crossover, passed on to crossover.

popsize
The size of the initial population.

probexp
The rate of decline in the probability of selecting lower-ranked programs. A
higher value makes the selection process more stringent, choosing only programs
with the best ranks to replicate.

probnew
The probability when building the new population that a completely new, ran-
dom program is introduced. probexp and probnew will be discussed further in the
upcoming section “The Importance of Diversity.”

Building the Environment | 267

The final thing you’ll need before beginning the evolution of your programs is a way
to rank programs based on the result of scorefunction. In gp.py, create a new
function called getrankfunction, which returns a ranking function for a given
dataset:

def getrankfunction(dataset):
 def rankfunction(population):
 scores=[(scorefunction(t,dataset),t) for t in population]
 scores.sort()
 return scores
 return rankfunction

You’re ready to automatically create a program that represents the formula for your
mathematical dataset. Try this in your Python session:

>>> reload(gp)
>>> rf=gp.getrankfunction(gp.buildhiddenset())
>>> gp.evolve(2,500,rf,mutationrate=0.2,breedingrate=0.1,pexp=0.7,pnew=0.1)
16749
10674
5429
3090
491
151
151
0
add
 multiply
 p0
 add
 2
 p0
 add
 add
 p0
 4
 add
 p1
 add
 p1
 isgreater
 10
 5

The numbers change slowly, but they should decrease until they finally reach 0.
Interestingly, the solution shown here gets everything correct, but it’s quite a bit
more complicated than the function used to create the dataset. (It’s very likely that
the solution you generated will also seem more complicated than it has to be.) How-
ever, a little algebra shows us that these functions are actually the same—remember
that p0 is X and p1 is Y. The first line is the function represented by this tree:

 (X*(2+X))+X+4+Y+Y+(10>5)
= 2*X+X*X+X+4+Y+Y+1
= X**2 + 3*X + 2*Y + 5

268 | Chapter 11: Evolving Intelligence

This demonstrates an important property of genetic programming: the solutions it
finds may well be correct or very good, but because of the way they are constructed,
they will often be far more complicated than anything a human programmer would
design. There will often be large sections of a program that don’t do anything or that
represent a complicated formula that returns the same value every time. Notice in the
above example that the node (10>5) is just an odd way of saying 1.

It is possible to force the programs to remain simple, but in many cases this will
make it more difficult to find a good solution. A better way to deal with this issue is
to allow the programs to evolve to a good solution and then remove and simplify
unnecessary portions of the tree. You can do this manually, and in some cases you
can do it automatically using a pruning algorithm.

The Importance of Diversity
Part of the evolve function ranks the programs from best to worst, so it’s tempting to
just take two or three of the programs at the top and replicate and modify them to
become the new population. After all, why would you bother allowing anything less
than the best to continue?

The problem is that choosing only a couple of the top solutions quickly makes the
population extremely homogeneous (or inbred, if you like), containing solutions that
are all pretty good but that won’t change much because crossover operations
between them lead to more of the same. This problem is called reaching a local
maxima, a state that is good but not quite good enough, and one in which small
changes don’t improve the result.

It turns out that having the very best solutions combined with a large number of
moderately good solutions tends to lead to better results. For this reason, the evolve
function has a couple of extra parameters that allow you to tune that amount of
diversity in the selection process. By lowering the probexp value, you allow weaker
solutions into the final result, turning the process from “survival of the fittest” to
“survival of the fittest and luckiest.” By increasing the probnew value, you allow com-
pletely new programs to be added to the mix occasionally. Both of these values
increase the amount of diversity in the evolution process but won’t disrupt it too
much, since the very worst programs will always be eliminated eventually.

A Simple Game
A more interesting problem for genetic programming is building an AI for a game.
You can force the programs to evolve by having them compete against each other
and against real people, and giving the ones that win the most a higher chance of
making it to the next generation. In this section, you’ll create a simulator for a very
simple game called Grid War, which is depicted in Figure 11-6.

A Simple Game | 269

The game has two players who take turns moving around on a small grid. Each
player can move in one of four directions, and the board is limited so if a player
attempts to move off one side, he forfeits his turn. The object of the game is to
capture the other player by moving onto the same square as his on your turn. The
only additional constraint is that you automatically lose if you try to move in the
same direction twice in a row. This game is very basic but since it pits two players
against each other, it will let you explore more competitive aspects of evolution.

The first step is to create a function that uses two players and simulates a game
between them. The function passes the location of the player and the opponent to
each program in turn, along with the last move made by the player, and takes the
return value as the move.

The move should be a number from 0 to 3, indicating one of four possible directions,
but since these are random programs that can return any integer, the function has to
handle values outside this range. To do this, it uses modulo 4 on the result. Random
programs are also liable to do things like create a player that moves in a circle, so the
number of moves is limited to 50 before a tie is declared.

Add gridgame to gp.py:

def gridgame(p):
 # Board size
 max=(3,3)

 # Remember the last move for each player
 lastmove=[-1,-1]

 # Remember the player's locations
 location=[[randint(0,max[0]),randint(0,max[1])]]

 # Put the second player a sufficient distance from the first
 location.append([(location[0][0]+2)%4,(location[0][1]+2)%4])

Figure 11-6. Grid War example

X

O

270 | Chapter 11: Evolving Intelligence

 # Maximum of 50 moves before a tie
 for o in range(50):

 # For each player
 for i in range(2):
 locs=location[i][:]+location[1-i][:]
 locs.append(lastmove[i])
 move=p[i].evaluate(locs)%4

 # You lose if you move the same direction twice in a row
 if lastmove[i]==move: return 1-i
 lastmove[i]=move
 if move==0:
 location[i][0]-=1
 # Board limits
 if location[i][0]<0: location[i][0]=0
 if move==1:
 location[i][0]+=1
 if location[i][0]>max[0]: location[i][0]=max[0]
 if move==2:
 location[i][1]-=1
 if location[i][1]<0: location[i][1]=0
 if move==3:
 location[i][1]+=1
 if location[i][1]>max[1]: location[i][1]=max[1]

 # If you have captured the other player, you win
 if location[i]==location[1-i]: return i
 return -1

The program will return 0 if player 1 is the winner, 1 if player 2 is the winner, and –1
in the event of a tie. You can try building a couple of random programs and having
them compete:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> p1=gp.makerandomtree(5)
>>> p2=gp.makerandomtree(5)
>>> gp.gridgame([p1,p2])
1

These programs are totally unevolved, so they probably lose by moving in the same
direction twice in a row. Ideally, an evolved program will learn not to do this.

A Round-Robin Tournament
In keeping with collective intelligence, you would want the programs to test their fit-
ness by playing against real people, and force their evolution that way. This would be
a great way to capture the behavior of thousands of people and use it to develop a
more intelligent program. However, with a large population and many generations,

A Simple Game | 271

this could quickly add up to tens of thousands of games, and most of them would be
against very poor opponents. That’s impractical for our purposes, so you can first
have the programs evolve by competing against each other in a tournament.

The tournament function takes a list of players as its input and pits each one against
every other one, tracking how many times each program loses its game. Programs get
two points if they lose and one point if they tie. Add tournament to gp.py:

def tournament(pl):
 # Count losses
 losses=[0 for p in pl]

 # Every player plays every other player
 for i in range(len(pl)):
 for j in range(len(pl)):
 if i==j: continue

 # Who is the winner?
 winner=gridgame([pl[i],pl[j]])

 # Two points for a loss, one point for a tie
 if winner==0:
 losses[j]+=2
 elif winner==1:
 losses[i]+=2
 elif winner==-1:
 losses[i]+=1
 losses[i]+=1
 pass

 # Sort and return the results
 z=zip(losses,pl)
 z.sort()
 return z

At the end of the function, the results are sorted and returned with the programs that
have the fewest losses at the top. This is the return type needed by evolve to evaluate
programs, which means that tournament can be used as an argument to evolve and
that you’re now ready to evolve a program to play the game. Try it in your Python
session (this may take some time):

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> winner=gp.evolve(5,100,gp.tournament,maxgen=50)

As the programs evolve, notice that the loss numbers don’t strictly decrease like they
did with the mathematical function. Take a minute to think about why this is—after
all, the best player is always allowed into the next generation, right? As it turns out,
since the next generation consists entirely of newly evolved programs, the best
program in one generation might fare a lot worse in the next.

272 | Chapter 11: Evolving Intelligence

Playing Against Real People
Once you’ve evolved a program that performs well against its robotic competitors,
it’s time to battle against it yourself. To do this, you can create another class that also
has an evaluate method that displays the board to the user and asks what move they
want to make. Add the humanplayer class to gp.py:

class humanplayer:
 def evaluate(self,board):

 # Get my location and the location of other players
 me=tuple(board[0:2])
 others=[tuple(board[x:x+2]) for x in range(2,len(board)-1,2)]

 # Display the board
 for i in range(4):
 for j in range(4):
 if (i,j)==me:
 print 'O',
 elif (i,j) in others:
 print 'X',
 else:
 print '.',
 print

 # Show moves, for reference
 print 'Your last move was %d' % board[len(board)-1]
 print ' 0'
 print '2 3'
 print ' 1'
 print 'Enter move: ',

 # Return whatever the user enters
 move=int(raw_input())
 return move

In your Python session, you can take on your creation:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.gridgame([winner,gp.humanplayer()])
. O . .
. . . .
. . . .
. . . X
Your last move was -1
 0
2 3
 1
Enter move:

Further Possibilities | 273

Depending on how well your program evolved, you may find it easy or difficult to
beat. Your program will almost certainly have learned that it can’t make the same
move twice in a row, since that leads to instant death, but the extent to which it has
mastered other strategies will vary with each run of evolve.

Further Possibilities
This chapter is just an introduction to genetic programming, which is a huge and
rapidly advancing field. You’ve used it so far to approach simple problems in which
programs are built in minutes rather than days, but the principles can be extended to
much more complex problems. The number of programs in the populations here
have been very small compared to those used in more complex problems—a
population of thousands or tens of thousands is more typical. You are encouraged to
come up with more difficult problems and try larger population sizes, but you may
have to wait hours or days while the programs run.

The following section outlines a few ways in which the simple genetic programming
model can be extended for different applications.

More Numerical Functions
We have used a very small set of functions to construct the programs so far. This
limits the scope of what a simple program can do—for more complicated problems,
it’s necessary to greatly increase the number of functions available to build a tree.
Here are some possible functions to add:

• Trigonometric functions like sine, cosine, and tangent

• Other mathematical functions like power, square root, and absolute value

• Statistical distributions, such as a Gaussian

• Distance metrics, like Euclidean and Tanimoto distances

• A three-parameter function that returns 1 if the first parameter is between the
second and third

• A three-parameter function that returns 1 if the difference between the first two
parameters is less than the third

These can get as complicated as you like, and they are often tailored to specific
problems. Trigonometric functions may be a necessity when working in a field like
signal processing, but they are not much use in a game like the one you built in this
chapter.

274 | Chapter 11: Evolving Intelligence

Memory
The programs in this chapter are almost entirely reactive; they give a result based
solely on their inputs. This is the right approach for solving mathematical functions,
but it doesn’t allow the programs to work from a longer-term strategy. The chasing
game passes the programs the last move they made—mostly so the programs learn
they can’t make the same move twice in a row—but this is simply the output of the
program, not something they set themselves.

For a program to develop a longer-term strategy, it needs a way to store information
for use in the next round. One simple way to do this is to create new kinds of nodes
that can store and retrieve values from predefined slots. A store node has a single
child and an index of a memory slot; it gets the result from its child and stores it in
the memory slot and then passes this along to its parent. A recall node has no chil-
dren and simply returns the value in the appropriate slot. If a store node is at the top
of the tree, the final result is available to any part of the tree that has the appropriate
recall node.

In addition to individual memory, it’s also possible to set up shared memory that can
be read and written to by all the different programs. This is similar to individual
memory, except that there are a set of slots that all the programs can read from and
write to, creating the potential for higher levels of cooperation and competition.

Different Datatypes
The framework described in this chapter is for programs that take integer parameters
and return integers as results. It can easily be altered to work with float values, since
the operations are the same. To do this, simply alter makerandomtree to create the
constant nodes with a random float value instead of a random integer.

Building programs that handle other kinds of data will require more extensive modi-
fication, mostly changing the functions on the nodes. The basic framework can be
altered to handle types such as:

Strings
These would have operations like concatenate, split, indexing, and substrings.

