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Classification:
Basic Concepts,
Decision Trees, and
Model Evaluation

Classification, which is the task of assigning objects to one of several predefined
categories, is a pervasive problem that encompasses many diverse applications.
Examples include detecting spam email messages based upon the message
header and content, categorizing cells as malignant or benign based upon the
results of MRI scans, and classifying galaxies based upon their shapes (see
Figure 4.1).

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 4.1. Classification of galaxies. The images are from the NASA website.
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Figure 4.2. Classification as the task of mapping an input attribute set x into its class label 3.

This chapter introduces the basic concepts of classification, describes some
of the key issues such as model overfitting, and presents methods for evaluating
and comparing the performance of a classification technique. While it focuses
mainly on a technique known as decision tree induction, most of the discussion
in this chapter is also applicable to other classification techniques, many of
which are covered in Chapter 5.

4.1 Preliminaries

The input data for a classification task is a collection of records. Each record,
also known as an instance or example, is characterized by a tuple (x,y), where
x is the attribute set and y is a special attribute, designated as the class label
(also known as category or target attribute). Table 4.1 shows a sample data set
used for classifying vertebrates into one of the following categories: mammal,
bird, fish, reptile, or amphibian. The attribute set includes properties of a
vertebrate such as its body temperature, skin cover, method of reproduction,
ability to fly, and ability to live in water. Although the attributes presented
in Table 4.1 are mostly discrete, the attribute set can also contain continuous
features. The class label, on the other hand, must be a discrete attribute.
This is a key characteristic that distinguishes classification from regression,
a predictive modeling task in which y is a continuous attribute. Regression
techniques are covered in Appendix D.

Definition 4.1 (Classification). Classification is the task of learning a tar-
get function f that maps each attribute set x to one of the predefined class
labels y.

The target function is also known informally as a classification model.
A classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory
tool to distinguish between objects of different classes. For example, it would
be useful—for both biologists and others—to have a descriptive model that
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Table 4.1. The vertebrate data set.

Name Body Skin Gives | Agquatic Aerial Has | Hiber- Class

Temperature Cover Birth | Creature | Creature | Legs | nates Label
human warm-blooded hair yes no no ves no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no no fish
whale warm-blooded hair yes yes no no no mammal
frog cold-blooded none no semi no ves yes amphibian
komodo cold-blooded scales no no no yes no reptile
dragon
bat warm-blooded hair ves no ves ves yes mammal
pigeon warm-blooded | feathers no no yes yes no bird
cat warm-blooded fur yes no no yes no mammal
leopard cold-blooded scales yes yes no no no fish
shark
turtle cold-blooded scales no semi no yes no reptile
penguin warm-blooded | feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no yes no no no fish
salamander | cold-blooded none no semi no yes yes amphibian

summarizes the data shown in Table 4.1 and explains what features define a
vertebrate as a mammal, reptile, bird, fish, or amphibian.

Predictive Modeling A classification model can also be used to predict
the class label of unknown records. As shown in Figure 4.2, a classification
model can be treated as a black box that automatically assigns a class label
when presented with the attribute set of an unknown record. Suppose we are
given the following characteristics of a creature known as a gila monster:

Name Body Skin | Gives | Agquatic Aerial Has | Hiber- | Class
Temperature | Cover | Birth | Creature | Creature | Legs | nates | Label
gila monster | cold-blooded | scales no no no yes yes 7

We can use a classification model built from the data set shown in Table 4.1
to determine the class to which the creature belongs.

Classification techniques are most suited for predicting or describing data
sets with binary or nominal categories. They are less effective for ordinal
categories (e.g., to classify a person as a member of high-, medium-, or low-
income group) because they do not consider the implicit order among the
categories. Other forms of relationships, such as the subclass—superclass re-
lationships among categories (e.g., humans and apes are primates, which in
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turn, is a subclass of mammals) are also ignored. The remainder of this chapter
focuses only on binary or nominal class labels.

4.2 General Approach to Solving a Classification
Problem

A classification technique (or classifier) is a systematic approach to building
classification models from an input data set. Examples include decision tree
classifiers, rule-based classifiers, neural networks, support vector machines,
and naive Bayes classifiers. Each technique employs a learning algorithm
to identify a model that best fits the relationship between the attribute set and
class label of the input data. The model generated by a learning algorithm
should both fit the input data well and correctly predict the class labels of
records it has never seen before. Therefore, a key objective of the learning
algorithm is to build models with good generalization capability; i.e., models
that accurately predict the class labels of previously unknown records.
Figure 4.3 shows a general approach for solving classification problems.
First, a training set consisting of records whose class labels are known must

Training Set
Learning
1 Yes Large 125K |No Algorithm
2 No Medium | 100K No
3 No Small 70K No
4 Yes Medium | 120K No .
5 |[No Large |95K Yes wl‘on
6 |No Medium | 60K No 4
7 |Yes Large 220K |No Learn
8 No Small 85K Yes Model
9 No Medium | 75K No
10 |No Small 90K Yes

\ /

Test Set Apply
Attrib3 Class Model

?
? mon

Small
Medium
Large
Small
Large

=3

=3

=3

Figure 4.3. General approach for building a classification model.
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Table 4.2. Confusion matrix for a 2-class problem.

Predicted Class
Class=1 | Class =0
Actual | Class =1 f11 fl()

Class | Class =0 fgl fgg

be provided. The training set is used to build a classification model, which is
subsequently applied to the test set, which consists of records with unknown
class labels.

Evaluation of the performance of a classification model is based on the
counts of test records correctly and incorrectly predicted by the model. These
counts are tabulated in a table known as a confusion matrix. Table 4.2
depicts the confusion matrix for a binary classification problem. Each entry
fij in this table denotes the number of records from class i predicted to be
of class j. For instance, fo; is the number of records from class 0 incorrectly
predicted as class 1. Based on the entries in the confusion matrix, the total
number of correct predictions made by the model is (f;; + foo) and the total
number of incorrect predictions is (fio + fo1)-

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information with
a single number would make it more convenient to compare the performance
of different models. This can be done using a performance metric such as
accuracy, which is defined as follows:

Number of correct predictions f11 + foo

= . (41
Total number of predictions fi1 + fio + for + foo &Y

Accuracy =

Equivalently, the performance of a model can be expressed in terms of its
error rate, which is given by the following equation:

Number of wrong predictions fio + for

E te = = _
FrOF 18 = "Total number of predictions fi1 + fio + fo1 + foo

(4.2)

Most classification algorithms seek models that attain the highest accuracy, or
equivalently, the lowest error rate when applied to the test set. We will revisit
the topic of model evaluation in Section 4.5.



150 Chapter 4 Classification

4.3 Decision Tree Induction

This section introduces a decision tree classifier, which is a simple yet widely
used classification technique.

4.3.1 How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler
version of the vertebrate classification problem described in the previous sec-
tion. Instead of classifying the vertebrates into five distinct groups of species,
we assign them to two categories: mammals and non-mammals.

Suppose a new species is discovered by scientists. How can we tell whether
it is a mammal or a non-mammal? One approach is to pose a series of questions
about the characteristics of the species. The first question we may ask is
whether the species is cold- or warm-blooded. If it is cold-blooded, then it is
definitely not a mammal. Otherwise, it is either a bird or a mammal. In the
latter case, we need to ask a follow-up question: Do the females of the species
give birth to their young? Those that do give birth are definitely mammals,
while those that do not are likely to be non-mammals (with the exception of
egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted questions about the attributes of the
test record. Each time we receive an answer, a follow-up question is asked
until we reach a conclusion about the class label of the record. The series of
questions and their possible answers can be organized in the form of a decision
tree, which is a hierarchical structure consisting of nodes and directed edges.
Figure 4.4 shows the decision tree for the mammal classification problem. The
tree has three types of nodes:

e A root node that has no incoming edges and zero or more outgoing

edges.

e Internal nodes, each of which has exactly one incoming edge and two
or more outgoing edges.

e Leaf or terminal nodes, each of which has exactly one incoming edge
and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-
terminal nodes, which include the root and other internal nodes, contain
attribute test conditions to separate records that have different characteris-
tics. For example, the root node shown in Figure 4.4 uses the attribute Body



4.3 Decision Tree Induction 151

Body
Temperature J€----.____Root
node

Internal Warm Cold
node

Non-
mammals

Non- nodes
mammals

Mammals

Figure 4.4. A decision tree for the mammal classification problem.

Temperature to separate warm-blooded from cold-blooded vertebrates. Since
all cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals
is created as the right child of the root node. If the vertebrate is warm-blooded,
a subsequent attribute, Gives Birth, is used to distinguish mammals from
other warm-blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been
constructed. Starting from the root node, we apply the test condition to the
record and follow the appropriate branch based on the outcome of the test.
This will lead us either to another internal node, for which a new test condition
is applied, or to a leaf node. The class label associated with the leaf node is
then assigned to the record. As an illustration, Figure 4.5 traces the path in
the decision tree that is used to predict the class label of a flamingo. The path
terminates at a leaf node labeled Non-mammals.

4.3.2 How to Build a Decision Tree

In principle, there are exponentially many decision trees that can be con-
structed from a given set of attributes. While some of the trees are more accu-
rate than others, finding the optimal tree is computationally infeasible because
of the exponential size of the search space. Nevertheless, efficient algorithms
have been developed to induce a reasonably accurate, albeit suboptimal, de-
cision tree in a reasonable amount of time. These algorithms usually employ
a greedy strategy that grows a decision tree by making a series of locally op-
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Unlabeled | Name | Body temperature | Gives Birth |...| Class
data Flamingo Warm No
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Body
Temperature
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mammals
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Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to
the Non-mamma1 class.

timum decisions about which attribute to use for partitioning the data. One
such algorithm is Hunt’s algorithm, which is the basis of many existing de-
cision tree induction algorithms, including ID3, C4.5, and CART. This section
presents a high-level discussion of Hunt’s algorithm and illustrates some of its
design issues.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let D, be the set
of training records that are associated with node ¢ and y = {y1,y2,...,yc} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in D; belong to the same class y;, then ¢ is a leaf
node labeled as y;.

Step 2: If D; contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in D; are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.
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Yes Single 125K No
No Married | 100K No
No Single 70K No
Yes Married | 120K No
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No Married | 60K No
Yes Divorced | 220K No
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Figure 4.6. Training set for predicting borrowers who will default on loan payments.

To illustrate how the algorithm works, consider the problem of predicting
whether a loan applicant will repay her loan obligations or become delinquent,
subsequently defaulting on her loan. A training set for this problem can be
constructed by examining the records of previous borrowers. In the example
shown in Figure 4.6, each record contains the personal information of a bor-
rower along with a class label indicating whether the borrower has defaulted
on loan payments.

The initial tree for the classification problem contains a single node with
class label Defaulted = No (see Figure 4.7(a)), which means that most of
the borrowers successfully repaid their loans. The tree, however, needs to be
refined since the root node contains records from both classes. The records are
subsequently divided into smaller subsets based on the outcomes of the Home
Owner test condition, as shown in Figure 4.7(b). The justification for choosing
this attribute test condition will be discussed later. For now, we will assume
that this is the best criterion for splitting the data at this point. Hunt’s
algorithm is then applied recursively to each child of the root node. From
the training set given in Figure 4.6, notice that all borrowers who are home
owners successfully repaid their loans. The left child of the root is therefore a
leaf node labeled Defaulted = No (see Figure 4.7(b)). For the right child, we
need to continue applying the recursive step of Hunt’s algorithm until all the
records belong to the same class. The trees resulting from each recursive step

are shown in Figures 4.7(c) and (d).
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Figure 4.7. Hunt’s algorithm for inducing decision trees.

Hunt’s algorithm will work if every combination of attribute values is
present in the training data and each combination has a unique class label.
These assumptions are too stringent for use in most practical situations. Ad-
ditional conditions are needed to handle the following cases:

1. It is possible for some of the child nodes created in Step 2 to be empty;
i.e., there are no records associated with these nodes. This can happen
if none of the training records have the combination of attribute values
associated with such nodes. In this case the node is declared a leaf
node with the same class label as the majority class of training records
associated with its parent node.

2. In Step 2, if all the records associated with D; have identical attribute
values (except for the class label), then it is not possible to split these
records any further. In this case, the node is declared a leaf node with
the same class label as the majority class of training records associated
with this node.
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Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following
two issues.

1. How should the training records be split? Each recursive step
of the tree-growing process must select an attribute test condition to
divide the records into smaller subsets. To implement this step, the
algorithm must provide a method for specifying the test condition for
different attribute types as well as an objective measure for evaluating
the goodness of each test condition.

2. How should the splitting procedure stop? A stopping condition is
needed to terminate the tree-growing process. A possible strategy is to
continue expanding a node until either all the records belong to the same
class or all the records have identical attribute values. Although both
conditions are sufficient to stop any decision tree induction algorithm,
other criteria can be imposed to allow the tree-growing procedure to
terminate earlier. The advantages of early termination will be discussed
later in Section 4.4.5.

4.3.3 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute

types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 4.8.

Body
Temperature

Warm- Cold-
blooded blooded

Figure 4.8. Test condition for binary attributes.
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Marital
Status

Single Divorced Married
(a) Multiway split

Marital Marital Marital
Status Status Status
OR OR
{Married}  {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

(b) Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.