Lists
These would have operations similar to strings.

Dictionaries
These would include operations like replacement and addition.

Objects
Any custom object could be used as an input to a tree, with the functions on the
nodes being method calls to the object.

Further Possibilities | 275

An important point that arises from these examples is that, in many cases, you’ll
require the nodes in the tree to process more than one type of return value. A sub-
string operation, for example, requires a string and two integers, which means that
one of its children would have to return a string and the other two would have to
return integers.

The naïve approach to this would be to randomly generate, mutate, and breed trees,
simply discarding the ones in which there is a mismatch in datatypes. However, this
would be computationally wasteful, and you’ve already seen how you can put a con-
straint on the way trees are constructed—every function in the integer trees knows
how many children it needs, and this can be easily extended to constrain the types of
children and their return types. For example, you might redefine the fwrapper class
like the following, where params is a list of strings specifying datatypes that can be
used for each parameter:

class fwrapper:
 def __init_ _(self,function,params,name):
 self.function=function
 self.childcount=param
 self.name=name

You’d also probably want to set up flist as a dictionary with return types. For
example:

flist={'str':[substringw,concatw],'int':[indexw,addw,subw]}

Then you could change the start of makerandomtree to something like:

def makerandomtree(pc,datatype,maxdepth=4,fpr=0.5,ppr=0.5):
 if random()<fpr and maxdepth>0:
 f=choice(flist[datatype])
 # Call makerandomtree with all the parameter types for f
 children=[makerandomtree(pc,type,maxdepth-1,fpr,ppr)
 for type in f.params]
 return node(f,children)
etc...

The crossover function would also have to be altered to ensure that swapped nodes
have the same return type.

Ideally, this section has given you some ideas about how genetic programming can
be extended from the simple model described here, and has inspired you to improve
it and to try automatically generating programs for more complex problems.
Although they may take a very long time to generate, once you find a good program,
you can use it again and again.

276 | Chapter 11: Evolving Intelligence

Exercises
1. More function types. We started with a very short list of functions. What other

functions can you think of? Implement a Euclidean distance node with four
parameters.

2. Replacement mutation. Implement a mutation procedure that chooses a random
node on the tree and changes it. Make sure it deals with function, constant, and
parameter nodes. How is evolution affected by using this function instead of the
branch replacement?

3. Random crossover. The current crossover function chooses branches from two
trees at the same level. Write a different crossover function that crosses any two
random branches. How does this affect evolution?

4. Stopping evolution. Add an additional criteria to evolve that stops the process
and returns the best result if the best score hasn’t improved within X generations.

5. Hidden functions. Try creating other mathematical functions for the programs to
guess. What sort of functions can be found easily, and which are more difficult?

6. Grid War player. Try to hand-design your own tree program that does well at
Grid War. If you find this easy, try to write another completely different one.
Instead of having a completely random initial population, make it mostly
random, with your hand-designed programs included. How do they compare to
random programs, and can they be improved with evolution?

7. Tic-tac-toe. Build a tic-tac-toe simulator for your programs to play. Set up a
tournament similar to the Grid War tournament. How well do the programs do?
Can they ever learn to play perfectly?

8. Nodes with datatypes. Some ideas were provided in this chapter about
implementing nodes with mixed datatypes. Implement this and see if you can
evolve a program that learns to return the second, third, sixth, and seventh
characters of a string (e.g., “genetic” becomes “enic”).

Selected Chapters

From:
Grokking
Deep Learning
by Andrew W. Trask

3

A Simple Network Making a Prediction

What is a Neural Network and what does it do?

Making a Prediction with Multiple Inputs

Making a Prediction with Multiple Outputs

Making a Prediction wtih Multiple Inputs and Outputs

Predicting on Predictions

Introduction to Neural Prediction

Forward Propagation

I try not to get involved in the business of
prediction. It's a quick way to look like an idiot.

— WARREN ELLIS

IN THIS CHAPTER

21

Chapter 3 I Introduction to Neural Prediction22

Location: AWAY
Opponent: Yankees
of Toes: 250
of Players: 25
of Fans: 25,000

Data Machine Prediction

98%

 Step 1: Predict

This chapter is about "Prediction"

In the previous chapter, we learned about the paradigm: "Predict, Compare, Learn". In this
chapter, we will dive deep into the fi rst step, "Predict". You may remember that the predict
step looks a lot like this.

In this chapter, we're going to learn more about what these 3 diff erent parts of a
neural network prediction really look like under the hood. Let's start with the fi rst one, the
Data. In our fi rst neural network, we're going to predict one datapoint at a time, like so.

toes Machine Prediction

98%8.5

Later on, we will fi nd that the "number of datapoints at a time" that we want
to process will have a signifi cant impact on what our network looks like. You might be
wondering, "how do I choose how many datapoints to propagate at a time?" Th e answer to
this question is based on whether or not you think the neural network can be accurate with
the data you give it. For example, if I'm trying to predict whether or not there's a cat in a
photo, I defi nitely need to show my network all the pixels of an image at once. Why? Well, if
I only sent you one pixel of an image, could you classify whether the image contained a cat?
Me neither! (Th at's a general rule of thumb by the way. Always present enough information
to the network, where "enough information" is defi ned loosely as how much a human might
need to make the same prediction).

Step 1: Predict 23

Let's skip over the network for now. As it turns out, we can only create our network
once we understand the shape of our input and output datasets (For now, shape means
"number of columns" or "number of datapoints we're processing at once"). For now, we're
going to stick with the "single-prediction" of "likelihood that the baseball team will win".

toes Machine Win Probability

98%8.5

Ok, so now that we know that we want to take one input datapoint and output one
prediction, we can create our neural network. Since we only have one input datapoint and
one output datapoint, we're going to build a network with a single knob mapping from the
input point to the output. Abstractly these "knob"s are actually called "weight"s, and we
will refer to them as such from here on out. So, without further ado, here's our fi rst neural
network with a single weight mapping from our input "#toes" to output "win?"

.1

input data
enters here

predictions
come out here

An Empty Network

#toes win?

As you can see, with one weight, this network takes in one datapoint at a time
(average number of toes on the baseball team) and outputs a single prediction (whether or
not it thinks the team will win).

1

Chapter 3 I Introduction to Neural Prediction24

 A Simple Neural Network Making a Prediction

Let's start with the simplest neural network possible.

.1

input data
enters here

predictions
come out here

weight = 0.1

def neural_network(input, weight):

prediction = input * weight

 return prediction

An Empty Network

input data
 (#toes)

Inserting One Input Datapoint

8.5

number_of_toes = [8.5, 9.5, 10, 9]

input = number_of_toes[0]

pred = neural_network(input,weight)

print(pred)

.1

Multiplying Input By Weight

8.5

(8.5 * 0.1 = 0.85)

def neural_network(input, weight):

 prediction = input * weight

 return prediction

Depositing Prediction

8.5 0.85

number_of_toes = [8.5, 9.5, 10, 9]

input = number_of_toes[0]

pred = neural_network(input,weight)

prediction

#toes win?

1

2

3

4

What is a Neural Network? 25

What is a Neural Network?

This is a neural network.

Open up a Jupyter Notebook and run the following:

You just made your first neural network and used it to predict! Congratulations! The last line
prints the prediction (pred). It should be 0.85. So what is a neural network? For now, it's one or
more weights which we can multiply by our input data to make a prediction.

the network how we use the network to
predict something

What is input data?
It's a number that we recorded in the real world somewhere. It's usually some-
thing that is easily knowable, like today's temperature, a baseball player's batting
average, or yesterday's stock price.

What is a prediction?
A prediction is what the neural network tells us given our input data such as
"given the temperature, it is 0% likely that people will wear sweatsuits today" or
"given a baseball player's batting average, he is 30% likely to hit a home run" or
"given yesterday's stock price, today's stock price will be 101.52".

Is this prediction always right?
No. Sometimes our neural network will make mistakes, but it can learn from
them. For example, if it predicts too high, it will adjust it's weight to predict low-
er next time and vice versa.

How does the network learn?
Trial and error! First, it tries to make a prediction. Then, it sees whether it was
too high or too low. Finally, it changes the weight (up or down) to predict more
accurately the next time it sees the same input.

weight = 0.1

def neural_network(input, weight):

prediction = input * weight

 return prediction

number_of_toes = [8.5, 9.5, 10, 9]

input = number_of_toes[0]

pred = neural_network(input,weight)
print(pred)

Chapter 3 I Introduction to Neural Prediction26

 What does this Neural Network do?

It multiplies the input by a weight. It "scales" the input by a certain amount.

On the previous page, we made our fi rst prediction with a neural network. A neural
network, in it's simplest form, uses the power of multiplication. It takes our input datapoint (in
this case, 8.5) and multiplies it by our weight. If the weight is 2, then it would double our input.
If the weight is 0.01, then it would divide the input by 100. As you can see, some weight values
make the input bigger and other values make it smaller.

 Th e interface for our neural network is really quite simple. It accepts an input variable
as information, and a weight variable as knowledge and outputs a prediction. Every neural
network you will ever see works this way. It uses the knowledge in the weights to interpret the
information in the input data. Later neural networks will accept larger, more complicated input
and weight values, but this same underlying premise will always ring true.

In this case, the "information" is the average number of toes on a baseball team before
a game. Notice several things. Th e neural network does NOT have access to any information
except one instance. If, aft er this prediction, we were to feed in number_of_toes[1], it would not
remember the prediction it made in the last timestep. A neural network only knows what you
feed it as input. It forgets everything else. Later, we will learn how to give neural networks "short
term memories" by feeding in multiple inputs at once.

input data
 (#toes)

Inserting One Input Datapoint

8.5

number_of_toes = [8.5, 9.5, 10, 9]

input = number_of_toes[0]

pred = neural_network(input,weight)

.1

input data
enters here

predictions
come out here

weight = 0.1

def neural_network(input, weight):

prediction = input * weight

 return prediction

An Empty Network

#toes win?

1

2

What does this Neural Network do? 27

Another way to think about a neural network's weight is as a measure of sensitivity be-
tween the input of the network and its prediction. If the weight is very high, then even the tiniest
input can create a really large prediction! If the weight is very small, then even large inputs will
make small predictions. Th is sensitivity is very akin to volume. "Turning up the weight" amplifi es
our prediction relative to our input. weight is a volume knob!

So in this case, what our neural network is really doing is applying a volume knob to
our number_of_toes variable. In theory, this volume knob is able to tell us the likelihood that
the team will win based on the average number of toes per player on our team. And this may or
may not work. Truthfully, if the team had 0 toes, they would probably play terribly. However,
baseball is much more complex than this. On the next page, we will present multiple pieces of
information at the same time, so that the neural network can make more informed decisions.

Before we go, neural networks don't just predict positive numbers either, they can also
predict negative numbers, and even take negative numbers as input. Perhaps you want to predict
the "probability that people will wear coats today", if the temperature was -10 degrees Celsius,
then a negative weight would predict a high probability that people would wear coats today.

-10
-8.9

89

Temperature Probability

.1

Multiplying Input By Weight

8.5

(8.5 * 0.1 = 0.85)

def neural_network(input, weight):

 prediction = input * weight

 return prediction

Depositing Prediction

8.5 0.85

number_of_toes = [8.5, 9.5, 10, 9]

input = number_of_toes[0]

pred = neural_network(input,weight)

prediction

weight
(volume knob)

3

4

Chapter 3 I Introduction to Neural Prediction28

 Making a Prediction with Multiple Inputs

Neural Networks can combine intelligence from multiple datapoints.

input data
enters here

(3 at a time)

1 An Empty Network With Multiple Inputs

predictions
come out here

weights = [0.1, 0.2, 0]

def neural_network(input, weights):

 pred = w_sum(input,weights)

 return pred

.1

.2

.0

win
loss

#toes

#fans

win?

2 Inserting One Input Datapoint

one row
of data

(fi rst game)

.1

.2

.0

8.5

65%

1.2

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

/* This dataset is the current
status at the beginning of
each game for the fi rst 4 games
in a season.

toes = current number of toes
wlrec = current games won (percent)
nfans = fan count (in millions) */

Our last neural network was able to take one datapoint as input and make one
prediction based on that datapoint. Perhaps you've been wondering, "is average # of toes
really a very good predictor?... all by itself?" If so, you're onto something. What if we were
able to give our network more information (at one time) than just the "average number of
toes". It should, in theory, be able to make more accurate predictions, yes? Well, as it turns
out, our network can accept multiple input datapoints at a time. See the prediction below!

Making a Prediction with Multiple Inputs 29

3 Perform a Weighted Sum of Inputs

.1

.2

.0

8.5

65%

1.2

def neural_network(input, weights):

 pred = w_sum(input,weights)

 return pred

def w_sum(a,b):

 assert(len(a) == len(b))

 output = 0

for i in range(a):
output += (a[i] * b[i])

 return output

 (8.50 * 0.1) = 0.85 = toes prediction
 (0.65 * 0.2) = 0.13 = wlrec prediction
 (1.20 * 0.0) = 0.00 = fans prediction

toes prediction + wlrec prediction + fans prediction = fi nal prediction

0.85 + 0.13 + 0.00 = 0.98

inputs weights

4 Deposit Prediction

.1

.2

.0

8.5

65%

1.2

0.98

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

prediction

.85

.13

.0

local
predictions

Chapter 3 I Introduction to Neural Prediction30

Multiple Inputs - What does this Neural Network do?

It multiplies 3 inputs by 3 knob_weights and sums them. This is a "weighted sum".

At the end of the previous section, we came to realize the limiting factor of our sim-
ple neural network, it is only a volume knob on one datapoint. In our example, that datapoint
was the average number of toes on a baseball team. We realized that in order to make accurate
predictions, we need to build neural networks that can combine multiple inputs at the same time.
Fortunately, neural networks are perfectly capable of doing so.

input data
enters here

(3 at a time)

1 An Empty Network With Multiple Inputs

predictions
come out here

weights = [0.1, 0.2, 0]

def neural_network(input, weights):

 pred = w_sum(input,weights)

 return pred

.1

.2

.0

win
loss

#toes

#fans

win?

In this new neural network, we can accept multiple inputs at a time per prediction. This allows
our network to combine various forms of information to make more well informed decisions.
However, the fundamental mechanism for using our weights has not changed. We still take each
input and run it through its own volume knob. In other words, we take each input and multiply
it by its own weight. The new property here is that, since we have mutliple inputs, we have to
sum their respective predictions. Thus, we take each input, multiply it by its respective weight,
and then sum all the local predictions together. This is called a "weighted sum of the input" or a
"weighted sum" for short. Some also refer to this "weighted sum" as a "dot product" as we'll see.

The interface for our neural network is quite simple. It accepts an input variable
as information, and a weight variable as knowledge and outputs a prediction.

A Relevant Reminder

Multiple Inputs - What does this Neural Network do? 31

 Th is new need to process multiple inputs at a time justifi es the use of a new tool. Th is
tool is called a vector and if you've been following along in your iPython notebook, you've
already been using it. A vector is nothing other than a list of numbers. input is a vector and
weights is a vector. Can you spot any more vectors in the code above (there are 3 more)?

As it turns out, vectors are incredibly useful whenever you want to perform operations
involving groups of numbers. In this case, we're performing a weighted sum between two vectors
(dot product). We're taking two vectors of equal length (input and weights), multiplying each
number based on its position (the fi rst position in input is multiplied by the fi rst position in
weights, etc.), and then summing the resulting output.

It turns out that whenever we perform a mathematical operation between two vectors of
equal length where we "pair up" values according to their position in the vector (again... position
0 with 0, 1, with 1, and so on), we call this an elementwise operation. Th us "elementwise addi-
tion" sums two vectors. "elementwise multiplication" multiplies two vectors.

2 Inserting One Input Datapoint

one row
of data

(fi rst game)

.1

.2

.0

8.5

65%

1.2

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

/* This dataset is the current
status at the beginning of
each game for the fi rst 4 games
in a season.

toes = current number of toes
wlrec = current games won (percent)
nfans = fan count (in millions) */

Being able to manipulate vectors is a cornerstone technique for Deep Learning.
See if you can write functions that perform the following operations:

def elementwise_multiplication(vec_a, vec_b) def vector_sum(vec_a)
def elementwise_addition(vec_a, vec_b) def vector_average(vec_a)

Th en, see if you can use two of these methods to perform a dot product!

Challenge: Vector Math

Chapter 3 I Introduction to Neural Prediction32

3 Perform a Weighted Sum of Inputs

.1

.2

.0

8.5

65%

1.2

def neural_network(input, weights):

 pred = w_sum(input,weights)

 return pred

def w_sum(a,b):

 assert(len(a) == len(b))

 output = 0

for i in range(a):
output += (a[i] * b[i])

 return output

 (8.50 * 0.1) = 0.85 = toes prediction
 (0.65 * 0.2) = 0.13 = wlrec prediction
 (1.20 * 0.0) = 0.00 = fans prediction

toes prediction + wlrec prediction + fans prediction = fi nal prediction

0.85 + 0.13 + 0.00 = 0.98

inputs weights

.85

.13

.0

local
predictions

 Th e intuition behind how and why a dot product (weighted sum) works is easily one of
the most important parts of truly understanding how neural networks make predictions. Loosely
stated, a dot product gives us a notion of similarity between two vectors. Consider the examples:

a = [0, 1, 0, 1]
b = [1, 0, 1, 0]
c = [0, 1, 1, 0]
d = [.5, 0,.5, 0]
e = [0, 1,-1, 0]

w_sum(a,b) = 0
w_sum(b,c) = 1
w_sum(b,d) = 1
w_sum(c,c) = 2
w_sum(d,d) = .5
w_sum(c,e) = 0

Th e highest weighted sum (w_sum(c,c)) is between vectors that are exactly identical. In contrast,
since a and b have no overlapping weight, their dot product is zero. Perhaps the most interesting
weighted sum is between c and e, since e has a negative weight. Th is negative weight cancelled
out the positive similarity between them. However, a dot product between e and itself would
yield the number 2, despite the negative weight (double negative turns positive). Let's become
familiar with these properties.

Multiple Inputs - What does this Neural Network do? 33

Some have equated the properties of the "dot product" to a "logical AND". Consider a and b.

a = [0, 1, 0, 1]
b = [1, 0, 1, 0]

If you asked whether both a[0] AND b[0] had value, the answer would be no. If you
asked whether both a[1] AND b[1] had value, the answer would again be no. Since this is AL-
WAYS true for all 4 values, the final score equals 0. Each value failed the logical AND.

b = [1, 0, 1, 0]
c = [0, 1, 1, 0]

b and c, however, have one column that shares value. It passes the logical AND since
b[2] AND c[2] have weight. This column (and only this column) causes the score to rise to 1.

c = [0, 1, 1, 0]
d = [.5, 0,.5, 0]

Fortunately, neural networks are also able to model partial ANDing. In this case, c and
d share the same column as b and c, but since d only has 0.5 weight there, the final score is only
0.5. We exploit this property when modeling probabilities in neural networks.

d = [.5, 0,.5, 0]
e = [-1, 1, 0, 0]

In this analogy, negative weights tend to imply a logcal NOT operator, given that any
positive weight paired with a negative weight will cause the score to go down. Furthermore, if
both vectors have negative weights (such as w_sum(e,e)), then it will perform a double negative
and add weight instead. Additionally, some will say that it's an OR after the AND, since if any of
the rows show weight, the score is affected. Thus, for w_sum(a,b), if (a[0] AND b[0]) OR (a[1]
AND b[1)...etc.. then have a positive score. Furthermore, if one is negative, then that column
gets a NOT. Amusingly, this actually gives us a kind of crude language to "read our weights".
Let's "read" a few examples, shall we? These assume you're performing w_sum(input,weights)
and the "then" to these "if statements" is just an abstract "then give high score".

weights = [1, 0, 1] => if input[0] OR input[2]

weights = [0, 0, 1] => if input[2]

weights = [1, 0, -1] => if input[0] OR NOT input[2]

weights = [-1, 0, -1] => if NOT input[0] OR NOT input[2]

weights = [0.5, 0, 1] => if BIG input[0] or input[2]

Notice in the last row that a weight[0] = 0.5 means that the corresponding input [0]
would have to be larger to compensate for the smaller weighting. And as I mentioned, this is a
very very crude approximate language. However, I find it to be immensely useful when trying to
picture in my head what's going on under the hood. This will help us significantly in the future,
especially when putting networks together in increasingly complex ways.

Chapter 3 I Introduction to Neural Prediction34

4 Deposit Prediction

.1

.2

.0

8.5

65%

1.2

0.98

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

prediction

So, given these intuitions, what does this mean when our neural network makes a
prediction? Very rougly speaking, it means that our network gives a high score of our inputs
based on how similar they are to our weights. Notice below that "nfans" is completely ignored in
the prediction because the weight associated with it is a 0. Th e most sensitive predictor, in fact, is
"wlrec" because its weight is a 0.2. However, the dominant force in the high score is the number
of toes ("ntoes") not because the weight is the highest, but because the input combined with the
weight is by far the highest.

A few more points that we will note here for further reference. We cannot shuffl e our
weights. Th ey have specifi c positions they need to be in. Furthermore, both the value of the
weight AND the value of the input determine the overall impact on the fi nal score. Finally, a
negative weight would cause some inputs to reduce the fi nal prediction (and vise versa).

Multiple Inputs - Complete Runnable Code 35

Multiple Inputs - Complete Runnable Code

The code snippets from this example come together as follows.

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the first game of the season

input = [toes[0],wlrec[0],nfans[0]]
pred = neural_network(input,weight)
print(pred)

def w_sum(a,b):

 assert(len(a) == len(b))

 output = 0

for i in range(a):
output += (a[i] * b[i])

 return output

weights = [0.1, 0.2, 0]

def neural_network(input, weights):

 pred = w_sum(input,weights)

 return pred

We can create and execute our neural
network using the following code. For the
purposes of clarity, I have written everything
out using only basic properties of Python
(lists and numbers). However, there is a better
way that we will start using in the future.

There is a python library called
"numpy" which stands for "numerical py-
thon". It has very efficient code for creating
vectors and performing common functions
(such as a dot product). So, without further
ado, here's the same code in numpy.

toes = np.array([8.5, 9.5, 9.9, 9.0])
wlrec = np.array([0.65, 0.8, 0.8, 0.9])
nfans = np.array([1.2, 1.3, 0.5, 1.0])

input corresponds to every entry
for the first game of the season

input = np.array([toes[0],wlrec[0],nfans[0]])
pred = neural_network(input,weight)
print(pred)

import numpy as np

weights = np.array([0.1, 0.2, 0])

def neural_network(input, weights):

 pred = input.dot(weights)

 return pred

Numpy Code

Previous Code

Notice that we didn't have to create a special "w_sum" function. Instead, numpy has a special
function called "dot" (short for "dot product") which we can call. Many of the functions we want
to use in the future will have numpy parallels, as we will see later.

Both networks should
simply print out:

0.98

Chapter 3 I Introduction to Neural Prediction36

 Making a Prediction with Multiple Outputs

Neural Networks can also make multiple predictions using only a single input.

Perhaps a simpler augmentation than multiple inputs is multiple outputs. Prediction occurs
in the same way as if there were 3 disconnected single-weight neural networks.

1 An Empty Network With Multiple Outputs

/* instead of predicting just
whether the team won or lost,
now we're also predicting whether
they are happy/sad AND the percentage
of the team that is hurt. We are
making this prediction using only
the current win/loss record */

weights = [0.3, 0.2, 0.9]

def neural_network(input, weights):

 pred = ele_mul(input,weights)

 return pred

input data
enters here

predictions
come out here

win
loss

win?

sad?

hurt?

2 Inserting One Input Datapoint

.3

.2

.9

.3

.2

.9

65%

wlrec = [0.65, 0.8, 0.8, 0.9]

input = wlrec[0]

pred = neural_network(input,weight)

 Th e most important commentary in this setting is to notice that the 3 predictions really
are completely separate. Unlike neural networks with multiple inputs and a single output where
the prediction is undeniably connected this network truly behaves as 3 independent compo-
nents, each receiving the same input data. Th is makes the network quite trivial to implement.