Nominal Attributes Since a nominal attribute can have many values, its
test condition can be expressed in two ways, as shown in Figure 4.9. For
a multiway split (Figure 4.9(a)), the number of outcomes depends on the
number of distinct values for the corresponding attribute. For example, if
an attribute such as marital status has three distinct values—single, married,
or divorced—its test condition will produce a three-way split. On the other
hand, some decision tree algorithms, such as CART, produce only binary splits
by considering all 281 — 1 ways of creating a binary partition of k attribute
values. Figure 4.9(b) illustrates three different ways of grouping the attribute

values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multiway
splits. Ordinal attribute values can be grouped as long as the grouping does
not violate the order property of the attribute values. Figure 4.10 illustrates
various ways of splitting training records based on the Shirt Size attribute.
The groupings shown in Figures 4.10(a) and (b) preserve the order among
the attribute values, whereas the grouping shown in Figure 4.10(c) violates
this property because it combines the attribute values Small and Large into
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{Small, {Large, {Small}  {Medium, Large, {Small, {Medium,
Medium}  Extra Large} Extra Large} Large} Extra Large}

(a (b) (c)

Figure 4.10. Different ways of grouping ordinal attribute values.

the same partition while Medium and Extra Large are combined into another
partition.

Continuous Attributes For continuous attributes, the test condition can
be expressed as a comparison test (A < v) or (A > v) with binary outcomes, or
a range query with outcomes of the form v; < A < w41, for i =1,...,k. The
difference between these approaches is shown in Figure 4.11. For the binary
case, the decision tree algorithm must consider all possible split positions v,
and it selects the one that produces the best partition. For the multiway
split, the algorithm must consider all possible ranges of continuous values.
One approach is to apply the discretization strategies described in Section
2.3.6 on page 57. After discretization, a new ordinal value will be assigned to
each discretized interval. Adjacent intervals can also be aggregated into wider
ranges as long as the order property is preserved.

Annual
Income

{10K, 25K} {25K, 50K} {50K, 80K}
(@) (b)

Figure 4.11. Test condition for continuous attributes.
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Male Female

Family

Figure 4.12. Multiway versus binary splits.

4.3.4 Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split
the records. These measures are defined in terms of the class distribution of
the records before and after splitting.

Let p(i|t) denote the fraction of records belonging to class ¢ at a given node
t. We sometimes omit the reference to node ¢ and express the fraction as p;.
In a two-class problem, the class distribution at any node can be written as
(po,p1), where p1 = 1 — pp. To illustrate, consider the test conditions shown
in Figure 4.12. The class distribution before splitting is (0.5,0.5) because
there are an equal number of records from each class. If we split the data
using the Gender attribute, then the class distributions of the child nodes are
(0.6,0.4) and (0.4, 0.6), respectively. Although the classes are no longer evenly
distributed, the child nodes still contain records from both classes. Splitting
on the second attribute, Car Type, will result in purer partitions.

The measures developed for selecting the best split are often based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0,1) has zero impurity, whereas a node with uniform class distribution
(0.5,0.5) has the highest impurity. Examples of impurity measures include

Entropy(t) = — 3 p(ilt) logy p(ilt), (43)
i=0

Gini(t) = l—i[p(i|t)]2, (4.4)
i=0

Classification error(t) = 1 — max[p(i|t)], (4.5)

where ¢ is the number of classes and 0logs 0 = 0 in entropy calculations.
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Figure 4.13. Comparison among the impurity measures for binary classification problems.

Figure 4.13 compares the values of the impurity measures for binary classi-
fication problems. p refers to the fraction of records that belong to one of the
two classes. Observe that all three measures attain their maximum value when
the class distribution is uniform (i.e., when p = 0.5). The minimum values for

the measures are attained when all the records belong to the same class (i.e.,
when p equals 0 or 1). We next provide several examples of computing the
different impurity measures.

Node N; | Count
Class=0 0
Class=1 6
Node Ny | Count
Class=0 1
Class=1 5
Node N3 | Count
Class=0 3
Class=1 3

Gini =1 - (0/6)2 — (6/6)2 =0
Entropy = —(0/6) log,(0/6) — (6/6) log,(6/6) =0
Error = 1 — max[0/6,6/6] =0

Gini =1 — (1/6)2 — (5/6)? = 0.278
Entropy = —(1/6) log,(1/6) — (5/6) log,(5/6) = 0.650
Error = 1 — max[1/6,5/6] = 0.167

Gini =1 - (3/6)%2 — (3/6)%2 = 0.5
Entropy = —(3/6) logy(3/6) — (3/6) log,(3/6) = 1
Error = 1 — max[3/6,3/6] = 0.5
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The preceding examples, along with Figure 4.13, illustrate the consistency
among different impurity measures. Based on these calculations, node N; has
the lowest impurity value, followed by Ny and N3. Despite their consistency,
the attribute chosen as the test condition may vary depending on the choice
of impurity measure, as will be shown in Exercise 3 on page 198.

To determine how well a test condition performs, we need to compare the
degree of impurity of the parent node (before splitting) with the degree of
impurity of the child nodes (after splitting). The larger their difference, the
better the test condition. The gain, A, is a criterion that can be used to
determine the goodness of a split:

k
A = I(parent) — Z %ﬂj)f(vj), (4.6)
j=1

where I(-) is the impurity measure of a given node, N is the total number of
records at the parent node, k is the number of attribute values, and N(v;)
is the number of records associated with the child node, v;. Decision tree
induction algorithms often choose a test condition that maximizes the gain
A. Since I(parent) is the same for all test conditions, maximizing the gain is
equivalent to minimizing the weighted average impurity measures of the child
nodes. Finally, when entropy is used as the impurity measure in Equation 4.6,
the difference in entropy is known as the information gain, A;,.

Splitting of Binary Attributes

Consider the diagram shown in Figure 4.14. Suppose there are two ways to
split the data into smaller subsets. Before splitting, the Gini index is 0.5 since
there are an equal number of records from both classes. If attribute A is chosen
to split the data, the Gini index for node N1 is 0.4898, and for node N2, it
is 0.480. The weighted average of the Gini index for the descendent nodes is
(7/12) x 0.4898 + (5/12) x 0.480 = 0.486. Similarly, we can show that the
weighted average of the Gini index for attribute B is 0.375. Since the subsets
for attribute B have a smaller Gini index, it is preferred over attribute A.

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi-
way splits, as shown in Figure 4.15. The computation of the Gini index for a
binary split is similar to that shown for determining binary attributes. For the
first binary grouping of the Car Type attribute, the Gini index of {Sports,
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Parent
co 6
C1 6
Gini = 0.500

Yes No Yes No
NodeNi]  [Nodohe| [NodeNi] — [Nodene]

N1 || N2 N1 || N2
Co| 4 2 co| 1 5
ci| 3|3 cCi| 4| 2
Gini = 0.486 Gini = 0.375

Figure 4.14. Splitting binary attributes.

{Sports, @ {Family, @

Luxury} {Family} | uxury} {Sports}

{Sports, {Family,
Luxury} {Family} {Sports} Luxury} Family | Sports | Luxury
co 9 1 co 8 2 co 1 8 1
C1 7 3 C1 0 10 c1 3 0 7
Gini 0.468 Gini 0.167 Gini 0.163
(a) Binary split (b) Multiway split

Figure 4.15. Splitting nominal attributes.

Luxury} is 0.4922 and the Gini index of {Family} is 0.3750. The weighted
average Gini index for the grouping is equal to

16/20 x 0.4922 + 4/20 x 0.3750 = 0.468.

Similarly, for the second binary grouping of {Sports} and {Family, Luxury},
the weighted average Gini index is 0.167. The second grouping has a lower
Gini index because its corresponding subsets are much purer.
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Class No No No Yes Yes Yes No No No
Annual Income

Sorted Values —>[BRL:11 70 75 100 120 125
Split Positions—»|_55 | 65 72 | 80 87 | 92 | 97 | 110 | 122 | 172 | 230
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Gini | 0.420 | 0.400|0.375(0.343 [ 0.417 | 0.400 (0.300 || 0.343 | 0.375 | 0.400 || 0.420

Figure 4.16. Splitting continuous attributes.

For the multiway split, the Gini index is computed for every attribute value.
Since Gini({Family}) = 0.375, Gini({Sports}) = 0, and Gini({Luxury}) =
0.219, the overall Gini index for the multiway split is equal to

4/20 x 0.375 +8/20 x 0+ 8/20 x 0.219 = 0.163.

The multiway split has a smaller Gini index compared to both two-way splits.
This result is not surprising because the two-way split actually merges some
of the outcomes of a multiway split, and thus, results in less pure subsets.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition Annual
Income < v is used to split the training records for the loan default classifica-
tion problem. A brute-force method for finding v is to consider every value of
the attribute in the N records as a candidate split position. For each candidate
v, the data set is scanned once to count the number of records with annual
income less than or greater than v. We then compute the Gini index for each
candidate and choose the one that gives the lowest value. This approach is
computationally expensive because it requires O(N) operations to compute
the Gini index at each candidate split position. Since there are N candidates,
the overall complexity of this task is O(N2). To reduce the complexity, the
training records are sorted based on their annual income, a computation that
requires O(N log N) time. Candidate split positions are identified by taking
the midpoints between two adjacent sorted values: 55, 65, 72, and so on. How-
ever, unlike the brute-force approach, we do not have to examine all N records
when evaluating the Gini index of a candidate split position.

For the first candidate, v = 55, none of the records has annual income less
than $55K. As a result, the Gini index for the descendent node with Annual
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Income < $55K is zero. On the other hand, the number of records with annual
income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No),
respectively. Thus, the Gini index for this node is 0.420. The overall Gini
index for this candidate split position is equal to 0 x 0+ 1 x 0.420 = 0.420.

For the second candidate, v = 65, we can determine its class distribution
by updating the distribution of the previous candidate. More specifically, the
new distribution is obtained by examining the class label of the record with
the lowest annual income (i.e., $60K). Since the class label for this record is
No, the count for class No is increased from 0 to 1 (for Annual Income < $65K)
and is decreased from 7 to 6 (for Annual Income > $65K). The distribution
for class Yes remains unchanged. The new weighted-average Gini index for
this candidate split position is 0.400.

This procedure is repeated until the Gini index values for all candidates are
computed, as shown in Figure 4.16. The best split position corresponds to the
one that produces the smallest Gini index, i.e., v = 97. This procedure is less
expensive because it requires a constant amount of time to update the class
distribution at each candidate split position. It can be further optimized by
considering only candidate split positions located between two adjacent records
with different class labels. For example, because the first three sorted records
(with annual incomes $60K, $70K, and $75K) have identical class labels, the
best split position should not reside between $60K and $75K. Therefore, the
candidate split positions at v = $55K, $65K, $72K, $87K, $92K, $110K, $122K,
$172K, and $230K are ignored because they are located between two adjacent
records with the same class labels. This approach allows us to reduce the
number of candidate split positions from 11 to 2.

Gain Ratio

Impurity measures such as entropy and Gini index tend to favor attributes that
have a large number of distinct values. Figure 4.12 shows three alternative
test conditions for partitioning the data set given in Exercise 2 on page 198.
Comparing the first test condition, Gender, with the second, Car Type, it
is easy to see that Car Type seems to provide a better way of splitting the
data since it produces purer descendent nodes. However, if we compare both
conditions with Customer ID, the latter appears to produce purer partitions.
Yet Customer ID is not a predictive attribute because its value is unique for
each record. Even in a less extreme situation, a test condition that results in a
large number of outcomes may not be desirable because the number of records
associated with each partition is too small to enable us to make any reliable
predictions.
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There are two strategies for overcoming this problem. The first strategy is
to restrict the test conditions to binary splits only. This strategy is employed
by decision tree algorithms such as CART. Another strategy is to modify the
splitting criterion to take into account the number of outcomes produced by
the attribute test condition. For example, in the C4.5 decision tree algorithm,
a splitting criterion known as gain ratio is used to determine the goodness
of a split. This criterion is defined as follows:

i . _ Ainfo
Gain ratio = Split Info” (4.7)

Here, Split Info = — Zi;l P(v;)log, P(v;) and k is the total number of splits.
For example, if each attribute value has the same number of records, then
Vi : P(v;)) = 1/k and the split information would be equal to logy k. This
example suggests that if an attribute produces a large number of splits, its
split information will also be large, which in turn reduces its gain ratio.

4.3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown
in Algorithm 4.1. The input to this algorithm consists of the training records
E and the attribute set F.. The algorithm works by recursively selecting the
best attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.
TreeGrowth (E, F)

1: if stopping cond(E,F) = true then

2:  leaf = createNode().

3:  leaf.label = Classify(E).
4:  return leaf.
5: else
6: root = createNode().
7. root.test_cond = find best_split(E, F).
8 let V = {v|v is a possible outcome of root.test_cond }.
9: for eachv eV do
10: E, = {e | root.test_cond(e) = v and e € E}.
11: child = TreeGrowth(F,, F).
12: add child as descendent of root and label the edge (root — child) as v.
13:  end for
14: end if

15: return root.
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tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details
of this algorithm are explained below:

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree has either a test condition, denoted as
node.test_cond, or a class label, denoted as node.label.

2. The find-best_split() function determines which attribute should be
selected as the test condition for splitting the training records. As pre-
viously noted, the choice of test condition depends on which impurity
measure is used to determine the goodness of a split. Some widely used
measures include entropy, the Gini index, and the x? statistic.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node ¢, let p(i|t) denote the fraction of training
records from class 7 associated with the node ¢. In most cases, the leaf
node is assigned to the class that has the majority number of training
records:

leaf.label = argmax p(i|t), (4.8)
i

where the argmax operator returns the argument ¢ that maximizes the
expression p(i|t). Besides providing the information needed to determine
the class label of a leaf node, the fraction p(i[t) can also be used to es-
timate the probability that a record assigned to the leaf node ¢ belongs
to class ¢. Sections 5.7.2 and 5.7.3 describe how such probability esti-
mates can be used to determine the performance of a decision tree under
different cost functions.

4. The stopping-cond() function is used to terminate the tree-growing pro-
cess by testing whether all the records have either the same class label
or the same attribute values. Another way to terminate the recursive
function is to test whether the number of records have fallen below some
minimum threshold.

After building the decision tree, a tree-pruning step can be performed
to reduce the size of the decision tree. Decision trees that are too large are
susceptible to a phenomenon known as overfitting. Pruning helps by trim-
ming the branches of the initial tree in a way that improves the generalization
capability of the decision tree. The issues of overfitting and tree pruning are
discussed in more detail in Section 4.4.
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Session| IP Address | Timestamp HI equest’ pooiested Web Page | Protocol |Status :rusmber Referrer User Agent
1 160.11.11.11 | 08/Aug/2004 | GET | hitpufwww.cs.umn.edu/ [HTTPA.1| 200 | 6424 Mozilla/4.0
10:15:21 ~Kumar (compatible; MSIE 6.0;
Windows NT 5.0)
1 160.11.11.11 | 08/Aug/2004 | GET | httpfwww.cs.umn.edu/ [HTTPA.1| 200 | 41378 |httpufwww.cs.umn.edu/ Mozilla/4.0
10:15:34 ~kumar/MINDS ~kumar (compatible; MSIE 6.0;
Windows NT 5.0)
1 [160.11.11.11 | 08/Aug/2004 | GET |http:/www.cs.umn.edu/ |HTTRPA.1| 200 |1018516 |http:/fwww.cs.umn.edu/ | Mozilla/4.0
10:15:41 ~kumar/MINDS/MINDS ~kumar/MINDS (compatible; MSIE 6.0;
_papers.htm Windows NT 5.0)
1 |160.11.11.11 | 08/Aug/2004 | GET | hitp/fwww.cs.umn.edw |HTTPA.1| 200 | 7463 |hitp:/www.cs.umn.edu/ | Mozilla/d.0
10:16:11 ~kumarfpapers/papers. ~kumar (compatible; MSIE 6.0;
html Windows NT 5.0)
2 359.22 |08/Aug/2004 | GET htmnlfh\rww,cs.umn.eduf HTTPH.0| 200 | 3149 Mozilla/5.0 (Windows; U;
10:16:15 ~steinbac Windows NT 5.1; en-US;

nv:1.7) Gecko/20040616

(a) Example of a Web server log.

Attribute Name Description
. totalPages Total number of pages retrieved in a Web session
http://www.cs.umn.edu/~kumar ImagePages | Total number of image pages retrieved in a Web session
TotalTime Total amount of time spent by Web site visitor
RepeatedAccess | The same page requested more than once in a Web session
ErrorRequest Errors in requesting for Web pages
MINDS GET Percentage of requests made using GET method
POST Percentage of requests made using POST method
papers!papers. htmi HEAD Percentage of requests made using HEAD method
Breadth Breadth of Web traversal
Depth Depth of Web traversal
MultilP Session with multiple IP addresses
MINDS/MINDS_papers.htm MultiAgent Session with multiple user agents
(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

Figure 4.17. Input data for Web robot detection.

4.3.6 An Example: Web Robot Detection

Web usage mining is the task of applying data mining techniques to extract
useful patterns from Web access logs. These patterns can reveal interesting
characteristics of site visitors; e.g., people who repeatedly visit a Web site and
view the same product description page are more likely to buy the product if
certain incentives such as rebates or free shipping are offered.

In Web usage mining, it is important to distinguish accesses made by hu-
man users from those due to Web robots. A Web robot (also known as a Web
crawler) is a software program that automatically locates and retrieves infor-
mation from the Internet by following the hyperlinks embedded in Web pages.
These programs are deployed by search engine portals to gather the documents
necessary for indexing the Web. Web robot accesses must be discarded before
applying Web mining techniques to analyze human browsing behavior.
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This section describes how a decision tree classifier can be used to distin-
guish between accesses by human users and those by Web robots. The input
data was obtained from a Web server log, a sample of which is shown in Figure
4.17(a). Each line corresponds to a single page request made by a Web client
(a user or a Web robot). The fields recorded in the Web log include the IP
address of the client, timestamp of the request, Web address of the requested
document, size of the document, and the client’s identity (via the user agent
field). A Web session is a sequence of requests made by a client during a single
visit to a Web site. Each Web session can be modeled as a directed graph, in
which the nodes correspond to Web pages and the edges correspond to hyper-
links connecting one Web page to another. Figure 4.17(b) shows a graphical
representation of the first Web session given in the Web server log.

To classify the Web sessions, features are constructed to describe the char-
acteristics of each session. Figure 4.17(c) shows some of the features used
for the Web robot detection task. Among the notable features include the
depth and breadth of the traversal. Depth determines the maximum dis-
tance of a requested page, where distance is measured in terms of the num-
ber of hyperlinks away from the entry point of the Web site. For example,
the home page http://www.cs.umn.edu/~kumar is assumed to be at depth
0, whereas http://www.cs.umn.edu/kumar/MINDS/MINDS_papers.htm is lo-
cated at depth 2. Based on the Web graph shown in Figure 4.17(b), the depth
attribute for the first session is equal to two. The breadth attribute measures
the width of the corresponding Web graph. For example, the breadth of the
Web session shown in Figure 4.17(b) is equal to two.

The data set for classification contains 2916 records, with equal numbers
of sessions due to Web robots (class 1) and human users (class 0). 10% of the
data were reserved for training while the remaining 90% were used for testing.
The induced decision tree model is shown in Figure 4.18. The tree has an
error rate equal to 3.8% on the training set and 5.3% on the test set.

The model suggests that Web robots can be distinguished from human
users in the following way:

1. Accesses by Web robots tend to be broad but shallow, whereas accesses
by human users tend to be more focused (narrow but deep).

2. Unlike human users, Web robots seldom retrieve the image pages asso-
ciated with a Web document.

3. Sessions due to Web robots tend to be long and contain a large number
of requested pages.
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Decision Tree:

depth = 1:

| breadth>7: class 1
breadth<=7:

breadth <= 3:

I ImagePages> 0.375: class 0
I ImagePages<= 0.375:

I | totalPages<=6: class 1

I | totalPages> 6:

I 1| breadth<=1: class 1

I 1l breadth>1: class 0
width > 3:

MultilP = 0:

| ImagePages<=0.1333: class 1
| ImagePages> 0.1333:

| breadth <=6: class 0

| breadth > 6: class 1
MultilP = 1:

| TotalTime <=361: class 0

| TotalTime >361: class 1
epth> 1:

MultiAgent = 0:

depth>2: class 0

depth <2:

| MultilP=1: class 0

I MultilP = 0:

| | breadth <=6: class 0

I'| breadth > 6:

I'1 I RepeatedAccess <=0.322: class 0
I'1 | RepeatedAccess > 0.322: class 1
MultiAgent = 1:

| totalPages <=81: class 0

| totalPages > 81: class 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
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Figure 4.18. Decision free model for Web robot detection.

4. Web robots are more likely to make repeated requests for the same doc-
ument since the Web pages retrieved by human users are often cached
by the browser.

4.3.7 Characteristics of Decision Tree Induction

The following is a summary of the important characteristics of decision tree
induction algorithms.

1. Decision tree induction is a nonparametric approach for building classifi-
cation models. In other words, it does not require any prior assumptions
regarding the type of probability distributions satisfied by the class and
other attributes (unlike some of the techniques described in Chapter 5).
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. Finding an optimal decision tree is an NP-complete problem. Many de-
cision tree algorithms employ a heuristic-based approach to guide their
search in the vast hypothesis space. For example, the algorithm pre-
sented in Section 4.3.5 uses a greedy, top-down, recursive partitioning
strategy for growing a decision tree.

. Techniques developed for constructing decision trees are computationally
inexpensive, making it possible to quickly construct models even when
the training set size is very large. Furthermore, once a decision tree has
been built, classifying a test record is extremely fast, with a worst-case
complexity of O(w), where w is the maximum depth of the tree.

. Decision trees, especially smaller-sized trees, are relatively easy to inter-
pret. The accuracies of the trees are also comparable to other classifica-
tion techniques for many simple data sets.

. Decision trees provide an expressive representation for learning discrete-
valued functions. However, they do not generalize well to certain types
of Boolean problems. One notable example is the parity function, whose
value is 0 (1) when there is an odd (even) number of Boolean attributes
with the value T'rue. Accurate modeling of such a function requires a full
decision tree with 24 nodes, where d is the number of Boolean attributes
(see Exercise 1 on page 198).

. Decision tree algorithms are quite robust to the presence of noise, espe-
cially when methods for avoiding overfitting, as described in Section 4.4,
are employed.

. The presence of redundant attributes does not adversely affect the ac-
curacy of decision trees. An attribute is redundant if it is strongly cor-
related with another attribute in the data. One of the two redundant
attributes will not be used for splitting once the other attribute has been
chosen. However, if the data set contains many irrelevant attributes, i.e.,
attributes that are not useful for the classification task, then some of the
irrelevant attributes may be accidently chosen during the tree-growing
process, which results in a decision tree that is larger than necessary.
Feature selection techniques can help to improve the accuracy of deci-
sion trees by eliminating the irrelevant attributes during preprocessing.
We will investigate the issue of too many irrelevant attributes in Section
4.4.3.
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8. Since most decision tree algorithms employ a top-down, recursive parti-
tioning approach, the number of records becomes smaller as we traverse
down the tree. At the leaf nodes, the number of records may be too
small to make a statistically significant decision about the class rep-
resentation of the nodes. This is known as the data fragmentation
problem. One possible solution is to disallow further splitting when the
number of records falls below a certain threshold.

9. A subtree can be replicated multiple times in a decision tree, as illus-
trated in Figure 4.19. This makes the decision tree more complex than
necessary and perhaps more difficult to interpret. Such a situation can
arise from decision tree implementations that rely on a single attribute
test condition at each internal node. Since most of the decision tree al-
gorithms use a divide-and-conquer partitioning strategy, the same test
condition can be applied to different parts of the attribute space, thus
leading to the subtree replication problem.

Figure 4.19. Tree replication problem. The same subtree can appear at different branches.

10. The test conditions described so far in this chapter involve using only a
single attribute at a time. As a consequence, the tree-growing procedure
can be viewed as the process of partitioning the attribute space into
disjoint regions until each region contains records of the same class (see
Figure 4.20). The border between two neighboring regions of different
classes is known as a decision boundary. Since the test condition in-
volves only a single attribute, the decision boundaries are rectilinear; i.e.,
parallel to the “coordinate axes.” This limits the expressiveness of the
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Figure 4.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.
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Figure 4.21. Example of data set that cannot be partitioned optimally using test conditions involving
single attributes.

decision tree representation for modeling complex relationships among
continuous attributes. Figure 4.21 illustrates a data set that cannot be
classified effectively by a decision tree algorithm that uses test conditions

involving only a single attribute at a time.
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An oblique decision tree can be used to overcome this limitation
because it allows test conditions that involve more than one attribute.
The data set given in Figure 4.21 can be easily represented by an oblique
decision tree containing a single node with test condition

r+y<lLl

Although such techniques are more expressive and can produce more
compact trees, finding the optimal test condition for a given node can
be computationally expensive.

Constructive induction provides another way to partition the data
into homogeneous, nonrectangular regions (see Section 2.3.5 on page 57).
This approach creates composite attributes representing an arithmetic
or logical combination of the existing attributes. The new attributes
provide a better discrimination of the classes and are augmented to the
data set prior to decision tree induction. Unlike the oblique decision tree
approach, constructive induction is less expensive because it identifies all
the relevant combinations of attributes once, prior to constructing the
decision tree. In contrast, an oblique decision tree must determine the
right attribute combination dynamically, every time an internal node is
expanded. However, constructive induction can introduce attribute re-
dundancy in the data since the new attribute is a combination of several
existing attributes.

11. Studies have shown that the choice of impurity measure has little effect
on the performance of decision tree induction algorithms. This is because
many impurity measures are quite consistent with each other, as shown
in Figure 4.13 on page 159. Indeed, the strategy used to prune the
tree has a greater impact on the final tree than the choice of impurity
measure.

4.4 Model Overfitting

The errors committed by a classification model are generally divided into two
types: training errors and generalization errors. Training error, also
known as resubstitution error or apparent error, is the number of misclas-
sification errors committed on training records, whereas generalization error
is the expected error of the model on previously unseen records.

Recall from Section 4.2 that a good classification model must not only fit
the training data well, it must also accurately classify records it has never
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Figure 4.22. Example of a data set with binary classes.

seen before. In other words, a good model must have low training error as
well as low generalization error. This is important because a model that fits
the training data too well can have a poorer generalization error than a model
with a higher training error. Such a situation is known as model overfitting.