Making a Prediction with Multiple Outputs 37

3 Perform an Elementwise Multiplication

def neural_network(input, weights):

 pred = ele_mul(input,weights)

 return pred

def ele_mul(number,vector):

 output = [0,0,0]

 assert(len(output) == len(vector))

for i in xrange(len(vector)):
output[i] = number * vector[i]

 return output

 (0.65 * 0.3) = 0.195 = hurt prediction
 (0.65 * 0.2) = 0.13 = win prediction
 (0.65 * 0.9) = 0.585 = sad prediction

inputs weights
fi nal

predictions

.3

.2

.9

65%

.195

.13

.585

4 Deposit Predictions

.3

.2

.9

65%

.195

.13

.585

wlrec = [0.65, 0.8, 0.8, 0.9]

input = wlrec[0]

pred = neural_network(input,weight)

predictions
(a vector of numbers)

Chapter 3 I Introduction to Neural Prediction38

 Predicting with Multiple Inputs & Outputs

Neural networks can predict multiple outputs given multiple inputs.

1 An Empty Network With Multiple Inputs & Outputs

 #toes %win #fans
weights = [[0.1, 0.1, -0.3],#hurt?

[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1]]#sad?

def neural_network(input, weights):

 pred = vect_mat_mul(input,weights)

 return pred

.1

.2

.0

win
loss

#toes

#fans

win?

sad?

hurt?

11

..

22

inputs predictions

2 Inserting One Input Datapoint

.1

.2

.0

11

..

22

inputs predictions

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

/* This dataset is the current
status at the beginning of
each game for the fi rst 4 games
in a season.

toes = current number of toes
wlrec = current games won (percent)
nfans = fan count (in millions) */

8.5

65%

1.2

Finally, the way in which we built a network with multiple inputs or outputs can be
combined together to build a network that has both multiple inputs AND multiple outputs. Just
like before, we simply have a weight connecting each input node to each output node and pre-
diction occurs in the usual way.

Predicting with Multiple Inputs & Outputs 39

3 For Each Output, Perform a Weighted Sum of Inputs

.1

.2

.0

8.5

65%

1.2

def neural_network(input, weights):

 pred = vect_mat_mul(input,weights)

 return pred

def vect_mat_mul(vect,matrix):

 assert(len(a) == len(b))

 output = 0

for i in range(a):
output += (a[i] * b[i])

 return output

 #toes %win #fans

(8.5 * 0.1) + (0.65 * 0.1) + (1.2 * -0.3) = 0.555 = hurt prediction
(8.5 * 0.1) + (0.65 * 0.2) + (1.2 * 0.0) = 0.98 = win prediction
(8.5 * 0.0) + (0.65 * 1.3) + (1.2 * 0.1) = 0.965 = sad prediction

.85

.13

.0

hurt?

win?

sad?

4 Deposit Predictions

.1

.2

.0

11

..

22

inputs predictions

8.5

65%

1.2

.555

.98

.965

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

Chapter 3 I Introduction to Neural Prediction40

 Multiple Inputs & Outputs - How does it work?

It performs 3 independent weighted sums of the input to make 3 predictions.

I fi nd that there are 2 perspectives one can take on this architecture. You can either
think of it as 3 weights coming out of each input node, or 3 weights going into each output node.
For now, I fi nd the latter to be much more benefi cial. For now, think about this neural network
as 3 independent dot products, 3 independent weighted sums of the input. Each output node
takes its own weighted sum of the input and makes a prediction.

1 An Empty Network With Multiple Inputs & Outputs

 #toes %win #fans
weights = [[0.1, 0.1, -0.3],#hurt?

[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1]]#sad?

def neural_network(input, weights):

 pred = vect_mat_mul(input,weights)

 return pred

.1

.2

.0

win
loss

#toes

#fans

win?

sad?

hurt?

11

..

22

inputs predictions

2 Inserting One Input Datapoint

.1

.2

.0

11

..

22

inputs predictions

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

/* This dataset is the current
status at the beginning of
each game for the fi rst 4 games
in a season.

toes = current number of toes
wlrec = current games won (percent)
nfans = fan count (in millions) */8.5

65%

1.2

Multiple Inputs & Outputs - How does it work? 41

3 For Each Output, Perform a Weighted Sum of Inputs

.1

.2

.0

8.5

65%

1.2

def neural_network(input, weights):

 pred = vect_mat_mul(input,weights)

 return pred

def vect_mat_mul(vect,matrix):

 assert(len(a) == len(b))

 output = vector_of_zeros(len(vect))

for i in range(len(vect)):
output[i] = w_sum(vect,matrix[i])

 return output

 #toes %win #fans

(8.5 * 0.1) + (0.65 * 0.1) + (1.2 * -0.3) = 0.555 = hurt prediction
(8.5 * 0.1) + (0.65 * 0.2) + (1.2 * 0.0) = 0.98 = win prediction
(8.5 * 0.0) + (0.65 * 1.3) + (1.2 * 0.1) = 0.965 = sad prediction

.85

.13

.0

hurt?

win?

sad?

As mentioned on the previous page, we are choosing to think about this network as a
series of weighted sums. Th us, in the code above, we created a new function called "vect_mat_
mul". Th is function iterates through each row of our weights (each row is a vector), and makes
a prediction using our w_sum function. It is literally performing 3 consecutive weighted sums
and then storing their predictions in a vector called "output". Th ere's a lot more weights fl ying
around in this one, but isn't that much more advanced than networks we have previously seen.

I want to use this "list of vectors" and "series of weighted sums" logic to introduce you
to two new concepts. See the weights variable in step (1)? It's a list of vectors. A list of vectors is
simply called a matrix. It is as simple as it sounds. Furthermore, there are functions that we will
fi nd ourselves commonly using that leverage matrices. One of these is called vector-matrix mul-
tiplication. Our "series of weighted sums" is exactly that. We take a vector, and perform a dot
product with every row in a matrix**. As we will fi nd out on the next page, we even have special
numpy functions to help us out.

** Note: For those of you experienced with Linear Algebra, the more formal defi nition would store/process weights as column vec-
tors instead of row vectors. Th is will be rectifi ed shortly.

Chapter 3 I Introduction to Neural Prediction42

 Predicting on Predictions

Neural networks can be stacked!

1 An Empty Network With Multiple Inputs & Outputs

-.1

.1

.9

win
loss

#toes

#fans

..

11

.1

.2

.0

win?

sad?

hurt?

11

..

22

inputs predictions
 #toes %win #fans

ih_wgt = [[0.1, 0.2, -0.1],#hid[0]
[-0.1,0.1, 0.9], #hid[1]
[0.1, 0.4, 0.1]]#hid[2]

hid[0] hid[1] hid[2]
hp_wgt = [[0.3, 1.1, -0.3],#hurt?

[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1]]#sad?

weights = [ih_wgt, hp_wgt)

def neural_network(input, weights):

 hid = vect_mat_mul(input,weights[0])
 pred = vect_mat_mul(hid,weights[1])
 return pred

hiddens

2 Predicting the Hidden Layer

hid[0]

hid[1]

hid[2]

inputs predictionshiddens

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

def neural_network(input, weights):

 hid = vect_mat_mul(input,weights[0])
pred = vect_mat_mul(hid,weights[1])

 return pred

8.5

65%

1.2

-.1

.1

.9

.86

.295

1.23

As the pictures below make clear, one can also take the output of one network and feed
it as input to another network. Th is results in two consecutive vector-matrix multiplications. It
may not yet be clear why you would predict in this way. However, some datasets (such as image
classifi cation) contain patterns that are simply too complex for a single weight matrix. Later, we
will discuss the nature of these patterns. For now, it is suffi cient that you know this is possible.

Numpy Version 43

3 Predicting the Output Layer (and depositing the prediction)

inputs predictionshiddens

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

input corresponds to every entry
for the fi rst game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural_network(input,weight)

def neural_network(input, weights):

 hid = vect_mat_mul(input,weights[0])
pred = vect_mat_mul(hid,weights[1])

 return pred

65%

1.2

.86

.295

1.23

.1

.2

.0

.214

.145

.507

 Numpy Version

import numpy as np

#toes %win #fans
ih_wgt = np.array([

[0.1, 0.2, -0.1],#hid[0]
[-0.1,0.1, 0.9], #hid[1]
[0.1, 0.4, 0.1]]).T #hid[2]

hid[0] hid[1] hid[2]
hp_wgt = np.array([

[0.3, 1.1, -0.3],#hurt?
[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1]]).T#sad?

weights = [ih_wgt, hp_wgt]

def neural_network(input, weights):

 hid = input.dot(weights[0])
 pred = hid.dot(weights[1])
 return pred

toes = np.array([8.5, 9.5, 9.9, 9.0])
wlrec = np.array([0.65,0.8, 0.8, 0.9])
nfans = np.array([1.2, 1.3, 0.5, 1.0])

input = np.array([toes[0],wlrec[0],nfans[0]])

pred = neural_network(input,weights)
print pred

Chapter 3 I Introduction to Neural Prediction44

A Quick Primer on Numpy

Numpy is so easy to use that it does a few things for you. Let's reveal the magic.

So far in this chapter, we've discussed two new types of mathematical tools, vectors and
matrices. Furthermore, we have learned about different operations that occur on vectors and
matrices including dot products, elementwise multiplication and addition, as well as vector-ma-
trix multiplication. For these operations, we've written our own python functions that can oper-
ate on simple python "list" objects. In the short term, we will keep writing/using these functions
so that we make sure we fully understand what's going on inside them. However, now that we've
mentioned both "numpy" and several of the big operations, I'd like to give you a quick run-down
of basic "numpy" use so that you will be ready for our transition to "only numpy" a few chapters
from now. So, let's just start with the basics again, vectors and matrices.

import numpy as np

a = np.array([0,1,2,3]) # a vector
b = np.array([4,5,6,7]) # another vector
c = np.array([[0,1,2,3],# a matrix

 [4,5,6,7]])

d = np.zeros((2,4))#(2x4 matrix of zeros)
e = np.random.rand(2,5) # random 2x5
matrix with all numbers between 0 and 1

print a
print b
print c
print d
print e

[0 1 2 3]
[4 5 6 7]
[[0 1 2 3]
 [4 5 6 7]]
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]]
[[0.22717119 0.39712632
0.0627734 0.08431724
0.53469141]
 [0.09675954 0.99012254
0.45922775 0.3273326
0.28617742]]

Output

We can create vectors and marices in multiple ways in numpy. Most of the common
ones for neural networks are listed above. Note that the processes for creating a vector and a
matrix are identical. If you create a matrix with only one row, you're creating a vector. Further-
more, as in mathematics in general, you create a matrix by listing (rows,columns). I say that only
so that you can remember the order. Rows comes first. Columns comes second. Let's see some
operations we can do on these vectors and matrices.

print a * 0.1 # multiplies every number in vector "a" by 0.1
print c * 0.2 # multiplies every number in matrix "c" by 0.2
print a * b # multiplies elementwise between a and b (columns paired up)
print a * b * 0.2 # elementwise multiplication then multiplied by 0.2
print a * c # since c has the same number of columns as a, this performs
elementwise multiplication on every row of the matrix "c"

print a * e # since a and e don't have the same number of columns, this
throws a "Value Error: operands could not be broadcast together with.."

A Quick Primer on Numpy 45

Go ahead and run all of the code on the previous page. The first big of "at first confusing
but eventually heavenly" magic should be visible on that page. When you multiply two variables
with the "*" function, numpy automatically detects what kinds of variables you're working with
and "tries" to figure out the operation you're talking about. This can be mega-convenient but
sometimes makes numpy a bit hard to read. You have to make sure you keep up with what each
variable type is in your head as you go along.

The general rule of thumb for anything elementwise (+,-,*,/) is that the two variables
must either have the SAME number of columns, or one of the variables must only have 1 col-
umn.

For example, "print a * 0.1" takes a vector and multiplies it by a single number (a scalar).
Numpy goes "oh, I bet I'm supposed to do vector-scalar multiplication here" and then it takes the
scalar (0.1) and multiplies it by every value in the vector. This looks exactly the same as "print
c * 0.2", except that numpy knows that c is a matrix. Thus, it performs scalar-matrix multipli-
cation, multiplying every element in c by 0.2. Because the scalar has only one column, you can
multiply it by anything (or divide, add, or subtract for that matter)

Next up, "print a * b". Numpy first identifies that they're both vectors. Since neither vec-
tor has only 1 column, it checks to see if they have an identical number of columns. Since they
do, it knows to simply multiply each element by each element based on their positions in the
vectors. The same is true with addition, subtraction and division.