Overfitting Example in Two-Dimensional Data For a more concrete
example of the overfitting problem, consider the two-dimensional data set
shown in Figure 4.22. The data set contains data points that belong to two
different classes, denoted as class o and class +, respectively. The data points
for the o class are generated from a mixture of three Gaussian distributions,
while a uniform distribution is used to generate the data points for the + class.
There are altogether 1200 points belonging to the o class and 1800 points be-
longing to the + class. 30% of the points are chosen for training, while the
remaining 70% are used for testing. A decision tree classifier that uses the
Gini index as its impurity measure is then applied to the training set. To
investigate the effect of overfitting, different levels of pruning are applied to
the initial, fully-grown tree. Figure 4.23(b) shows the training and test error
rates of the decision tree.
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Figure 4.23. Training and test error rates.

Notice that the training and test error rates of the model are large when the
size of the tree is very small. This situation is known as model underfitting.
Underfitting occurs because the model has yet to learn the true structure of
the data. As a result, it performs poorly on both the training and the test
sets. As the number of nodes in the decision tree increases, the tree will have
fewer training and test errors. However, once the tree becomes too large, its
test error rate begins to increase even though its training error rate continues
to decrease. This phenomenon is known as model overfitting.

To understand the overfitting phenomenon, note that the training error of
a model can be reduced by increasing the model complexity. For example, the
leaf nodes of the tree can be expanded until it perfectly fits the training data.
Although the training error for such a complex tree is zero, the test error can
be large because the tree may contain nodes that accidently fit some of the
noise points in the training data. Such nodes can degrade the performance
of the tree because they do not generalize well to the test examples. Figure
4.24 shows the structure of two decision trees with different number of nodes.
The tree that contains the smaller number of nodes has a higher training error
rate, but a lower test error rate compared to the more complex tree.

Overfitting and underfitting are two pathologies that are related to the
model complexity. The remainder of this section examines some of the poten-
tial causes of model overfitting.
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(a) Decision tree with 11 leaf
nodes.

(b) Decision tree with 24 leaf nodes.

Figure 4.24. Decision trees with different model complexities.

4.4.1 Overfitting Due to Presence of Noise

Consider the training and test sets shown in Tables 4.3 and 4.4 for the mammal
classification problem. Two of the ten training records are mislabeled: bats
and whales are classified as non-mammals instead of mammals.

A decision tree that perfectly fits the training data is shown in Figure
4.25(a). Although the training error for the tree is zero, its error rate on

Table 4.3. An example training set for classifying mammals. Class labels with asterisk symbols repre-
sent mislabeled records.

Name Body Gives | Four- | Hibernates | Class
Temperature | Birth | legged Label
porcupine warm-blooded yes yes yes yes
cat warm-blooded yes yes no yes
bat warm-blooded | yes no yes no”
whale warm-blooded yes no no no”*
salamander cold-blooded no yes yes no
komodo dragon | cold-blooded no yes no no
python cold-blooded no no yes no
salmon cold-blooded no no no no
eagle warm-blooded no no no no
guppy cold-blooded yes no no no
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Table 4.4. An example test set for classifying mammals.

Name Body Gives | Four- | Hibernates | Class
Temperature | Birth | legged Label
human warm-blooded yes no no yes
pigeon warm-blooded no no no no
elephant warm-blooded yes yes no yes
leopard shark cold-blooded yes no no no
turtle cold-blooded no yes no no
penguin cold-blooded no no no no
eel cold-blooded no no no no
dolphin warm-blooded yes no no yes
spiny anteater | warm-blooded no yes yes yes
gila monster cold-blooded no yes yes no

Body Body
Temperature Temperature

Warm-blooded Cold-blooded Warm-blooded Cold-blooded

Yes No

Non-
mammals

Non-
mammals

Yes N

o
Four- Non- M Non-
ammals
legged mammals mammals
Yes N

Non-
mammals

Mammals

(a) Model M1 (b) Model M2

Figure 4.25. Decision tree induced from the data set shown in Table 4.3.

the test set is 30%. Both humans and dolphins were misclassified as non-

mammals because their attribute values for Body Temperature, Gives Birth,
and Four-legged are identical to the mislabeled records in the training set.
Spiny anteaters, on the other hand, represent an exceptional case in which the
class label of a test record contradicts the class labels of other similar records
in the training set. Errors due to exceptional cases are often unavoidable and

establish the minimum error rate achievable by any classifier.
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In contrast, the decision tree M2 shown in Figure 4.25(b) has a lower test
error rate (10%) even though its training error rate is somewhat higher (20%).
It is evident that the first decision tree, M1, has overfitted the training data
because there is a simpler model with lower error rate on the test set. The
Four-legged attribute test condition in model M1 is spurious because it fits
the mislabeled training records, which leads to the misclassification of records
in the test set.

4.4.2 Overfitting Due to Lack of Representative Samples

Models that make their classification decisions based on a small number of
training records are also susceptible to overfitting. Such models can be gener-
ated because of lack of representative samples in the training data and learning
algorithms that continue to refine their models even when few training records
are available. We illustrate these effects in the example below.

Consider the five training records shown in Table 4.5. All of these training
records are labeled correctly and the corresponding decision tree is depicted
in Figure 4.26. Although its training error is zero, its error rate on the test

set is 30%.

Table 4.5. An example training set for classifying mammals.

Name Body Gives | Four- | Hibernates | Class
Temperature | Birth | legged Label
salamander | cold-blooded no yes yes no
guppy cold-blooded yes no no no
eagle warm-blooded no no no no
poorwill warm-blooded no no yes no
platypus warm-blooded no yes yes yes

Humans, elephants, and dolphins are misclassified because the decision tree
classifies all warm-blooded vertebrates that do not hibernate as non-mammals.
The tree arrives at this classification decision because there is only one training
record, which is an eagle, with such characteristics. This example clearly
demonstrates the danger of making wrong predictions when there are not
enough representative examples at the leaf nodes of a decision tree.
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Body
Temperature

Warm-blooded Cold-blooded

Yes No

mammals

Non-
mammals

Non-

Mammals
mammals

Figure 4.26. Decision tree induced from the data set shown in Table 4.5.

4.4.3 Overfitting and the Multiple Comparison Procedure

Model overfitting may arise in learning algorithms that employ a methodology
known as multiple comparison procedure. To understand multiple comparison
procedure, consider the task of predicting whether the stock market will rise
or fall in the next ten trading days. If a stock analyst simply makes random
guesses, the probability that her prediction is correct on any trading day is
0.5. However, the probability that she will predict correctly at least eight out

of the ten times is 10 10 10
(8) + (2?0) * (0) _ 00547,

which seems quite unlikely.

Suppose we are interested in choosing an investment advisor from a pool of
fifty stock analysts. Our strategy is to select the analyst who makes the most
correct predictions in the next ten trading days. The flaw in this strategy is
that even if all the analysts had made their predictions in a random fashion, the
probability that at least one of them makes at least eight correct predictions
is

1 — (1 -0.0547)%° = 0.9399,

which is very high. Although each analyst has a low probability of predicting
at least eight times correctly, putting them together, we have a high probability
of finding an analyst who can do so. Furthermore, there is no guarantee in the
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future that such an analyst will continue to make accurate predictions through
random guessing.

How does the multiple comparison procedure relate to model overfitting?
Many learning algorithms explore a set of independent alternatives, {7;}, and
then choose an alternative, ymax, that maximizes a given criterion function.
The algorithm will add 7. to the current model in order to improve its
overall performance. This procedure is repeated until no further improvement
is observed. As an example, during decision tree growing, multiple tests are
performed to determine which attribute can best split the training data. The
attribute that leads to the best split is chosen to extend the tree as long as
the observed improvement is statistically significant.

Let Ty be the initial decision tree and T; be the new tree after inserting an
internal node for attribute z. In principle, z can be added to the tree if the
observed gain, A(Tp,T7), is greater than some predefined threshold a. If there
is only one attribute test condition to be evaluated, then we can avoid inserting
spurious nodes by choosing a large enough value of . However, in practice,
more than one test condition is available and the decision tree algorithm must
choose the best attribute zmax from a set of candidates, {z1,z2,...,z}, to
partition the data. In this situation, the algorithm is actually using a multiple
comparison procedure to decide whether a decision tree should be extended.
More specifically, it is testing for A(To, Ty, ) > « instead of A(Tp, T;) > a.
As the number of alternatives, k, increases, so does our chance of finding
A(To, Typay) > . Unless the gain function A or threshold « is modified to
account for k, the algorithm may inadvertently add spurious nodes to the
model, which leads to model overfitting.

This effect becomes more pronounced when the number of training records
from which @max is chosen is small, because the variance of A(Tp, Ty,,,. ) is high
when fewer examples are available for training. As a result, the probability of
finding A(Ty, T}, ) > o increases when there are very few training records.
This often happens when the decision tree grows deeper, which in turn reduces
the number of records covered by the nodes and increases the likelihood of
adding unnecessary nodes into the tree. Failure to compensate for the large
number of alternatives or the small number of training records will therefore
lead to model overfitting.

4.4.4 Estimation of Generalization Errors

Although the primary reason for overfitting is still a subject of debate, it
is generally agreed that the complexity of a model has an impact on model
overfitting, as was illustrated in Figure 4.23. The question is, how do we
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determine the right model complexity? The ideal complexity is that of a
model that produces the lowest generalization error. The problem is that the
learning algorithm has access only to the training set during model building
(see Figure 4.3). It has no knowledge of the test set, and thus, does not know
how well the tree will perform on records it has never seen before. The best it
can do is to estimate the generalization error of the induced tree. This section
presents several methods for doing the estimation.

Using Resubstitution Estimate

The resubstitution estimate approach assumes that the training set is a good
representation of the overall data. Consequently, the training error, otherwise
known as resubstitution error, can be used to provide an optimistic estimate
for the generalization error. Under this assumption, a decision tree induction
algorithm simply selects the model that produces the lowest training error rate
as its final model. However, the training error is usually a poor estimate of
generalization error.

Example 4.1. Consider the binary decision trees shown in Figure 4.27. As-
sume that both trees are generated from the same training data and both
make their classification decisions at each leaf node according to the majority
class. Note that the left tree, T}, is more complex because it expands some
of the leaf nodes in the right tree, Tr. The training error rate for the left
tree is e(7T},) = 4/24 = 0.167, while the training error rate for the right tree is

+5 +:1 +:3 +:3
-2 -4 -0 -6
+:3 +2 || +0 +:1 +3 +:0
-1 -1 -2 -2 -1 -5
Decision Tree, T Decision Tree, Ty

Figure 4.27. Example of two decision trees generated from the same training data.
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e(Tr) = 6/24 = 0.25. Based on their resubstitution estimate, the left tree is
considered better than the right tree. ]

Incorporating Model Complexity

As previously noted, the chance for model overfitting increases as the model
becomes more complex. For this reason, we should prefer simpler models, a
strategy that agrees with a well-known principle known as Occam’s razor or
the principle of parsimony:

Definition 4.2. Occam’s Razor: Given two models with the same general-
ization errors, the simpler model is preferred over the more complex model.

Occam’s razor is intuitive because the additional components in a complex
model stand a greater chance of being fitted purely by chance. In the words of
Einstein, “Everything should be made as simple as possible, but not simpler.”
Next, we present two methods for incorporating model complexity into the
evaluation of classification models.

Pessimistic Error Estimate The first approach explicitly computes gener-
alization error as the sum of training error and a penalty term for model com-
plexity. The resulting generalization error can be considered its pessimistic
error estimate. For instance, let n(¢) be the number of training records classi-
fied by node ¢ and e(¢) be the number of misclassified records. The pessimistic
error estimate of a decision tree T', e4(T"), can be computed as follows:

iy le(t) + Q)] _ e(T) + T

R TS N

where k is the number of leaf nodes, e(T) is the overall training error of the
decision tree, N; is the number of training records, and €(¢;) is the penalty
term associated with each node ;.

Example 4.2. Consider the binary decision trees shown in Figure 4.27. If
the penalty term is equal to 0.5, then the pessimistic error estimate for the

left tree is A+Tx05 75
x 0. :

T —J S G '12

eg(T1) 24 g~ ok

and the pessimistic error estimate for the right tree is
6+4x05 8
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Figure 4.28. The minimum description length (MDL) principle.

Thus, the left tree has a better pessimistic error rate than the right tree. For
binary trees, a penalty term of 0.5 means a node should always be expanded
into its two child nodes as long as it improves the classification of at least one
training record because expanding a node, which is equivalent to adding 0.5
to the overall error, is less costly than committing one training error.

If Q(t) = 1 for all the nodes ¢, the pessimistic error estimate for the left
tree is ey(T7) = 11/24 = 0.458, while the pessimistic error estimate for the
right tree is ey(Tr) = 10/24 = 0.417. The right tree therefore has a better
pessimistic error rate than the left tree. Thus, a node should not be expanded
into its child nodes unless it reduces the misclassification error for more than
one training record. ]

Minimum Description Length Principle Another way to incorporate
model complexity is based on an information-theoretic approach known as the
minimum description length or MDL principle. To illustrate this principle,
consider the example shown in Figure 4.28. In this example, both A and B are
given a set of records with known attribute values x. In addition, person A
knows the exact class label for each record, while person B knows none of this
information. B can obtain the classification of each record by requesting that
A transmits the class labels sequentially. Such a message would require ©(n)
bits of information, where n is the total number of records.

Alternatively, A may decide to build a classification model that summarizes
the relationship between x and y. The model can be encoded in a compact
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form before being transmitted to B. If the model is 100% accurate, then the
cost of transmission is equivalent to the cost of encoding the model. Otherwise,
A must also transmit information about which record is classified incorrectly
by the model. Thus, the overall cost of transmission is

Cost(model, data) = Cost(model) + Cost(data|model), (4.9)

where the first term on the right-hand side is the cost of encoding the model,
while the second term represents the cost of encoding the mislabeled records.
According to the MDL principle, we should seek a model that minimizes the
overall cost function. An example showing how to compute the total descrip-
tion length of a decision tree is given by Exercise 9 on page 202.

Estimating Statistical Bounds

The generalization error can also be estimated as a statistical correction to
the training error. Since generalization error tends to be larger than training
error, the statistical correction is usually computed as an upper bound to the
training error, taking into account the number of training records that reach
a particular leaf node. For instance, in the C4.5 decision tree algorithm, the
number of errors committed by each leaf node is assumed to follow a binomial
distribution. To compute its generalization error, we must determine the upper
bound limit to the observed training error, as illustrated in the next example.

Example 4.3. Consider the left-most branch of the binary decision trees
shown in Figure 4.27. Observe that the left-most leaf node of Tr has been
expanded into two child nodes in 77,. Before splitting, the error rate of the
node is 2/7 = 0.286. By approximating a binomial distribution with a normal
distribution, the following upper bound of the error rate e can be derived:

2 (1-e) , %
e+ 31@ + 2q/2 £ NE + m%
eupper(Na €, 05) = 22 ’ (4'10)
1+ 5

where a is the confidence level, z, 5 is the standardized value from a standard
normal distribution, and N is the total number of training records used to
compute e. By replacing a = 25%, N = 7, and e = 2/7, the upper bound for
the error rate is eypper(7,2/7,0.25) = 0.503, which corresponds to 7 x 0.503 =
3.521 errors. If we expand the node into its child nodes as shown in 77, the
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333,
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respectively. Using Equation 4.10, the upper bounds of these error rates are
Eupper (4, 1/4,0.25) = 0.537 and e, pper(3,1/3,0.25) = 0.650, respectively. The
overall training error of the child nodes is 4 x 0.537 4 3 x 0.650 = 4.098, which
is larger than the estimated error for the corresponding node in Tg. ]

Using a Validation Set

In this approach, instead of using the training set to estimate the generalization
error, the original training data is divided into two smaller subsets. One of
the subsets is used for training, while the other, known as the validation set,
is used for estimating the generalization error. Typically, two-thirds of the
training set is reserved for model building, while the remaining one-third is
used for error estimation.

This approach is typically used with classification techniques that can be
parameterized to obtain models with different levels of complexity. The com-
plexity of the best model can be estimated by adjusting the parameter of the
learning algorithm (e.g., the pruning level of a decision tree) until the empir-
ical model produced by the learning algorithm attains the lowest error rate
on the validation set. Although this approach provides a better way for esti-
mating how well the model performs on previously unseen records, less data
is available for training.

4.4.5 Handling Overfitting in Decision Tree Induction

In the previous section, we described several methods for estimating the gen-
eralization error of a classification model. Having a reliable estimate of gener-
alization error allows the learning algorithm to search for an accurate model
without overfitting the training data. This section presents two strategies for
avoiding model overfitting in the context of decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing
algorithm is halted before generating a fully grown tree that perfectly fits the
entire training data. To do this, a more restrictive stopping condition must
be used; e.g., stop expanding a leaf node when the observed gain in impurity
measure (or improvement in the estimated generalization error) falls below a
certain threshold. The advantage of this approach is that it avoids generating
overly complex subtrees that overfit the training data. Nevertheless, it is
difficult to choose the right threshold for early termination. Too high of a
threshold will result in underfitted models, while a threshold that is set too low
may not be sufficient to overcome the model overfitting problem. Furthermore,
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Figure 4.29. Post-pruning of the decision tree for Web robot detection.

even if no significant gain is obtained using one of the existing attribute test
conditions, subsequent splitting may result in better subtrees.

Post-pruning In this approach, the decision tree is initially grown to its
maximum size. This is followed by a tree-pruning step, which proceeds to
trim the fully grown tree in a bottom-up fashion. Trimming can be done by
replacing a subtree with (1) a new leaf node whose class label is determined
from the majority class of records affiliated with the subtree, or (2) the most
frequently used branch of the subtree. The tree-pruning step terminates when
no further improvement is observed. Post-pruning tends to give better results
than prepruning because it makes pruning decisions based on a fully grown
tree, unlike prepruning, which can suffer from premature termination of the
tree-growing process. However, for post-pruning, the additional computations
needed to grow the full tree may be wasted when the subtree is pruned.
Figure 4.29 illustrates the simplified decision tree model for the Web robot
detection example given in Section 4.3.6. Notice that the subtrees rooted at
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depth = 1 have been replaced by one of the branches involving the attribute
ImagePages. This approach is also known as subtree raising. The depth >
1 and MultiAgent = 0 subtree has been replaced by a leaf node assigned to
class 0. This approach is known as subtree replacement. The subtree for
depth > 1 and MultiAgent = 1 remains intact.

4.5 Evaluating the Performance of a Classifier

Section 4.4.4 described several methods for estimating the generalization error
of a model during training. The estimated error helps the learning algorithm
to do model selection; i.e., to find a model of the right complexity that is
not susceptible to overfitting. Once the model has been constructed, it can be
applied to the test set to predict the class labels of previously unseen records.

It is often useful to measure the performance of the model on the test set
because such a measure provides an unbiased estimate of its generalization
error. The accuracy or error rate computed from the test set can also be
used to compare the relative performance of different classifiers on the same
domain. However, in order to do this, the class labels of the test records
must be known. This section reviews some of the methods commonly used to
evaluate the performance of a classifier.

4.5.1 Holdout Method

In the holdout method, the original data with labeled examples is partitioned
into two disjoint sets, called the training and the test sets, respectively. A
classification model is then induced from the training set and its performance
is evaluated on the test set. The proportion of data reserved for training and
for testing is typically at the discretion of the analysts (e.g., 50-50 or two-
thirds for training and one-third for testing). The accuracy of the classifier
can be estimated based on the accuracy of the induced model on the test set.

The holdout method has several well-known limitations. First, fewer la-
beled examples are available for training because some of the records are with-
held for testing. As a result, the induced model may not be as good as when all
the labeled examples are used for training. Second, the model may be highly
dependent on the composition of the training and test sets. The smaller the
training set size, the larger the variance of the model. On the other hand, if
the training set is too large, then the estimated accuracy computed from the
smaller test set is less reliable. Such an estimate is said to have a wide con-
fidence interval. Finally, the training and test sets are no longer independent
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of each other. Because the training and test sets are subsets of the original
data, a class that is overrepresented in one subset will be underrepresented in
the other, and vice versa.

4.5.2 Random Subsampling

The holdout method can be repeated several times to improve the estimation
of a classifier’s performance. This approach is known as random subsampling.
Let acc; be the model accuracy during the it iteration. The overall accuracy
is given by accgyp = Zi;l acc;/k. Random subsampling still encounters some
of the problems associated with the holdout method because it does not utilize
as much data as possible for training. It also has no control over the number of
times each record is used for testing and training. Consequently, some records
might be used for training more often than others.

4.5.3 Cross-Validation

An alternative to random subsampling is cross-validation. In this approach,
each record is used the same number of times for training and exactly once
for testing. To illustrate this method, suppose we partition the data into two
equal-sized subsets. First, we choose one of the subsets for training and the
other for testing. We then swap the roles of the subsets so that the previous
training set becomes the test set and vice versa. This approach is called a two-
fold cross-validation. The total error is obtained by summing up the errors for
both runs. In this example, each record is used exactly once for training and
once for testing. The k-fold cross-validation method generalizes this approach
by segmenting the data into k equal-sized partitions. During each run, one of
the partitions is chosen for testing, while the rest of them are used for training.
This procedure is repeated k times so that each partition is used for testing
exactly once. Again, the total error is found by summing up the errors for
all k runs. A special case of the k-fold cross-validation method sets k = N,
the size of the data set. In this so-called leave-one-out approach, each test
set contains only one record. This approach has the advantage of utilizing
as much data as possible for training. In addition, the test sets are mutually
exclusive and they effectively cover the entire data set. The drawback of this
approach is that it is computationally expensive to repeat the procedure N
times. Furthermore, since each test set contains only one record, the variance
of the estimated performance metric tends to be high.
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4.5.4 Bootstrap

The methods presented so far assume that the training records are sampled
without replacement. As a result, there are no duplicate records in the training
and test sets. In the bootstrap approach, the training records are sampled
with replacement; i.e., a record already chosen for training is put back into
the original pool of records so that it is equally likely to be redrawn. If the
original data has N records, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the records in the original data. This
approximation follows from the fact that the probability a record is chosen by
a bootstrap sample is 1 — (1 — 1/N)Y. When N is sufficiently large, the
probability asymptotically approaches 1 — e~! = 0.632. Records that are not
included in the bootstrap sample become part of the test set. The model
induced from the training set is then applied to the test set to obtain an
estimate of the accuracy of the bootstrap sample, ¢;. The sampling procedure
is then repeated b times to generate b bootstrap samples.

There are several variations to the bootstrap sampling approach in terms
of how the overall accuracy of the classifier is computed. One of the more
widely used approaches is the .632 bootstrap, which computes the overall
accuracy by combining the accuracies of each bootstrap sample (¢;) with the
accuracy computed from a training set that contains all the labeled examples
in the original data (acc;):

b
1
Accuracy, accpoer = 7 2(0.632 X €; + 0.368 x accs). (4.11)
i=1

4.6 Methods for Comparing Classifiers

It is often useful to compare the performance of different classifiers to deter-
mine which classifier works better on a given data set. However, depending
on the size of the data, the observed difference in accuracy between two clas-
sifiers may not be statistically significant. This section examines some of the
statistical tests available to compare the performance of different models and
classifiers.

For illustrative purposes, consider a pair of classification models, M 4 and
Mpg. Suppose M, achieves 85% accuracy when evaluated on a test set con-
taining 30 records, while Mp achieves 75% accuracy on a different test set
containing 5000 records. Based on this information, is Ma a better model
than Mp?
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The preceding example raises two key questions regarding the statistical
significance of the performance metrics:

1. Although M4 has a higher accuracy than Mp, it was tested on a smaller
test set. How much confidence can we place on the accuracy for M4?

2. Is it possible to explain the difference in accuracy as a result of variations
in the composition of the test sets?

The first question relates to the issue of estimating the confidence interval of a
given model accuracy. The second question relates to the issue of testing the
statistical significance of the observed deviation. These issues are investigated
in the remainder of this section.

4.6.1 Estimating a Confidence Interval for Accuracy

To determine the confidence interval, we need to establish the probability
distribution that governs the accuracy measure. This section describes an ap-
proach for deriving the confidence interval by modeling the classification task
as a binomial experiment. Following is a list of characteristics of a binomial
experiment:

1. The experiment consists of N independent trials, where each trial has
two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability that X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1 — p):

PO =)= () -,

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

20

P(X =20) = (20

)0.52“(1 —0.5)%0 = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50 x 0.5 = 25, while its variance is 50 x 0.5 x 0.5 = 12.5.
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The task of predicting the class labels of test records can also be consid-
ered as a binomial experiment. Given a test set that contains N records, let
X be the number of records correctly predicted by a model and p be the true
accuracy of the model. By modeling the prediction task as a binomial experi-
ment, X has a binomial distribution with mean Np and variance Np(1 — p).
It can be shown that the empirical accuracy, acc = X/N, also has a binomial
distribution with mean p and variance p(1 —p)/N (see Exercise 12). Although
the binomial distribution can be used to estimate the confidence interval for
ace, it is often approximated by a normal distribution when N is sufficiently
large. Based on the normal distribution, the following confidence interval for
acc can be derived:

P(—ZQ/2§

acc—p
—— <7 /2) =1l-aq
Vp(L —p)/N :

where Z, /2 and Z;_,/7 are the upper and lower bounds obtained from a stan-

(4.12)

dard normal distribution at confidence level (1 — ). Since a standard normal
distribution is symmetric around Z = 0, it follows that Z,/, = Z;_4 /2. Rear-
ranging this inequality leads to the following confidence interval for p:

2x N x GCC+Z§/2:|:ZW2\/Z§/2 + 4Nacc — 4Nacc?
2(N + 23 )))

(4.13)

The following table shows the values of Z, /5 at different confidence levels:

0.99
2.58

0.98
2.33

0.95
1.96

0.9
1.65

0.8
1.28

0.7
1.04

0.5
0.67

l1—a

Zaf2

Example 4.4. Consider a model that has an accuracy of 80% when evaluated
on 100 test records. What is the confidence interval for its true accuracy at a
95% confidence level? The confidence level of 95% corresponds to Z,/; = 1.96
according to the table given above. Inserting this term into Equation 4.13
yields a confidence interval between 71.1% and 86.7%. The following table
shows the confidence interval when the number of records, N, increases:

N 20 20 100 500 1000 5000
Confidence 0.584 0.670 0.711 0.763 0.774 0.789
Interval — 0919 [ — 0888 | —0.867 | — 0.833 | — 0.824 | — 0.811
Note that the confidence interval becomes tighter when N increases. ]
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4.6.2 Comparing the Performance of Two Models

Consider a pair of models, M; and Ma, that are evaluated on two independent
test sets, Dy and D5. Let n; denote the number of records in DD and ny denote
the number of records in Dy. In addition, suppose the error rate for M; on
D is e; and the error rate for My on D3 is ea. Our goal is to test whether the
observed difference between e; and es is statistically significant.