"print a * c" is perhaps the most elusive. "a" is a vector with 4 columns. "c" is a (2x4)
matrix. Neither have only one column, so numpy checks to see if they have the same number
of columns. Since they do, numpy multiplies the vector "a" by each row of "c" (as if it was doing
elementwise vector multiplication on each row).

Again, the most confusing part about this is that all of these operations look the same
if you don't know which variables are scalars, vectors, or matrices. When I'm "reading numpy",
I'm really doing 2 things, reading the operations and keeping track of the "shape" (number of
rows and columns) of each operation. It'll take some practice, but eventually it becomes second
nature.

a = np.zeros((1,4)) # vector of length 4
b = np.zeros((4,3)) # matrix with 4 rows & 3 columns

c = a.dot(b)
print c.shape

(1,3)

Output

There is one golden rule when using the 'dot' function. If you put the (rows,cols) de-
scription of the two variables you're "dotting" next to each other, neighboring numbers should
always be the same. In this case, we're dot producting a (1,4) with a (4,3). Thus, it works fine,
and outputs a (1,3). In terms of variable shape, you can think of it this way. Regardless of wheth-

(a,b).dot(b,c) = (a,c)
er you're "dotting" vectors or matrices. Their "shape"
(number of rows and columns) must line up. The col-
umns on the "left" matrix must equal rows on the "right".

Chapter 3 I Introduction to Neural Prediction46

Conclusion

To predict, neural networks perform repeated weighted sums of the input.

We have seen an increasingly complex variety of neural networks in this chapter. I hope
that it is clear that a relatively small number of simple rules are simply used repeatedly to create
larger, more advanced neural networks. Furthermore, the intelligence of the network really de-
pends on what weight values we give to our networks.

In the next chapter, we will be learning how to set our weights so that our neural
networks make accurate predictions. We will find that in the same way that prediction is actu-
ally based on several simple techniques that are simply repeated/stacked on top of each other,
"weight learning" is also a series of simple techniques that are simply combined many times
across an architecture. See you there!

a = np.zeros((2,4)) # matrix with 2 rows and 4 columns
b = np.zeros((4,3)) # matrix with 4 rows & 3 columns

c = a.dot(b)
print c.shape # outputs (2,3)

e = np.zeros((2,1)) # matrix with 2 rows and 1 columns
f = np.zeros((1,3)) # matrix with 1 row & 3 columns

g = e.dot(f)
print g.shape # outputs (2,3)

h = np.zeros((5,4)).T # matrix with 4 rows and 5 columns
i = np.zeros((5,6)) # matrix with 6 rows & 5 columns

j = h.dot(i)
print j.shape # outputs (4,6)

h = np.zeros((5,4)) # matrix with 5 rows and 4 columns
i = np.zeros((5,6)) # matrix with 5 rows & 6 columns
j = h.dot(i)
print j.shape # throws an error

this ".T" "flips" the rows and
columns of a matrix

4

Do neural networks make accurate predictions?

Why measure error?

Hot and Cold Learning

Calculating both direction and amount from error

Gradient Descent

Learning is Just Reducing Error

Derivatives and how to use them to learn

Divergence and Alpha

Introduction to Neural Learning

Gradient Descent

The only relevant test of the validity of a hypothesis
is comparison of prediction with experience.

— MILTON FRIEDMAN

IN THIS CHAPTER

47

Chapter 4 I Introduction to Neural Learning48

Predict, Compare, and Learn

This chapter is about "Compare", and "Learn"

In Chapter 3, we learned about the paradigm: "Predict, Compare, Learn". In the
previous chapter, we dove deep into the first part of this process "Predict". In this process
we learned a myriad of things including the major parts of neural networks (nodes and
weights), how datasets fit into networks (matching the number of datapoints coming in
at one time), and finally how to use a neural network to make a prediction. Perhaps this
process begged the question, "How do we set our weight values so that our network predicts
accurately?". Answering this question will be the main focus of this chapter, covering the
second two steps of our paradigm, "Compare", and "Learn".

Compare

A measurement of how much our prediction "missed".

Once we've made a prediction, the next step to learn is to evaluate how well we
did. Perhaps this might seem like a rather simple concept, but we will eventually find that
coming up with a good way to measure error is one of the most important and complicated
subjects of Deep Learning.

In fact, there are many properties of "measuring error" that you have likely
been doing your whole life without realizing it. Perhaps you (or someone you know)
amplifies bigger errors while ignoring very small ones. In this chapter we will learn how to
mathematically teach our network to do this. Furthermore (and this might seem too simple
to be important), we will learn that error is always positive! We will consider the analogy of
an "archer" hitting a target. Whether he is too low by and inch or too high by an inch, the
error is still just 1 inch! In our neural network "Compare" step, we want to consider these
kinds of properties when measuring error.

As a heads up, in this chapter we will only evaluate one, very simple way of
measuring error called "Mean Squared Error". However, it is but one of many ways to
evaluate the accuracy of your neural network.

As a closing thought, this step will give us a sense for "how much we missed", but
this isn't enough to be able to learn. The output of our "compare" logic will simply be a "hot
or cold" type signal. Given some prediction, we'll calculate an error measure that will either
say "a lot" or "a little". It won't tell us why we missed, what direction we missed, or what we
should do to fix it. It more or less just says "big miss", "little miss", or "perfect prediction".
What we do about our error is captured in the next step, "Learn".

Learn 49

Learn

"Learning" takes our error and tells each weight how it can change to reduce it.

Learning is all about "error attribution", or the art of figuring out how each weight
played its part in creating error. It's the "blame game" of Deep Learning. In this chapter, we
will spend a great number of pages learning the most popular version of the Deep Learning
"blame game" called Gradient Descent.

At the end of the day, it's going to result in computing a number for each of our
weights. That number will represent how that weight should be higher or lower in order to
reduce the error. Then we will move the weight according to that number, and we'll be done.

Chapter 4 I Introduction to Neural Learning50

 Compare: Does our network make good predictions?

Let's measure the error and fi nd out!

Execute this code in your Jupyter notebook. It should print "0.3025".

What is the goal_pred variable?
Much like input, it's a number we recorded in the real world somewhere, but it's usu-
ally something that's hard to observe, like "the percentage of people who DID wear
sweatsuits" given the temperature or "whether the batter DID in fact hit a home run"
given his batting average.

Why is the error squared?
Th ink about an archer hitting a target. When he is 2 inches high, how much did he
miss by? When he is two inches low, how much did he miss by? Both times he only
missed by 2 inches. Th e primary reason why we square "how much we missed" is
that it forces the output to be positive. pred-goal_pred could be negative in some
situations... unlike actual error.

Doesn't squaring make big errors (>1) bigger and small errors (<1) smaller?
Yeah...It is kindof a weird way of measuring error... but it turns out that amplifying
big errors and reducing small errors is actually ok. Later, we'll use this error to help
the network learn... and we'd rather it pay attention to the big errors and not worry
so much about the small ones. Good parents are like this too. Th ey practically ignore
errors if they're small enough (i.e. breaking the lead on your pencil) but might go
nuclear for big errors (i.e. crashing the car). See why squaring is valuable?

0.5 0.4

knob_weight = 0.5
input = 0.5
goal_pred = 0.8

pred = input * knob_weight

error = (pred - goal_pred) ** 2

print(error)

error

raw error Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.

.30

The "error" is simply a way
of measuring "how much we
missed". There are multiple
ways to calculate error
as we will learn later. This
one is "Mean Squared Error"

Why measure error? 51

Why measure error?

Measuring error simplifies the problem.

The goal of training our neural network is to make correct predictions. That's what we want.
And in the most pragmatic world (as mentioned in the last chapter), we want the network to
take input that we can easily calculate (today's stock price), and predict things that are hard to
calculate (tomorrow's stock price). That's what makes a neural network useful.

It turns out that "changing knob_weight to make the network correctly predict the goal_predic-
tion" is slightly more complicated than "changing the knob_weight to make error == 0" There's
something more concise about looking at the problem this way. Ultimately, both of those state-
ments say the same thing, but trying to get the error to 0 just seems a bit more straightforward.

Different ways of measuring error prioritize error differently.

If this is a bit of a stretch right now, that's ok... but think back to what I said on the last page.
By squaring the error, numbers that are less than 1 get smaller whereas numbers that are
greater than 1 get bigger. This means that we're going to change what I call "pure error" (pre-
diction-goal_prediction) so that bigger errors become VERY big and smaller errors quickly
become irrelevant. By measuring error this way, we can prioritize big errors over smaller ones.
When we have somewhat large "pure errors" (say... 10), we're going to tell ourselves we have very
large error (10**2 == 100), and in contrast, when we have small "pure errors" (say... 0.01), we're
going to tell ourselves that we have very small error (0.01 **2 == 0.0001). See what I mean about
prioritizing? It's just modifying what we consider to be error so that we amplify big ones and
largely ignore small ones. In contrast, if we took the absolute value instead of squaring the error,
we wouldn't have this type of prioritization. The error would just be the positive version of the
"pure error"... which would be fine... just different. More on this later.

Why do we only want positive error?

Eventually, we're going to be working with millions of input -> goal_prediction pairs... and we're
still going to want to make accurate predictions. This means that we're going to try to take the
average error down to 0.

This presents a problem if our error can be positive and negative. Imagine if we had two dat-
apoints... two input -> goal_prediction pairs that we were trying to get the neural network to
correctly predict. If the first had an error of 1,000, and the second had an error of -1,000, then
our average error would be ZERO! We would fool ourselves into thinking we predicted perfectly
when we missed by 1000 each time!!! This would be really bad. Thus, we want the error of each
prediction to always be positive so that they don't accidentally cancel each other out when we
average them.

Chapter 4 I Introduction to Neural Learning52

 What's the Simplest Form of Neural Learning?

Learning using the Hot and Cold Method

.1

input data
enters here

predictions
come out here

weight = 0.1

lr = 0.01

def neural_network(input, weight):

prediction = input * weight

 return prediction

1 An Empty Network

2 PREDICT: Making A Prediction And Evaluating Error

8.5 0.85

number_of_toes = [8.5]
win_or_lose_binary = [1] // (won!!!)

input = number_of_toes[0]
true = win_or_lose_binary[0]

pred = neural_network(input,weight)

error = (pred - true) ** 2

error

#toes win?

raw error Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.

.023

The "error" is simply a way
of measuring "how much we
missed". There are multiple
ways to calculate error
as we will learn later. This
one is "Mean Squared Error"

At the end of the day, learning is really about one thing, adjusting our knob_weight
either up or down so that our error reduces. If we keep doing this and our error goes to 0, we
are done learning! So, how do we know whether to turn the knob up or down? Well, we try both
up and down and see which one reduces the error! Whichever one reduces the error is used to
actually update the knob_weight. It's simple, but eff ective. Aft er we do this over and over again,
eventually our error==0, which means our neural network is predicting with perfect accuracy.

Wiggling our weights to see which direction reduces the error the most, moving
our weights in that direction, and repeating until the error gets to 0.

Hot and Cold Learning

What's the Simplest Form of Neural Learning? 53

.09

4 COMPARE: Making A Prediction With a Lower Weight And Evaluating Error

8.5 0.85

lr = 0.01

p_dn = neural_network(input,weight-lr)

e_dn = (p_dn - true) ** 2.055

error

.11

5 COMPARE + LEARN: Comparing our Errors and Setting our New Weight

8.5 0.85

if(error > e_dn ||
 error > e_up):

if(e_dn < e_up):
weight -= lr

if(e_up < e_up):
weight += lr

.055

errors

.004.023

up down same

best!!

.11

3 COMPARE: Making A Prediction With a Higher Weight And Evaluating Error

8.5 0.85

lr = 0.01

p_up = neural_network(input,weight+lr)

e_up = (p_up - true) ** 2.004

We want to move the weight so that the error goes downward, so we're
going to try moving the weight up and down to see which one has
the lowest error. First, we're trying moving the weight up (weight+lr).

error

 Th ese last 5 steps comprise 1 iteration of Hot and Cold Learning. Fortunately, this itera-
tion got us pretty close to the correct answer all by itself. (Th e new error is only 0.004). However,
under normal circumstances, we would have to repeat this process many times in order to fi nd
the correct weights. Some people even have to train their networks for weeks or months before
they fi nd a good enough weight confi guration.
 Th is reveals what learning in neural networks really is. It's a search problem. We are
searching for the best possible confi guration of weights so that our network's error falls to zero
(and predicts perfectly). As with all other forms of search, we might not fi nd exactly what we're
looking for, and even if we do, it may take some time. On the next page, we'll use Hot and Cold
Learning for a slightly more diffi cult prediction so that you can see this searching in action!

higher

lower

Chapter 4 I Introduction to Neural Learning54

Hot and Cold Learning

Perhaps the simplest form of learning.