Assuming that n; and ng are sufficiently large, the error rates e; and e
can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e; — eg, then d is also normally distributed
with mean d;, its true difference, and variance, Jﬁ. The variance of d can be
computed as follows:

ei(l—e1) + e2(1 —ez)

2 52 =
74T T na

? (414)

where e1(1 — e1)/ny and ey(1 — e3)/ng are the variances of the error rates.
Finally, at the (1 — «)% confidence level, it can be shown that the confidence
interval for the true difference d; is given by the following equation:

dy = d £ 2,554 (4.15)

Example 4.5. Consider the problem described at the beginning of this sec-
tion. Model M4 has an error rate of e = 0.15 when applied to N1 = 30
test records, while model Mp has an error rate of e = 0.25 when applied
to Ny = 5000 test records. The observed difference in their error rates is
d = |0.15 — 0.25| = 0.1. In this example, we are performing a two-sided test
to check whether d; = 0 or d; # 0. The estimated variance of the observed
difference in error rates can be computed as follows:

s> _ 015(1-0.15)  0.25(1 —0.25)

d 30 5000 = 0.0043

or o4 = 0.0655. Inserting this value into Equation 4.15, we obtain the following
confidence interval for d; at 95% confidence level:

dy =0.14+1.96 x 0.0655 = 0.1 +0.128.

As the interval spans the value zero, we can conclude that the observed differ-
ence is not statistically significant at a 95% confidence level. ]
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At what confidence level can we reject the hypothesis that d; = 07 To do
this, we need to determine the value of Z, /; such that the confidence interval
for d; does not span the value zero. We can reverse the preceding computation
and look for the value Z,/, such that d > Z,/204. Replacing the values of d
and 74 gives Z,/, < 1.527. This value first occurs when (1 —a) 5 0.936 (for a
two-sided test). The result suggests that the null hypothesis can be rejected
at confidence level of 93.6% or lower.

4.6.3 Comparing the Performance of Two Classifiers

Suppose we want to compare the performance of two classifiers using the k-fold
cross-validation approach. Initially, the data set D is divided into k equal-sized
partitions. We then apply each classifier to construct a model from k — 1 of
the partitions and test it on the remaining partition. This step is repeated k
times, each time using a different partition as the test set.

Let M;; denote the model induced by classification technique L; during the
4t iteration. Note that each pair of models M; j and Mjy; are tested on the
same partition j. Let e;; and ez; be their respective error rates. The difference
between their error rates during the j** fold can be written as d; = e1j — ezj.
If k is sufficiently large, then d; is normally distributed with mean df”, which
is the true difference in their error rates, and variance 0. Unlike the previous
approach, the overall variance in the observed differences is estimated using
the following formula:

D >

T k(k—-1) (4.16)

T Jev =
where d is the average difference. For this approach, we need to use a t-
distribution to compute the confidence interval for df’:

dfv = 3 + t(l_a)’k_ladcu.

The coefficient #(;_q) x—1 is obtained from a probability table with two input
parameters, its confidence level (1 — a) and the number of degrees of freedom,
k — 1. The probability table for the t-distribution is shown in Table 4.6.

Example 4.6. Suppose the estimated difference in the accuracy of models
generated by two classification techniques has a mean equal to 0.05 and a
standard deviation equal to 0.002. If the accuracy is estimated using a 30-fold
cross-validation approach, then at a 95% confidence level, the true accuracy
difference is

di¥’ = 0.05 £ 2.04 x 0.002. (4.17)
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Table 4.6. Probability table for ¢-distribution.

i-a

k—110991098 095 0.9 0.8
il 3.08 | 6.31 | 12.7 | 31.8 | 63.7
2 1.89 1292 | 4.30 | 6.96 | 9.92
4 1531 213 | 2.78 | 3.75 | 4.60
9 1.38 | 1.83 | 2.26 | 2.82 | 3.25
14 1.34 | 1.76 | 2.14 | 2.62 | 2.98
19 1.33 1 1.73 |1 2.09 | 2.54 | 2.86
24 1.32 1 1.71 | 2.06 | 2.49 | 2.80
29 1.31 ] 1.70 | 2.04 | 2.46 | 2.76

Since the confidence interval does not span the value zero, the observed dif-
ference between the techniques is statistically significant. (]

4.7 Bibliographic Notes

Early classification systems were developed to organize a large collection of
objects. For example, the Dewey Decimal and Library of Congress classifica-
tion systems were designed to catalog and index the vast number of library
books. The categories are typically identified in a manual fashion, with the
help of domain experts.

Automated classification has been a subject of intensive research for many
years. The study of classification in classical statistics is sometimes known as
discriminant analysis, where the objective is to predict the group member-
ship of an object based on a set of predictor variables. A well-known classical
method is Fisher’s linear discriminant analysis [117], which seeks to find a lin-
ear projection of the data that produces the greatest discrimination between
objects that belong to different classes.

Many pattern recognition problems also require the discrimination of ob-
jects from different classes. Examples include speech recognition, handwritten
character identification, and image classification. Readers who are interested
in the application of classification techniques for pattern recognition can refer
to the survey articles by Jain et al. [122] and Kulkarni et al. [128] or classic
pattern recognition books by Bishop [107], Duda et al. [114], and Fukunaga
[118]. The subject of classification is also a major research topic in the fields of
neural networks, statistical learning, and machine learning. An in-depth treat-
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ment of various classification techniques is given in the books by Cherkassky
and Mulier [112], Hastie et al. [120], Michie et al. [133], and Mitchell [136].

An overview of decision tree induction algorithms can be found in the
survey articles by Buntine [110], Moret [137], Murthy [138], and Safavian et
al. [147]. Examples of some well-known decision tree algorithms include CART
[108], ID3 [143], C4.5 [145], and CHAID [125]. Both ID3 and C4.5 employ the
entropy measure as their splitting function. An in-depth discussion of the
(4.5 decision tree algorithm is given by Quinlan [145]. Besides explaining the
methodology for decision tree growing and tree pruning, Quinlan [145] also
described how the algorithm can be modified to handle data sets with missing
values. The CART algorithm was developed by Breiman et al. [108] and uses
the Gini index as its splitting function. CHAID [125] uses the statistical x?
test to determine the best split during the tree-growing process.

The decision tree algorithm presented in this chapter assumes that the
splitting condition is specified one attribute at a time. An oblique decision tree
can use multiple attributes to form the attribute test condition in the internal
nodes [121, 152]. Breiman et al. [108] provide an option for using linear
combinations of attributes in their CART implementation. Other approaches
for inducing oblique decision trees were proposed by Heath et al. [121], Murthy
et al. [139], Canti-Paz and Kamath [111], and Utgoff and Brodley [152].
Although oblique decision trees help to improve the expressiveness of a decision
tree representation, learning the appropriate test condition at each node is
computationally challenging. Another way to improve the expressiveness of a
decision tree without using oblique decision trees is to apply a method known
as constructive induction [132]. This method simplifies the task of learning
complex splitting functions by creating compound features from the original
attributes.

Besides the top-down approach, other strategies for growing a decision tree
include the bottom-up approach by Landeweerd et al. [130] and Pattipati and
Alexandridis [142], as well as the bidirectional approach by Kim and Landgrebe
[126]. Schuermann and Doster [150] and Wang and Suen [154] proposed using
a soft splitting criterion to address the data fragmentation problem. In
this approach, each record is assigned to different branches of the decision tree
with different probabilities.

Model overfitting is an important issue that must be addressed to ensure
that a decision tree classifier performs equally well on previously unknown
records. The model overfitting problem has been investigated by many authors
including Breiman et al. [108], Schaffer [148], Mingers [135], and Jensen and
Cohen [123]. While the presence of noise is often regarded as one of the
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primary reasons for overfitting [135, 140], Jensen and Cohen [123] argued
that overfitting is the result of using incorrect hypothesis tests in a multiple
comparison procedure.

Schapire [149] defined generalization error as “the probability of misclas-
sifying a new example” and test error as “the fraction of mistakes on a newly
sampled test set.” Generalization error can therefore be considered as the ex-
pected test error of a classifier. Generalization error may sometimes refer to
the true error [136] of a model, i.e., its expected error for randomly drawn
data points from the same population distribution where the training set is
sampled. These definitions are in fact equivalent if both the training and test
sets are gathered from the same population distribution, which is often the
case in many data mining and machine learning applications.

The Occam’s razor principle is often attributed to the philosopher William
of Occam. Domingos [113]| cautioned against the pitfall of misinterpreting
Occam’s razor as comparing models with similar training errors, instead of
generalization errors. A survey on decision tree-pruning methods to avoid
overfitting is given by Breslow and Aha [109] and Esposito et al. [116]. Some
of the typical pruning methods include reduced error pruning [144], pessimistic
error pruning [144], minimum error pruning [141], critical value pruning [134],
cost-complexity pruning [108], and error-based pruning [145]. Quinlan and
Rivest proposed using the minimum description length principle for decision
tree pruning in [146].

Kohavi [127] had performed an extensive empirical study to compare the
performance metrics obtained using different estimation methods such as ran-
dom subsampling, bootstrapping, and k-fold cross-validation. Their results
suggest that the best estimation method is based on the ten-fold stratified
cross-validation. Efron and Tibshirani [115] provided a theoretical and empir-
ical comparison between cross-validation and a bootstrap method known as
the 632+ rule.

Current techniques such as C4.5 require that the entire training data set fit
into main memory. There has been considerable effort to develop parallel and
scalable versions of decision tree induction algorithms. Some of the proposed
algorithms include SLIQ by Mehta et al. [131], SPRINT by Shafer et al. [151],
CMP by Wang and Zaniolo [153], CLOUDS by Alsabti et al. [106], RainForest
by Gehrke et al. [119], and ScalParC by Joshi et al. [124]. A general survey
of parallel algorithms for data mining is available in [129].
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4.8 Exercises

1. Draw the full decision tree for the parity function of four Boolean attributes,
A, B, C, and D. Is it possible to simplify the tree?

2. Consider the training examples shown in Table 4.7 for a binary classification
problem.

(a) Compute the Gini index for the overall collection of training examples.
(b) Compute the Gini index for the Customer ID attribute.

(¢) Compute the Gini index for the Gender attribute.

(d) Compute the Gini index for the Car Type attribute using multiway split.

(e) Compute the Gini index for the Shirt Size attribute using multiway
split.
(f) Which attribute is better, Gender, Car Type, or Shirt Size?

(g) Explain why Customer ID should not be used as the attribute test con-
dition even though it has the lowest Gini.

3. Consider the training examples shown in Table 4.8 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the positive class?
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Table 4.7. Data set for Exercise 2.

Customer ID | Gender | Car Type | Shirt Size | Class
il M Family Small Co
2 M Sports Medium Co
3 M Sports Medium Co
4 M Sports Large Co
5 M Sports | Extra Large | CO0
6 M Sports | Extra Large | CO
7 F Sports Small Co
8 F Sports Small Co
9 F Sports Medium Co
10 F Luxury Large Co
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury | Extra Large | C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1

20 F Luxury Large C1
Table 4.8. Data set for Exercise 3.
Instance | a1 a» a3 | Target Class

1 T T 1.0 +
2 T T 6.0 +
3 T F 50 -
4 F F 4.0 +
5 F T 70 -
6 F T 30 -
7 F F 80 -
8 T F 7.0 +
9 F T 50 -

(b) What are the information gains of a; and a, relative to these training
examples?

(¢) For asz, which is a continuous attribute, compute the information gain for
every possible split.
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(d) What is the best split (among a1, a2, and a3) according to the information
gain?

(e) What is the best split (between a; and az) according to the classification
error rate?

(f) What is the best split (between a; and as) according to the Gini index?

4. Show that the entropy of a node never increases after splitting it into smaller
successor nodes.

5. Consider the following data set for a binary class problem.

Class Label

I+ 4+ +

HEmmmaa g S
MM TS TS e

(a) Calculate the information gain when splitting on A and B. Which at-
tribute would the decision tree induction algorithm choose?

(b) Calculate the gain in the Gini index when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

(¢) Figure 4.13 shows that entropy and the Gini index are both monotonously
increasing on the range [0, 0.5] and they are both monotonously decreasing
on the range [0.5, 1]. Is it possible that information gain and the gain in
the Gini index favor different attributes? Explain.

6. Consider the following set of training examples.

X | Y | Z | No. of Class C1 Examples | No. of Class C2 Examples
010]0 5 40
010]1 0 15
0O[1]0 10 5
011 45 0
1]0(0 10 5
11011 25 0
11110 5 20
1 111 0 15
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(a) Compute a two-level decision tree using the greedy approach described in
this chapter. Use the classification error rate as the criterion for splitting,.
What is the overall error rate of the induced tree?

(b) Repeat part (a) using X as the first splitting attribute and then choose the
best remaining attribute for splitting at each of the two successor nodes.
What is the error rate of the induced tree?

(¢) Compare the results of parts (a) and (b). Comment on the suitability of
the greedy heuristic used for splitting attribute selection.

7. The following table summarizes a data set with three attributes A, B, C and

two class labels +, —. Build a two-level decision tree.
Number of

A |B |C Instances
_|_ —

T T T 5 0
F T T 0 20
T F T | 20 0
F F T 0 5
T T F 0 0
F T F | 25 0
T F F 0 0
F F F 0 25

(a) According to the classification error rate, which attribute would be chosen
as the first splitting attribute? For each attribute, show the contingency
table and the gains in classification error rate.

(b) Repeat for the two children of the root node.
(¢) How many instances are misclassified by the resulting decision tree?
(d) Repeat parts (a), (b), and (c) using C as the splitting attribute.

(e) Use the results in parts (¢) and (d) to conclude about the greedy nature
of the decision tree induction algorithm.

8. Consider the decision tree shown in Figure 4.30.

(a) Compute the generalization error rate of the tree using the optimistic
approach.

(b) Compute the generalization error rate of the tree using the pessimistic
approach. (For simplicity, use the strategy of adding a factor of 0.5 to
each leaf node.)

(¢) Compute the generalization error rate of the tree using the validation set
shown above. This approach is known as reduced error pruning.
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Training:
Instance | A | B | C | Class
1 0|00 +
2 0] 0|1 +
3 0| 1[0 +
4 0 1 1 -
5 11010 +
6 1]10]0 +
7 1 1 0 -
8 1101 +
9 1 1 0 -
10 1 1 0 -
Validation:
Instance | A | B | C | Class
11 0|00 +
12 0 1 1 +
13 1 1 0 +
14 1 0 1 -
15 1]10]0 +

Figure 4.30. Decision tree and data sets for Exercise 8.

9. Consider the decision trees shown in Figure 4.31. Assume they are generated
from a data set that contains 16 binary attributes and 3 classes, C7, Cs, and

Cs.

(a) Decision tree with 7 errors (b) Decision tree with 4 errors

Figure 4.31. Decision trees for Exercise 9.
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Compute the total description length of each decision tree according to the
minimum description length principle.

e The total description length of a tree is given by:
Cost(tree,data) = Cost(tree) + Cost(dataltree).

e Each internal node of the tree is encoded by the ID of the splitting at-
tribute. If there are m attributes, the cost of encoding each attribute is
log, m bits.

e Each leaf is encoded using the ID of the class it is associated with. If
there are k classes, the cost of encoding a class is log, k bits.

e Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the costs of encoding each internal node and each leaf node.

e Cost(dataltree) is encoded using the classification errors the tree commits
on the training set. Each error is encoded by log, n bits, where n is the
total number of training instances.

Which decision tree is better, according to the MDL principle?

While the .632 bootstrap approach is useful for obtaining a reliable estimate of
model accuracy, it has a known limitation [127]. Consider a two-class problem,
where there are equal number of positive and negative examples in the data.
Suppose the class labels for the examples are generated randomly. The classifier
used is an unpruned decision tree (i.e., a perfect memorizer). Determine the
accuracy of the classifier using each of the following methods.

(a) The holdout method, where two-thirds of the data are used for training
and the remaining one-third are used for testing.

(b) Ten-fold cross-validation.
(¢) The .632 bootstrap method.

(d) From the results in parts (a), (b), and (c), which method provides a more
reliable evaluation of the classifier’s accuracy?

Consider the following approach for testing whether a classifier A beats another
classifier B. Let N be the size of a given data set, p4 be the accuracy of classifier
A, pp be the accuracy of classifier B, and p = (pa + pg)/2 be the average
accuracy for both classifiers. To test whether classifier A is significantly better
than B, the following Z-statistic is used:

bPA —DPB
2p(l—p )
N

7 =

Classifier A is assumed to be better than classifier B if Z > 1.96.
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Table 4.9 compares the accuracies of three different classifiers, decision tree
classifiers, naive Bayes classifiers, and support vector machines, on various data
sets. (The latter two classifiers are described in Chapter 5.)

Table 4.9. Comparing the accuracy of various classification methods.

Data Set Size | Decision naive Support vector
(N) | Tree (%) | Bayes (%) | machine (%)
Anneal 898 92.09 79.62 87.19
Australia 690 85.51 76.81 84.78
Auto 205 81.95 58.05 70.73
Breast 699 95.14 95.99 96.42
Cleve 303 76.24 83.50 84.49
Credit 690 85.80 77.54 85.07
Diabetes 768 72.40 75.91 76.82
German 1000 70.90 74.70 74.40
Glass 214 67.29 48.59 59.81
Heart 270 80.00 84.07 83.70
Hepatitis 155 81.94 83.23 87.10
Horse 368 85.33 78.80 82.61
Tonosphere 351 89.17 82.34 88.89
Iris 150 94.67 95.33 96.00
Labor 57 78.95 94.74 92.98
LedT7 3200 73.34 73.16 73.56
Lymphography | 148 77.03 83.11 86.49
Pima 768 74.35 76.04 76.95
Sonar 208 78.85 69.71 76.92
Tic-tac-toe 958 83.72 70.04 98.33
Vehicle 846 71.04 45.04 74.94
Wine 178 94.38 96.63 98.88
Zoo 101 93.07 93.07 96.04

Summarize the performance of the classifiers given in Table 4.9 using the fol-
lowing 3 x 3 table:

win-loss-draw Decision tree | Naive Bayes | Support vector
machine

Decision tree 0-0-23

Naive Bayes 0-0-23

Support vector machine 0-0-23

Each cell in the table contains the number of wins, losses, and draws when
comparing the classifier in a given row to the classifier in a given column.
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12. Let X be a binomial random variable with mean Np and variance Np(1 — p).
Show that the ratio X/N also has a binomial distribution with mean p and
variance p(1 — p)/N.



Association Analysis:
Basic Concepts and
Algorithms

Many business enterprises accumulate large quantities of data from their day-
to-day operations. For example, huge amounts of customer purchase data are
collected daily at the checkout counters of grocery stores. Table 6.1 illustrates
an example of such data, commonly known as market basket transactions.
Each row in this table corresponds to a transaction, which contains a unique
identifier labeled T'I D and a set of items bought by a given customer. Retail-
ers are interested in analyzing the data to learn about the purchasing behavior
of their customers. Such valuable information can be used to support a vari-
ety of business-related applications such as marketing promotions, inventory
management, and customer relationship management.

This chapter presents a methodology known as association analysis,
which is useful for discovering interesting relationships hidden in large data
sets. The uncovered relationships can be represented in the form of associa-

Table 6.1. An example of market basket transactions.

TID | Items

{Bread, Milk}

{Bread, Diapers, Beer, Eggs}
{Milk, Diapers, Beer, Cola}
{Bread, Milk, Diapers, Beer}
{Bread, Milk, Diapers, Cola}

QU W=
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tion rules or sets of frequent items. For example, the following rule can be
extracted from the data set shown in Table 6.1:

{Diapers} — {Beer}.

The rule suggests that a strong relationship exists between the sale of diapers
and beer because many customers who buy diapers also buy beer. Retailers
can use this type of rules to help them identify new opportunities for cross-
selling their products to the customers.

Besides market basket data, association analysis is also applicable to other
application domains such as bioinformatics, medical diagnosis, Web mining,
and scientific data analysis. In the analysis of Earth science data, for example,
the association patterns may reveal interesting connections among the ocean,
land, and atmospheric processes. Such information may help Earth scientists
develop a better understanding of how the different elements of the Earth
system interact with each other. Even though the techniques presented here
are generally applicable to a wider variety of data sets, for illustrative purposes,
our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when applying associ-
ation analysis to market basket data. First, discovering patterns from a large
transaction data set can be computationally expensive. Second, some of the
discovered patterns are potentially spurious because they may happen simply
by chance. The remainder of this chapter is organized around these two is-
sues. The first part of the chapter is devoted to explaining the basic concepts
of association analysis and the algorithms used to efficiently mine such pat-
terns. The second part of the chapter deals with the issue of evaluating the
discovered patterns in order to prevent the generation of spurious results.

6.1 Problem Definition

This section reviews the basic terminology used in association analysis and
presents a formal description of the task.

Binary Representation Market basket data can be represented in a binary
format as shown in Table 6.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be treated as a binary
variable whose value is one if the item is present in a transaction and zero
otherwise. Because the presence of an item in a transaction is often considered
more important than its absence, an item is an asymmetric binary variable.
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Table 6.2. A binary 0/1 representation of market basket data.

TID | Bread | Milk | Diapers | Beer | Eggs | Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1 0 0
5 1 1 1 0 0 1

This representation is perhaps a very simplistic view of real market basket data
because it ignores certain important aspects of the data such as the quantity
of items sold or the price paid to purchase them. Methods for handling such
non-binary data will be explained in Chapter 7.

Itemset and Support Count Let I = {i1,i2,...,iq} be the set of all items
in a market basket data and T = {t1,%2,...,tn} be the set of all transactions.
Each transaction ¢; contains a subset of items chosen from I. In association
analysis, a collection of zero or more items is termed an itemset. If an itemset
contains k items, it is called a k-itemset. For instance, {Beer, Diapers, Milk}
is an example of a 3-itemset. The null (or empty) set is an itemset that does
not contain any items.

The transaction width is defined as the number of items present in a trans-
action. A transaction t; is said to contain an itemset X if X is a subset of
t;. For example, the second transaction shown in Table 6.2 contains the item-
set {Bread, Diapers} but not {Bread, Milk}. An important property of an
itemset is its support count, which refers to the number of transactions that
contain a particular itemset. Mathematically, the support count, o(X), for an
itemset X can be stated as follows:

o(X) = [{tilX Cti, t; € T},

where the symbol | - | denote the number of elements in a set. In the data set
shown in Table 6.2, the support count for {Beer, Diapers, Milk} is equal to
two because there are only two transactions that contain all three items.

Association Rule An association rule is an implication expression of the
form X — Y, where X and Y are disjoint itemsets, i.e., X NY = (). The
strength of an association rule can be measured in terms of its support and
confidence. Support determines how often a rule is applicable to a given
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data set, while confidence determines how frequently items in Y appear in
transactions that contain X. The formal definitions of these metrics are

Support, s(X —Y) = —J(X; Y); (6.1)
Confidence, ¢(X — Y) = %. (6.2)
o

Example 6.1. Consider the rule {Milk, Diapers} — {Beer}. Since the
support count for {Milk, Diapers, Beer} is 2 and the total number of trans-
actions is 5, the rule’s support is 2/5 = 0.4. The rule’s confidence is obtained
by dividing the support count for {Milk, Diapers, Beer} by the support count
for {Milk, Diapers}. Since there are 3 transactions that contain milk and di-
apers, the confidence for this rule is 2/3 = 0.67. |

Why Use Support and Confidence? Support is an important measure
because a rule that has very low support may occur simply by chance. A
low support rule is also likely to be uninteresting from a business perspective
because it may not be profitable to promote items that customers seldom buy
together (with the exception of the situation described in Section 6.8). For
these reasons, support is often used to eliminate uninteresting rules. As will
be shown in Section 6.2.1, support also has a desirable property that can be
exploited for the efficient discovery of association rules.

Confidence, on the other hand, measures the reliability of the inference
made by a rule. For a given rule X — Y, the higher the confidence, the more
likely it is for Y to be present in transactions that contain X. Confidence also
provides an estimate of the conditional probability of ¥ given X.

Association analysis results should be interpreted with caution. The infer-
ence made by an association rule does not necessarily imply causality. Instead,
it suggests a strong co-occurrence relationship between items in the antecedent
and consequent of the rule. Causality, on the other hand, requires knowledge
about the causal and effect attributes in the data and typically involves rela-
tionships occurring over time (e.g., ozone depletion leads to global warming).

Formulation of Association Rule Mining Problem The association
rule mining problem can be formally stated as follows:

Definition 6.1 (Association Rule Discovery). Given a set of transactions
T, find all the rules having support > minsup and confidence > minconf,
where minsup and minconf are the corresponding support and confidence

thresholds.
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A brute-force approach for mining association rules is to compute the sup-
port and confidence for every possible rule. This approach is prohibitively
expensive because there are exponentially many rules that can be extracted
from a data set. More specifically, the total number of possible rules extracted
from a data set that contains d items is

R=38%—20t1.41, (6.3)

The proof for this equation is left as an exercise to the readers (see Exercise 5
on page 405). Even for the small data set shown in Table 6.1, this approach
requires us to compute the support and confidence for 3% — 27 +1 = 602 rules.
More than 80% of the rules are discarded after applying minsup = 20% and
minconf = 50%, thus making most of the computations become wasted. To
avoid performing needless computations, it would be useful to prune the rules
early without having to compute their support and confidence values.

An initial step toward improving the performance of association rule min-
ing algorithms is to decouple the support and confidence requirements. From
Equation 6.2, notice that the support of a rule X — Y depends only on
the support of its corresponding itemset, X UY. For example, the following
rules have identical support because they involve items from the same itemset,
{Beer, Diapers, Milk}:

{Beer, Diapers} — {Milk}, {Beer, Milk} — {Diapers},
{Diapers, Milk} — {Beer}, {Beer} — {Diapers, Milk},
{Milk} — {Beer,Diapers}, {Diapers} — {Beer,Milk}.

If the itemset is infrequent, then all six candidate rules can be pruned imme-
diately without our having to compute their confidence values.

Therefore, a common strategy adopted by many association rule mining
algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the item-
sets that satisfy the minsup threshold. These itemsets are called frequent
itemsets.

2. Rule Generation, whose objective is to extract all the high-confidence
rules from the frequent itemsets found in the previous step. These rules
are called strong rules.

The computational requirements for frequent itemset generation are gen-
erally more expensive than those of rule generation. Efficient techniques for
generating frequent itemsets and association rules are discussed in Sections 6.2
and 6.3, respectively.
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Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a,b, c,d, e}. In general, a data set
that contains k items can potentially generate up to 2F — 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(N Mw) comparisons, where N is the number of transactions, M = 2F —1 is
the number of candidate itemsets, and w is the maximum transaction width.
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Candidates
A
Transactions
TID Items
T 1 Bread, Milk M
2 Bread, Diapers, Beer, Eggs
N 13~ [ Milk, Diapers, Beer, Coke
l 4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Coke
Y

Figure 6.2. Counting the support of candidate itemsets.