Execute this code in your Jupyter Notebook. (New neural network modifications are in bold.)
This code attempts to correctly predict 0.8.

weight = 0.5
input = 0.5
goal_prediction = 0.8

step_amount = 0.001

for iteration in range(1101):

 prediction = input * weight
 error = (prediction - goal_prediction) ** 2

 print "Error:" + str(error) + " Prediction:" + str(prediction)

 up_prediction = input * (weight + step_amount)
 up_error = (goal_prediction - up_prediction) ** 2

 down_prediction = input * (weight - step_amount)
 down_error = (goal_prediction - down_prediction) ** 2

 if(down_error < up_error):
weight = weight - step_amount

 if(down_error > up_error):
weight = weight + step_amount

Error:0.3025 Prediction:0.25
Error:0.30195025 Prediction:0.2505

....
Error:2.50000000033e-07 Prediction:0.7995
Error:1.07995057925e-27 Prediction:0.8

Our last step correctly
predicts 0.8!

TRY UP!

TRY DOWN!

If down is better,
go down!

If up is better,
go up!

how much to move
our weights each
iteration

repeat learning many times
so that our error can
keep getting smaller

When I run this code, I see the following output:

Characteristics of Hot and Cold Learning 55

Characteristics of Hot and Cold Learning

It's simple

Hot and Cold learning is simple. After making our prediction, we predict two more times, once
with a slightly higher weight and again with a slightly lower weight. We then move the weight
depending on which direction gave us a smaller error. Repeating this enough times eventually
reduces our error down to 0.

PROBLEM #1: It's inefficient

We have to predict multiple times in order to make a single knob_weight update. This seems very
inefficient.

PROBLEM #2: Sometimes it's impossible to predict the exact goal prediction.

With a set step_amount, unless the perfect weight is exactly n*step_amount away, the
network will eventually overshoot by some number less than step_amount. When it does so, it
will then start alternating back and forth between each side of the goal_prediction. Set the
step_amount to 0.2 to see this in action. If you set step_amount to 10 you'll really break it!
When I try this I see the following output. It never remotely comes close to 0.8!!!

Error:0.3025 Prediction:0.25
Error:19.8025 Prediction:5.25
Error:0.3025 Prediction:0.25
Error:19.8025 Prediction:5.25
Error:0.3025 Prediction:0.25
....
.... repeating infinitely...

The real problem here is that even though
we know the correct direction to move our
weight, we don't know the correct amount.
Since we don't know the correct amount, we
just pick a fixed one at random (step_amount).
Furthermore, this amount has NOTHING to
do with our error. Whether our error is BIG

What if we had a way of computing both direction and amount for each
weight without having to repeatedly make predictions?

or our error is TINY, our step_amount is the same. So, Hot and Cold Learning is kindof a
bummer... it's inefficient because we predict 3 times for each weight update and our step_amount
is completely arbitrary... which can prevent us from learning the correct weight value.

Why did I iterate exactly 1101 times?
The neural network reaches 0.8 after exactly that many iterations. If you go past that,
it wiggles back and forth between 0.8 and just above/below 0.8... making for a less
pretty error log printed at the bottom of the left page. Feel free to try it out though.

Chapter 4 I Introduction to Neural Learning56

weight = 0.5
goal_pred = 0.8
input = 0.5

for iteration in range(20):
 pred = input * weight
 error = (pred - goal_pred) ** 2
 direction_and_amount = (pred - goal_pred) * input
 weight = weight - direction_and_amount

 print "Error:" + str(error) + " Prediction:" + str(pred)

 Calculating Both direction and amount from error
Let's measure the error and fi nd out!

Execute this code in your Jupyter notebook.

What you see above is a superior form of learning known as Gradient Descent. Th is
method allows us to (in a single line of code... seen above in bold) calculate both the direction
and the amount that we should change our weight so that we reduce our error.

What is the direction_and_amount?
It represents how we want to change our weight. Th e fi rst (1) is what we call "pure
error" which equals (pred - goal_pred). Th is number represents "the raw direc-
tion and amount that we missed". Th e second part (2) is the multiplication by the
input which performs scaling, negative reversal and stopping...modifying the "pure
error" so that it's ready to update our weight.

What is the "pure error"?
It's the (pred - goal_pred) which indicates "the raw direction and amount that we
missed". If this is a positive number then we predicted too high and vice versa. If this
is a big number then we missed by a big amount, etc.

What is "scaling, negative reversal, and stopping"?
Th ese three attributes have the combined aff ect of translating our "pure error" into
"the absolute amount that we want to change our weight". Th ey do so by addressing
three major edge cases at which points the "pure error" is not suffi cient to make a
good modifi cation to our weight.

(1) "pure error"
(2) scaling, negative
reversal, and stopping

0.5 .30
.1

direction_and_amount
-0.2

0.4

Calculating Both direction and amount from error 57

What is "stopping"?
This is the first (and simplest) affect on our "pure error" caused by multiplying it
by our input. Imagine plugging in a CD player into your stereo. If you turned the
volume all the way up but the CD player was off... it simply wouldn't matter. "Stop-
ping" addresses this in our neural network... if our input is 0, then it will force our
direction_and_amount to also be 0. We don't learn (i.e. "change the volume") when
our input is 0 because there's nothing to learn... every weight value has the same
error... and moving it makes no difference because the pred is always 0.

What is "negative reversal"?
This is probably our most difficult and important effect. Normally (when input is
positive), moving our weight upward makes our prediction move upward. How-
ever, if our input is negative, then all of a sudden our weight changes directions!!!
When our input is negative, then moving our weight up makes the prediction go
down. It's reversed!!! How do we address this? Well, multiplying our "pure error" by
our input will reverse the sign of our direction_and_amount in the event that our
input is negative. This is "negative reversal", ensuring that our weight moves in
the correct direction, even if the input is negative.

What is "scaling"?
Scaling is the second effect on our "pure error" caused by multiplying it by our
input. Logically, it means that if our input was big, our weight update should also be
big. This is more of a "side affect" as it can often go out of control. Later, we will use
alpha to address when this scaling goes out of control.

When you run the code in the top left, you should see the following output.

Error:0.3025 Prediction:0.25
Error:0.17015625 Prediction:0.3875
Error:0.095712890625 Prediction:0.490625

 ...

Error:1.7092608064e-05 Prediction:0.79586567925
Error:9.61459203602e-06 Prediction:0.796899259437
Error:5.40820802026e-06 Prediction:0.797674444578

Our last steps correctly
approach 0.8!

In this example, we saw Gradient Descent in action in a bit of an oversimplified environment.
On the next page, we're going to see it in it's more native environment. Some terminology will be
different, but we will code it in a way that makes it more obviously applicable to other kinds of
networks (such as those with multiple inputs and outputs)

Chapter 4 I Introduction to Neural Learning58

 One Iteration of Gradient Descent

This performs a weight update on a single "training example" (input->true) pair

.1

input data
enters here

predictions
come out here

weight = 0.1

alpha = 0.01

def neural_network(input, weight):

prediction = input * weight

 return prediction

1 An Empty Network

2 PREDICT: Making A Prediction And Evaluating Error

8.5 0.85

number_of_toes = [8.5]
win_or_lose_binary = [1] // (won!!!)

input = number_of_toes[0]
goal_pred = win_or_lose_binary[0]

pred = neural_network(input,weight)

error = (pred - goal_pred) ** 2

error

#toes win?

Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.

.023

The "error" is simply a way
of measuring "how much we
missed". There are multiple
ways to calculate error
as we will learn later. This
one is "Mean Squared Error"

3 COMPARE: Calculating "Node Delta" and Putting it on the Output Node

8.5 .023

Delta is a measurement of "how much this node missed". Thus, since the
true prediction was 1.0, and our network's prediction was 0.85, the
network was too low by 0.15. Thus, delta is negative 0.15.

-.15

number_of_toes = [8.5]
win_or_lose_binary = [1] // (won!!!)

input = number_of_toes[0]
goal_pred = win_or_lose_binary[0]

pred = neural_network(input,weight)

error = (pred - goal_pred) ** 2

delta = pred - goal_prednode delta

raw error

One Iteration of Gradient Descent 59

4 LEARN: Calculating "Weight Delta" and Putting it on the Weight

8.5 .023

Weight delta is a measure of "how much this weight caused the newtork to
miss". We calculate it by multiplying the weight's output "Node Delta" by
the weight's input. Thus, we create each "Weight Delta" by scaling it's
output "Node Delta" by the weight's input. This accounts for the 3
aforementioned properties of our "direction_and_amount", scaling, negative
reversal, and stopping.

.1
-.15

number_of_toes = [8.5]
win_or_lose_binary = [1] // (won!!!)

input = number_of_toes[0]
goal_pred = win_or_lose_binary[0]

pred = neural_network(input,weight)

error = (pred - goal_pred) ** 2

delta = pred - goal_pred

weight_delta = input * delta

weight delta

-1.25

.1125

5 LEARN: Updating the Weight
number_of_toes = [8.5]
win_or_lose_binary = [1] // (won!!!)

input = number_of_toes[0]
goal_pred = win_or_lose_binary[0]

pred = neural_network(input,weight)

error = (pred - goal_pred) ** 2

delta = pred - goal_pred

weight_delta = input * delta

alpha = 0.01 // fi xed before training

weight -= weight_delta * alpha

We multiply our weight_delta by
a small number "alpha" before
using it to update our weight.
This allows us to control how
fast the network learns. If it
learns too fast, it can update
weights too aggressively and
overshoot. More on this later.
Note that the weight update
made the same change (small
increase) as Hot and Cold
Learning

new weight

 Th e primary diff erence between the gradient descent on the previous page and the im-
plementation on this page just happened. delta is a new variable. It's the "raw amount that the
node was too high or too low". Instead of computing direction_and_amount directly, we fi rst
calculate how much we wanted our output node to be diff erent. Only then do we compute our
direction_and_amount to change the weight (in step 4, now renamed "weight_delta").

Chapter 4 I Introduction to Neural Learning60

weight, goal_pred, input = (0.0, 0.8, 0.5)

for iteration in range(4):

 pred = input * weight
 error = (pred - goal_pred) ** 2
 delta = pred - goal_pred
 weight_delta = delta * input
 weight = weight - weight_delta
 print "Error:" + str(error) + " Prediction:" + str(pred)

Learning Is Just Reducing Error

Modifying weight to reduce our error.

Putting together our code from the previous pages. We now have the following:

these lines have a secret

The Golden Method for Learning

Adjusting each weight in the correct direction and by the cor-
rect amount so that our error reduces to 0.

All we're trying to do is figure out the right direction and amount to modify weight
so that our error goes down. The secret to this lies in our pred and error calculations. Notice
that we actually use our pred inside the error calculation. Let's replace our pred variable with
the code we used to generate it.

 error = ((input * weight) - goal_pred) ** 2

This doesn't change the value of error at all! It just combines our two lines of code so that we
compute our error directly. Now, remember that our input and our goal_prediction are actually
fixed at 0.5 and 0.8 respectively (we set them before the network even starts training). So, if we
replace their variables names with the values... the secret becomes clear

 error = ((0.5 * weight) - 0.8) ** 2

Learning Is Just Reducing Error 61

e
r
r
o
r

weight

slope

Th e Secret

For any input and goal_pred, there is an exact relationship
defi ned between our error and weight, found by combining
our prediction and error formulas. In this case:

 error = ((0.5 * weight) - 0.8) ** 2

Let's say that you moved weight up by 0.5... if there is an exact relationship between
error and weight... we should be able to calculate how much this also moves the error! What
if we wanted to move the error in a specifi c direction? Could it be done?

Th is graph represents every value of error for every weight according to the relationship in the
formula above. Notice it makes a nice bowl shape. Th e black "dot" is at the point of BOTH our
current weight and error. Th e dotted "circle" is where we want to be (error == 0).

Key Takeaway: Th e slope points to the bottom of the bowl (lowest error) no matter
where you are in the bowl. We can use this slope to help our neural network reduce the
error.

Chapter 4 I Introduction to Neural Learning62

e
r
r
o
r

=

0
.
0
3

weight = 0.88

1.1 .03

0.17
.185

.97

 Let's Watch Several Steps of Learning

Will we eventually fi nd the bottom of the bowl?

e
r
r
o
r

=

0
.
6
4

weight = 0.0

1

1.1 .64

-.8

weight_delta = -0.88

(i.e. "raw error" modifi ed for
scaling, negative reversal,
and stopping per this weight
and input)

-.88

0.0

delta (i.e. "raw error")

2

A Big Weight Increase

Overshot a bit... Let's go back the other way

weight, goal_pred, input = (0.0, 0.8, 1.1)

for iteration in range(4):
 print "-----\nWeight:" + str(weight)
 pred = input * weight
 error = (pred - goal_pred) ** 2
 delta = pred - goal_pred
 weight_delta = delta * input
 weight = weight - weight_delta
 print "Error:" + str(error) + " Prediction:" + str(pred)
 print "Delta:" + str(delta) + " Weight Delta:" + str(weight_delta)

Let's Watch Several Steps of Learning 63

e
r
r
o
r

=

0
.
0
0
0
0
0
9

weight = 0.73

1.1 0.0000054

.007
.0081

.803

4 Ok, we're pretty much there...

e
r
r
o
r

=

0
.
0
0
2

weight = 0.69

1.1 .001

-.04
-.036

.76

3 Overshot Again! Let's go back again... but only just a little

Weight:0.0
Error:0.64 Prediction:0.0
Delta:-0.8 Weight Delta:-0.88

Weight:0.88
Error:0.028224 Prediction:0.968
Delta:0.168 Weight Delta:0.1848

Weight:0.6952
Error:0.0012446784 Prediction:0.76472
Delta:-0.03528 Weight Delta:-0.038808

Weight:0.734008
Error:5.489031744e-05 Prediction:0.8074088
Delta:0.0074088 Weight Delta:0.00814968

Code Output

Chapter 4 I Introduction to Neural Learning64

Why does this work? What really is weight_delta?

Let's back up and talk about functions. What is a function? How do we understand it?

Consider this function:

 error = ((input * weight) - goal_pred) ** 2

def my_function(x):
 return x * 2

A function takes some numbers as input and gives you another number as output. As
you can imagine, this means that the function actually defines some sort of relationship between
the input number(s) and the output number(s). Perhaps you can also see why the ability to learn
a function is so powerful... it allows us to take some numbers (say...image pixels) and convert
them into other numbers (say... the probability that the image contains a cat).

Now, every function has what you might call moving parts. It has pieces that we can
tweak or change to make the ouput that the function generates different. Consider our "my_
function" above. Ask yourself, "what is controlling the relationship between the input and the
output of this function?". Well, it's the 2! Ask the same question about the function below.

What is controlling the relationship between the input and the output (error)? Well,
plenty of things are! This function is a bit more complicated! goal_pred, input, **2,
weight, and all the parenthesis and algebraic operations (addition, subtraction, etc.) play a part
in calculating the error... and tweaking any one of them would change the error. This is import-
ant to consider.

Just as a thought exercise, consider changing your goal_pred to reduce your error.
Well, this is silly... but totally doable! In life, we might call this "giving up"... setting your goals to
be whatever your capability is. It's just denying that we missed! This simply wouldn't do.

What if we changed the input until our error went to zero... well... this is akin to seeing the
world as you want to see it instead of as it actualy is. This is changing your input data until you're
predicting what you want to predict (sidenote: this is loosely how "inceptionism works").

Now consider changing the 2... or the additions...subtractions... or multiplications... well
this is just changing how you calculate error in the first place! Our error calculation is meaning-
less if it doesn't actually give us a good measure of how much we missed (with the right proper-
ties mentioned a few pages ago). This simply won't do either.

Why does this work? What really is weight_delta? 65

So, what do we have left? The only variable we have left is our weight. Adjusting this
doesn't change our perception of the world... doesn't change our goal... and doesn't destroy our
error measure. In fact, changing weight means that the function conforms to the patterns in the
data. By forcing the rest of our function to be unchanging, we force our function to correctly
model some pattern in our data. It is only allowed to modify how the network predicts.

So, at the end of the day, we're modifying specific parts of an error function until the
error value goes to zero. This error function is calculated using a combination of variables...
some of them we can change (weights) and some of them we cannot (input data, output data,
and the error logic itself).

weight = 0.5
goal_pred = 0.8
input = 0.5

for iteration in range(20):
 pred = input * weight
 error = (pred - goal_pred) ** 2
 direction_and_amount = (pred - goal_pred) * input
 weight = weight - direction_and_amount

 print "Error:" + str(error) + " Prediction:" + str(pred)

We can modify anything in our pred calculation except the input.

In fact, we're going to spend the rest of this book and many deep learning researchers
will spend the rest of their lives just trying everything you can imagine to that pred calculation so
that it can make good predictions. Learning is all about automatically changing that prediction
function so that it makes good predictions... aka... so that the subsequent error goes down to 0.

Ok, now that we know what we're allowed to change... how do we actually go about do-
ing that changing? That's the good stuff! That's the machine learning, right? In the next, section,
we're going to talk about exactly that.

Chapter 4 I Introduction to Neural Learning66

Tunnel Vision on One Concept

Concept: "Learning is adjusting our weight to reduce the error to zero"

So far in this chapter, we've been hammering on the idea that learning is really just
about adjusting our weight to reduce our error to zero. This is the secret sauce. Truth be told,
knowing how to do this is all about understanding the relationship between our weight and
our error. If we understand this relationship, we can know how to adjust our weight to reduce
our error.

What do I mean by "understand the relationship"? Well, to understand the relationship
between two variables is really just to understand how changing one variable changes the other.
In our case, what we're really after is the sensitivity between these two variables. Sensitivity is
really just another name for direction and amount. We want to know how sensitive the error
is to the weight. We want to know the direction and the amount that the error changes when
we change the weight. This is the goal. So far, we've used two different methods to attempt to
understand this relationship.

You see, when we were "wiggling" our weight (hot and cold learning) and studying its
affect on our error, we were really just experimentally studying the relationship between these
two variables. It's like when you walk into a room with 15 different unlabeled light switches.
You just start flipping them on and off to learn about their relationship to various lights in the
room. We did the same thing to study the relationship between our weight and our error.
We just wiggled the weight up and down and watched for how it changed the error. Once
we knew the relationship, we could move the weight in the right direction using two simple if
statements. if(down_error < up_error):

 weight = weight - step_amount

if(down_error > up_error):
 weight = weight + step_amount

Now, let's go back to the formula from the previous pages, where we combined our pred and
error logic. As mentioned, they quietly define an exact relationship between our error and our
weight.

error = ((input * weight) - goal_pred) ** 2

This line of code, ladies and gentlemen, is the secret. This is a formula. This is the relationship
between error and weight.This relationship is exact. It's computable. It's universal. It is and it
will always be. Now, how can we use this formula to know how to change our weight so that
our error moves in a particular direction. Now THAT is the right question! Stop. I beg you.
Stop and appreciate this moment. This formula is the exact relationship between these two
variables, and now we're going to figure out how to change one variable so that we move the
other variable in a particular direction. As it turns out, there's a method for doing this for any
formula. We're going to use it for reducing our error.

A Box With Rods Poking Out of It 67

A Box With Rods Poking Out of It

An analogy.

Picture yourself sitting in front of a cardboard box that has two circular rods sticking through
two little holes. The blue rod is sticking out of the box by 2 inches, and the red rod is sticking out
of the box by 4 inches. Imagine that I told you that these rods were connected in some way, but I
wouldn't tell you in what way. You had to experiment to figure it out.

So, you take the blue rod and push it in 1 inch, and watch as... while you're pushing... the red
rod also moves into the box by 2 inches!!! Then, you pull the blue rod back out an inch, and the
red rod follows again!!... pulling out by 2 inches. What did you learn? Well, there seems to be a
relationship between the red and blue rods. However much you move the blue rod, the red rod
will move by twice as much. You might say the following is true.

As it turns out, there's a formal definition for "when I tug on this part, how much does this other
part move". It's called a derivative and all it really means is "how much does rod X move when I
tug on rod Y."

In the case of the rods above, the derivative for "how much does red move when I tug on blue" is
2. Just 2. Why is it 2? Well, that's the multiplicative relationship determined by the formula.

red_length = blue_length * 2

red_length = blue_length * 2

derivative

Notice that we always have the derivative between two variables. We're always looking
to know how one variable moves when we change another one! If the derivative is positive then
when we change one variable, the other will move in the same direction! If the derivative is
negative then when we change one variable, the other will move in the opposite direction.

Consider a few examples. Since the derivative of red_length compared to blue_length
is 2, then both numbers move in the same direction! More specifically, red will move twice as
much as blue in the same direction. If the derivative had been -1, then red would move in the
opposite direction by the same amount. Thus, given a function, the derivative represents the
direction and the amount that one variable changes if you change the other variable. This is
exactly what we were looking for!

Chapter 4 I Introduction to Neural Learning68

 error = ((input * weight) - goal_pred) ** 2

 Derivatives... take Two

Still a little unsure about them?... let's take another perspective...

Th ere are two ways I've heard people explain derivatives. One way is all about understanding
"how one variable in a function changes when you move another variable". Th e other way of
explaining it is "a derivative is the slope at a point on a line or curve". As it turns out, if you take
a function and plot it out (draw it), the slope of the line you plot is the same thing as "how much
one variable changes when you change the other". Let me show you by plotting our favorite
function.

Now remember... our goal_pred and input are fi xed, so we can rewrite this function:
 error = ((0.5 * weight) - 0.8) ** 2

Since there are only two variables left that actually change (all the rest of them are
fi xed), we can just take every weight and compute the error that goes with it! Let's plot them

e
r
r
o
r

weight

As you can see on the right, our plot
looks like a big U shaped curve! Notice
that there is also a point in the middle
where the error == 0! Also notice that
to the right of that point, the slope of
the line is positive, and to the left of that
point, the slope of the line is negative.
Perhaps even more interesting, the
farther away from the goal weight that
you move, the steeper the slope gets. We
like all of these properties. Th e slope's
sign gives us direction and the slope's
steepness gives us amount. We can
use both of these to help fi nd the goal
weight.

starting "weight"
weight = 0.5
error = 0.3025
direction_and_amount = -0.3025

goal "weight"
weight = 1.6
error = 0.0
direction_and_amount = 0.0

Even now, when I look at that curve, it's easy for me to lose track of what it represents.
It's actually similar to our "hot and cold" method for learning. If we just tried every possible
value for weight, and plotted it out, we'd get this curve. And what's really remarkable about
derivatives is that they can see past our big formula for computing error (at the top of this
page) and see this curve! We can actually compute the slope (i.e. derivative) of the line for any
value of weight. We can then use this slope (derivative) to fi gure out which direction reduces
our error! Even better, based on the steepness we can get at least some idea for how far away we
are (although not an exact one... as we'll learn more about later).

slope

What you really need to know... 69

What you really need to know...

With derivatives... we can pick any two variables... in any formula... and know how they

interact.

Take a look at this big whopper of a function.

Here's what you need to know about derivatives. For any function (even this whopper)
you can pick any two variables and understand their relationship with each other. For any func-
tion, you can pick two variables and plot them on an x-y graph like we did on the last page. For
any function, you can pick two variables and compute how much one changes when you change
the other. Thus, for any function, we can learn how to change one variable so that we can move
another variable in a direction. Sorry to harp on, but it's important you know this in your bones.

Bottom Line: In this book we're going to build neural networks. A neural network is
really just one thing... a bunch of weights which we use to compute an error function. And for
any error function (no matter how complicated), we can compute the relationship between any
weight and the final error of the network. With this information, we can change each weight
in our neural network to reduce our error down to 0... and that's exactly what we're going to
do.

y = (((beta * gamma) ** 2) + (epsilon + 22 - x)) ** (1/2)

What you don't really need to know...

....Calculus....

So, it turns out that learning all of the methods for taking any two variables in any func-
tion and computing their relationship takes about 3 semesters of college. Truth be told, if you
went through all three semesters so that you could learn how to do Deep Learning... you'd only
actually find yourself using a very small subset of what you learned. And really, Calculus is just
about memorizing and practicing every possible derivative rule for every possible function.

So, in this book I'm going to do what I typically do in real life (cuz i'm lazy?... i mean...
efficient?) ... just look up the derivative in a reference table. All you really need to know is what
the derivative represents. It's the relationship between two variables in a function so that you can
know how much one changes when you change the other. It's just the sensitivity between two
variables. I know that was a lot of talking to just say "It's the sensitivity between two variables"...
but it is. Note that this can include both "positive" sensitity (when variables move together) and
"negative" sensitivity (when they move in opposite directions) or "zero" sensitivity...where one
stays fixed regardless of what you do to the other. For example, y = 0 * x. Move x... y is always 0.
Ok, enough about derivatives. Let's get back to Gradient Descent.

Chapter 4 I Introduction to Neural Learning70

e
r
r
o
r

starting "weight"
weight = 0.5
error = 0.3025
weight_delta = -0.3025

goal "weight"
weight = 1.6
error = 0.0
weight_delta = 0.0

slope

 How to use a derivative to learn

"weight_delta" is our derivative.

What is the diff erence between the error and the derivative of our error and weight?
Well the error is just a measure of how much we missed. Th e derivative defi nes the realtionship
between each weight and how much we missed. In other words, it tells how much changing a
weight contributed to the error. So, now that we know this, how do we use it to move the error in
a particular direction?

So, we've learned the relationship between two variables in a function... how do we ex-
ploit that relationship? As it turns out, this is incredibly visual and intuitive. Check out our error
curve again. Th e black dot is where our weight starts out at (0.5). Th e dotted circle is where we
want it to go... our goal weight. Do

weight

you see the dotted line attached to our
black dot? Th at's our slope otherwise
known as our derivative. It tells us at
that point in the curve how much the
error changes when we change the
weight. Notice that it's pointed down-
ward! It's a negative slope!
 Th e slope of a line or curve
always points in the opposite direction
to the lowest point of the line or curve.
So, if you have a negative slope, you
increase your weight to fi nd the mini-
mum of the error. Check it out!

So, how do we use our derivative to fi nd the error minimum (lowest point in the
error graph)? We just move the opposite direction of the slope! We move in the opposite direc-
tion of the derivative! So, we can take each weight, calculate the derivative of that weight with
respect to the error (so we're comparing two variables there... the weight and the error) and then
change the weight in the opposite direction of that slope! Th at will move us to the minimum!

Let's remember back to our goal again. We are trying to fi gure out the direction and the
amount to change our weight so that our error goes down. A derivative gives us the relation-
ship between any two variables in a function. We use the derivative to determine the relationship
between any weight and the error. We then move our weight in the opposite direction of the
derivative to fi nd the lowest weight. Wallah! Our neural network learns!
 Th is method for learning (fi nding error minimums) is called Gradient Descent. Th is
name should seem intuitive! We move in the weight value opposite the gradient value, which
descends our error to 0. By opposite, I simply mean that we increase our weight when we have a
negative gradient and vice versa. It's like gravity!

Look Familiar? 71

e
r
r
o
r

=

0
.
0
3

weight = 0.88

1.1 .03

0.17
.187

.97

e
r
r
o
r

=

0
.
6
4

weight = 0.0

1

1.1 .64

-.8

weight_delta = -0.88

(i.e. "raw error" modifi ed for
scaling, negative reversal,
and stopping per this weight
and input)

-.88

0.0

delta (i.e. "raw error")

2

A Big Weight Increase

Overshot a bit... Let's go back the other way

 Look Familiar?

weight = 0.0
goal_pred = 0.8
input = 1.1

for iteration in range(4):
 pred = input * weight
 error = (pred - goal_pred) ** 2

 delta = pred - goal_pred
 weight_delta = delta * input
 weight = weight - weight_delta

 print "Error:" + str(error) + " Prediction:" + str(pred)

derivative
(i.e., how fast the
error changes given
changes in the weight)

Chapter 4 I Introduction to Neural Learning72

Breaking Gradient Descent

Just Give Me The Code
weight = 0.5
goal_pred = 0.8
input = 0.5

for iteration in range(20):
 pred = input * weight
 error = (pred - goal_pred) ** 2
 delta = pred - goal_pred
 weight_delta = input * delta
 weight = weight - weight_delta
 print "Error:" + str(error) + " Prediction:" + str(pred)

Error:0.3025 Prediction:0.25
Error:0.17015625 Prediction:0.3875
Error:0.095712890625 Prediction:0.490625

 ...

Error:1.7092608064e-05 Prediction:0.79586567925
Error:9.61459203602e-06 Prediction:0.796899259437
Error:5.40820802026e-06 Prediction:0.797674444578

When I run this code, I see the following output...

Now that it works... let's break it! Play around with the starting weight, goal_pred,
and input numbers. You can set them all to just about anything and the neural network will
figure out how to predict the output given the input using the weight. See if you can find
some combinations that the neural network cannot predict! I find that trying to break some-
thing is a great way to learn about it.

Let's try setting input to be equal to 2, but still try to get the algorithm to predict
0.8. What happens? Well, take a look at the output.

Error:0.04 Prediction:1.0
Error:0.36 Prediction:0.2
Error:3.24 Prediction:2.6

...

Error:6.67087267987e+14 Prediction:-25828031.8
Error:6.00378541188e+15 Prediction:77484098.6
Error:5.40340687069e+16 Prediction:-232452292.6

Woah! That's not what we wanted! Our predictions exploded! They alternate from
negative to positive and negative to positive, getting farther away from the true answer at
every step! In other words, every update to our weight overcorrects! In the next section,
we'll learn more about how to combat this phenomenon.

Visualizing the Overcorrections 73

e
r
r
o
r

=

3
.
2
4

weight = 1.3

2.0 3.24

1.8
3.6

2.6

3 Overshot Again! Let's go back again... but only just a little

e
r
r
o
r

=

0
.
3
6

weight = 0.1

2.0 .36

-.6
-1.2

0.2

e
r
r
o
r

=

0
.
0
4

weight = 0.5

1

2.0 .04

0.2

weight_delta = -0.28

(i.e. "raw error" modifi ed for
scaling, negative reversal,
and stopping per this weight
and input)

0.4

1.0

delta (i.e. "raw error")

2

A Big Weight Increase

Overshot a bit... Let's go back the other way

 Visualizing the Overcorrections

Chapter 4 I Introduction to Neural Learning7474

 Divergence

Sometimes... neural networks explode in value... oops?

d
e
r
i
v
a
t
i
v
e

v
a
l
u
e

start

goal

1st step

2nd step

3rd step

So what really happened? Th e explosion in error on the previous page is caused by
the fact that we made the input larger. Consider how we're updating our weight.

If our input is suffi ciently large, this can make our weight update large even when
our error is small. What happens when you have a large weight update and a small error? It
overcorrects!!! If the new error is even bigger, it overcorrects even more!!! Th is causes the
phenomenon that we saw on the previous page, called divergence.

You see, if we have a BIG input, then the prediction is very sensitive to changes in
the weight (since pred = input * weight). Th is can cause our network to overcorrect. In
other words, even though our weight is still only starting at 0.5, our derivative at that point
is very steep. See how tight the u shaped error curve is in the graph above?
 Th is is actually really intuitive. How do we predict? Well, we predict by multiplying
our input by our weight. So, if our input is huge, then small changes in our weight are go-
ing to cause BIG changes in our prediction!! Th e error is very sensitive to our weight. Aka...
the derivative is really big! So, how do we make it smaller?

weight value

weight = weight - (input * (pred - goal_pred))

Introducing.... Alpha 75

 Introducing.... Alpha

The simplest way to prevent overcorrecting our weight updates.

So, what was the problem we're trying to solve? Th e problem is this: if the input is
too big, then our weight update can overcorrect. What is the symptom? Th e symptom is that
when we overcorrect, our new derivative is even larger in magnitude than when we started
(although the sign will be the opposite). Stop and consider this for a second. Look at the
graph above to understand the symptom. Th e 2nd step is even farther away from the goal...
which means the derivative is even greater in magnitude! Th is causes the 3rd step to be even
farther away from the goal than the second step, and the neural network continues like this,
demonstrating divergence.
 Th e symptom is this overshooting. Th e solution is to multiply the weight update by
a fraction to make it smaller. In most cases, this involves multiplying our weight update by a
single real-valued number between 0 and 1, known as alpha. One might note, this has no af-
fect on the core issue which is that our input is larger. It will also reduce the weight updates
for inputs that aren't too large. In fact, fi nding the appropriate alpha, even for state-of-the-
art neural networks, is oft en done simply by guessing. You watch your error over time. If
it starts diverging (going up), then your alpha is too high, and you decrease it. If learning is
happening too slowly, then your alpha is too low, and you increase it. Th ere are other meth-
ods than simple gradient descent that attempt to counter for this, but gradient descent is still
very popular.

d
e
r
i
v
a
t
i
v
e

v
a
l
u
e

start

goal

1st step

2nd step

3rd step

weight value

Chapter 4 I Introduction to Neural Learning76

Alpha In Code

Where does our "alpha" parameter come in to play?

 So we just learned that alpha reduces our weight update so that it doesn't overshoot. How
does this affect our code? Well, we were updating our weights according to the following
formula.

Accounting for alpha is a rather small change, pictured below. Notice that if alpha is small
(say...0.01), it will reduce our weight update considerably, thus preventing it from over-
shooting.

Well, that was easy! So, let's install alpha into our tiny implementation from the beginning
of this chapter and run it where input = 2 (which previously didn't work)

Error:0.04 Prediction:1.0
Error:0.0144 Prediction:0.92
Error:0.005184 Prediction:0.872

...

Error:1.14604719983e-09 Prediction:0.800033853319
Error:4.12576991939e-10 Prediction:0.800020311991
Error:1.48527717099e-10 Prediction:0.800012187195

Wallah! Our tiniest neural network can now make good predictions again! How did I know
to set alpha to 0.1? Well, to be honest, I just tried it and it worked. And despite all the crazy
advancements of deep learning in the past few years, most people just try several orders
of magnitude of alpha (10,1,0.1,0.01,0.001,0.0001) and then tweak from there to see what
works best. It's more art than science. There are more advanced ways which we can get to
later, but for now, just try various alphas until you get one that seems to work pretty well.
Play with it!

What happens
when you make
alpha crazy
small or big?
What about
making it
negative?

weight = weight - derivative

weight = weight - (alpha * derivative)

weight = 0.5
goal_pred = 0.8
input = 2
alpha = 0.1

for iteration in range(20):
 pred = input * weight
 error = (pred - goal_pred) ** 2
 derivative = input * (pred - goal_pred)
 weight = weight - (alpha * derivative)

 print "Error:" + str(error) + " Prediction:" + str(pred)

Memorizing 77

Memorizing

Ok... it's time to really learn this stuff

This may sound like something that's a bit intense, but I can't stress enough the value I have
found from this exercise. The code on the previous page, see if you can build it in an iPy-
thon notebook (or a .py file if you must) from memory. I know that might seem like overkill,
but I (personally) didn't have my click moment with neural networks until I was able to
perform this task.

Why does this work? Well, for starters, the only way to know that you have gleaned all the
information necessary from this chapter is to try to produce it just from your head. Neural
networks have lots of small moving parts, and it's easy to miss one.

Why is this important for the rest of the chapters? In the following chapters, I will be re-
ferring to the concepts discussed in this chapter at a faster pace so that I can spend plenty
of time on the newer material. It is vitally important that when I say something like "add
your alpha parameterization to the weight update" that it is at least immediately apparent to
which concepts from this chapter I'm referring.

All that is to say, memorizing small bits of neural network code has been hugely beneficial
for me personally, as well as to many individuals who have taken my advice on this subject
in the past.

	Machine Learning Reading Packet
	Basic Algorithms
	Classification
	Model Evaluation
	Association Analysis
	Clustering Algorithms
	Classification Rules
	Nearest-Neighbors
	Bayesian Classifiers

	Genetic Algorithm and Genetic Programming
	Optimization
	Evolving Intelligence

	Introduction to Artificial Neural Networks