There are several ways to reduce the computational complexity of frequent
itemset generation.

1. Reduce the number of candidate itemsets (M ). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 6.2.4 and 6.6.

6.2.1 The Apriori Principle

This section describes how the support measure helps to reduce the number
of candidate itemsets explored during frequent itemset generation. The use of
support for pruning candidate itemsets is guided by the following principle.

Theorem 6.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 6.3. Suppose {c,d, e} is a frequent itemset. Clearly,
any transaction that contains {c,d,e} must also contain its subsets, {c,d},
{c,e}, {d,e}, {c}, {d}, and {e}. As a result, if {c,d,e} is frequent, then
all subsets of {c,d,e} (i.e., the shaded itemsets in this figure) must also be
frequent.
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Frequent
ltemset

Figure 6.3. An illustration of the Apriori principle. If {c,d, e} is frequent, then all subsets of this
itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a,b} can be pruned immediately once {a,b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J = 2! be the power set of I. A measure f is monotone (or upward closed) if

VX,YeJ: (XCY)— f(X) < f(Y),
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Infrequent

-_—
—— —
e

Figure 6.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y, then f(X) must not exceed f(Y). On

the other hand, f is anti-monotone (or downward closed) if
VX, YeJ: (XCY)— f(Y) < f(X),

which means that if X is a subset of Y, then f(Y) must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Aprior: Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in
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Candidate
1-ltemsets
Item Count
Beer 3 Minimum support count = 3
Bread 4
gic:;ers i i \ Candidate
Milk 4 2-ltemsets
Eggs 1 Itemset Count
{Beer, Bread} 5
{Beer, Diapers} 2
{Beer, Milk} 2
{Bread, Diapers} 3
ltemsets removed {Bread, Milk} 3
because of low {Diapers, Milk} 3

support \ Candidate
3-ltemsets

ltemset Count
{Bread, Diapers, Milk} 3

Figure 6.5. lllustration of frequent itemset generation using the Apriori algorithm.

Table 6.1. We assume that the support threshold is 60%, which is equivalent
to a minimum support count equal to 3.

Initially, every item is considered as a candidate 1-itemset. After count-
ing their supports, the candidate itemsets {Cola} and {Eggs} are discarded
because they appear in fewer than three transactions. In the next iteration,
candidate 2-itemsets are generated using only the frequent 1-itemsets because
the Apriori principle ensures that all supersets of the infrequent 1-itemsets
must be infrequent. Because there are only four frequent 1-itemsets, the num-
ber of candidate 2-itemsets generated by the algorithm is ( g ) = 6. Two
of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently
found to be infrequent after computing their support values. The remain-
ing four candidates are frequent, and thus will be used to generate candidate
3-itemsets. Without support-based pruning, there are ( ;63 ) = 20 candidate
3-itemsets that can be formed using the six items given in this example. With
the Apriori principle, we only need to keep candidate 3-itemsets whose subsets
are frequent. The only candidate that has this property is {Bread, Diapers,
Milk}.

The effectiveness of the Apriori pruning strategy can be shown by count-
ing the number of candidate itemsets generated. A brute-force strategy of
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enumerating all itemsets (up to size 3) as candidates will produce

0+ ()-srmems

candidates. With the Apriori principle, this number decreases to

()4 () +1=64041-1

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Cj denote the set of candidate
k-itemsets and F} denote the set of frequent k-itemsets:

e The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, Fi, will be known (steps 1 and 2).

e Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k — 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
s =l
2 Fp={ilielAo({i}) = N X minsup}. {Find all frequent 1-itemsets}

3: repeat

4: k=k+1.

5:  Cy = apriori-gen(Fj_1). {Generate candidate itemsets}

6: for each transaction t € T' do

(£ Cy = subset(Cy, t).  {Identify all candidates that belong to ¢}
8: for each candidate itemset ¢ € C; do

0: o(c) =o(c) +1. {Increment support count}

10: end for

11: end for

122 Fr={c|ceCrAo(c) = N x minsup}. {Extract the frequent k-itemsets}
13: until Fj, =0

14: Result = |J Fy.
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e To count the support of the candidates, the algorithm needs to make an
additional pass over the data set (steps 6-10). The subset function is
used to determine all the candidate itemsets in C}, that are contained in
each transaction . The implementation of this function is described in
Section 6.2.4.

e After counting their supports, the algorithm eliminates all candidate
itemsets whose support counts are less than minsup (step 12).

e The algorithm terminates when there are no new frequent itemsets gen-
erated, i.e., Fj, = () (step 13).

The frequent itemset generation part of the Apriori algorithm has two im-
portant characteristics. First, it is a level-wise algorithm; i.e., it traverses the
itemset lattice one level at a time, from frequent 1-itemsets to the maximum
size of frequent itemsets. Second, it employs a generate-and-test strategy
for finding frequent itemsets. At each iteration, new candidate itemsets are
generated from the frequent itemsets found in the previous iteration. The
support for each candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the algorithm is kmax + 1,
where kpay is the maximum size of the frequent itemsets.

6.2.3 Candidate Generation and Pruning

The apriori-gen function shown in Step 5 of Algorithm 6.1 generates candidate
itemsets by performing the following two operations:

1. Candidate Generation. This operation generates new candidate k-
itemsets based on the frequent (k — 1)-itemsets found in the previous
iteration.

2. Candidate Pruning. This operation eliminates some of the candidate
k-itemsets using the support-based pruning strategy.

To illustrate the candidate pruning operation, consider a candidate k-itemset,
X = {iy,i2,...,i;}. The algorithm must determine whether all of its proper
subsets, X — {i;} (Vj = 1,2,...,k), are frequent. If one of them is infre-
quent, then X is immediately pruned. This approach can effectively reduce
the number of candidate itemsets considered during support counting. The
complexity of this operation is O(k) for each candidate k-itemset. However,
as will be shown later, we do not have to examine all k subsets of a given
candidate itemset. If m of the k subsets were used to generate a candidate,
we only need to check the remaining k — m subsets during candidate pruning.
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In principle, there are many ways to generate candidate itemsets. The fol-
lowing is a list of requirements for an effective candidate generation procedure:

1. It should avoid generating too many unnecessary candidates. A candi-
date itemset is unnecessary if at least one of its subsets is infrequent.
Such a candidate is guaranteed to be infrequent according to the anti-
monotone property of support.

2. It must ensure that the candidate set is complete, i.e., no frequent item-
sets are left out by the candidate generation procedure. To ensure com-
pleteness, the set of candidate itemsets must subsume the set of all fre-
quent itemsets, i.e., Vk : F, C C}.

3. It should not generate the same candidate itemset more than once. For
example, the candidate itemset {a,b,c,d} can be generated in many
ways—by merging {a, b, ¢} with {d}, {b, d} with {a, c}, {c} with {a, b, d},
etc. Generation of duplicate candidates leads to wasted computations
and thus should be avoided for efficiency reasons.

Next, we will briefly describe several candidate generation procedures, in-
cluding the one used by the apriori-gen function.

Brute-Force Method The brute-force method considers every k-itemset as
a potential candidate and then applies the candidate pruning step to remove
any unnecessary candidates (see Figure 6.6). The number of candidate item-
sets generated at level k is equal to ( g ), where d is the total number of items.
Although candidate generation is rather trivial, candidate pruning becomes
extremely expensive because a large number of itemsets must be examined.
Given that the amount of computations needed for each candidate is O(k),
the overall complexity of this method is O(Zi=1 k x ( ﬁ )) = O(d- Zd_l).

Fi_1 x F1 Method An alternative method for candidate generation is to
extend each frequent (kK — 1)-itemset with other frequent items. Figure 6.7
illustrates how a frequent 2-itemset such as {Beer, Diapers} can be aug-
mented with a frequent item such as Bread to produce a candidate 3-itemset
{Beer, Diapers, Bread}. This method will produce O(|Fi—1| X |Fi|) candi-
date k-itemsets, where |F}| is the number of frequent j-itemsets. The overall
complexity of this step is O(> . k|Fi—1||F1|)-

The procedure is complete because every frequent k-itemset is composed
of a frequent (k — 1)-itemset and a frequent 1-itemset. Therefore, all frequent
k-itemsets are part of the candidate k-itemsets generated by this procedure.
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Candidate Generation

temset
{Beer, Bread, Cola}
{Beer, Bread, Diapers}
{Beer, Bread, Milk}
{Beer, Bread, Eggs}

i {Beer, Cola, Diapers}

Rom {Beer, Cola, Milk] e
Beer {Beer, Cola, Eggs} Praviing
cB;:;:d ——p | (Beer, Diapers, Milk} | == —

: {Beer, Diapers, Eggs} L S—
Diapers {Beer, Milk, Eggs} {Bread, Diapers, Milk}
Milk Bread, Cola, Diapers}

Eggs Bread, Cola, Milk}
Bread, Cola, Eggs)

{Bread, Diapers, Milk}
{Bread, Diapers, Eggs}
{Bread, Milk, Eggs}
{Cola, Diapers, Milk}
{Cola, Diapers, Eggs}
{Cola, Milk, Eggs}
{Diapers, Milk, Eggs}

Figure 6.6. A brute-force method for generating candidate 3-itemsets.

Frequent

2-itemset

ltemset
{Beer, Diapers}
{Bread, Diapers}

{Bread, Milk}
{Diapers, Milk} Candidate
Candidate Generation Pruning
ltemset
n Itemset
{Beer, Diapers, Bread} L P
Frequent {Beer, Diapers, Milk} » | {Bread, Diapers, Milk}
1-itemset {Bread, Diapers, Milk}
ltem {Bread, Milk, Beer}
Beer
Bread
Diapers
Milk

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k — 1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

This approach, however, does not prevent the same candidate itemset from
being generated more than once. For instance, {Bread, Diapers, Milk} can
be generated by merging {Bread, Diapers} with {Milk}, {Bread, Milk} with
{Diapers}, or {Diapers, Milk} with {Bread}. One way to avoid generating
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duplicate candidates is by ensuring that the items in each frequent itemset are
kept sorted in their lexicographic order. Each frequent (k—1)-itemset X is then
extended with frequent items that are lexicographically larger than the items in
X. For example, the itemset {Bread, Diapers} can be augmented with {Milk}
since Milk is lexicographically larger than Bread and Diapers. However, we
should not augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with
{Diapers} because they violate the lexicographic ordering condition.

While this procedure is a substantial improvement over the brute-force
method, it can still produce a large number of unnecessary candidates. For
example, the candidate itemset obtained by merging {Beer, Diapers} with
{Milk} is unnecessary because one of its subsets, {Beer, Milk}, is infrequent.
There are several heuristics available to reduce the number of unnecessary
candidates. For example, note that, for every candidate k-itemset that survives
the pruning step, every item in the candidate must be contained in at least
k —1 of the frequent (k — 1)-itemsets. Otherwise, the candidate is guaranteed
to be infrequent. For example, {Beer, Diapers, Milk} is a viable candidate
3-itemset only if every item in the candidate, including Beer, is contained in
at least two frequent 2-itemsets. Since there is only one frequent 2-itemset
containing Beer, all candidate itemsets involving Beer must be infrequent.

Fi_1xF;_; Method The candidate generation procedure in the apriori-gen
function merges a pair of frequent (k— 1)-itemsets only if their first k— 2 items
are identical. Let A = {a1,a2,...,ax—1} and B = {b1,b2,...,bx—1} be a pair
of frequent (k — 1)-itemsets. A and B are merged if they satisfy the following
conditions:

a;="b; (fori=1,2,...,k—2) and ax_1 # bg—1.

In Figure 6.8, the frequent itemsets {Bread, Diapers} and {Bread, Milk} are
merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algorithm
does not have to merge {Beer, Diapers} with {Diapers, Milk} because the
first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is a
viable candidate, it would have been obtained by merging {Beer, Diapers}
with {Beer, Milk} instead. This example illustrates both the completeness of
the candidate generation procedure and the advantages of using lexicographic
ordering to prevent duplicate candidates. However, because each candidate is
obtained by merging a pair of frequent (k—1)-itemsets, an additional candidate
pruning step is needed to ensure that the remaining & — 2 subsets of the
candidate are frequent.
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{Beer, Diapers}
{Bread, Diapers}

{Bread, Milk}
{Diapers, Milk} Candidate Candidate
Generation Pruning
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Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k—1)-itemsets.

6.2.4 Support Counting

Support counting is the process of determining the frequency of occurrence
for every candidate itemset that survives the candidate pruning step of the
apriori-gen function. Support counting is implemented in steps 6 through 11
of Algorithm 6.1. One approach for doing this is to compare each transaction
against every candidate itemset (see Figure 6.2) and to update the support
counts of candidates contained in the transaction. This approach is computa-
tionally expensive, especially when the numbers of transactions and candidate
itemsets are large.

An alternative approach is to enumerate the itemsets contained in each
transaction and use them to update the support counts of their respective can-
didate itemsets. To illustrate, consider a transaction ¢ that contains five items,
{1,2,3,5,6}. There are ( g ) = 10 itemsets of size 3 contained in this transac-
tion. Some of the itemsets may correspond to the candidate 3-itemsets under
investigation, in which case, their support counts are incremented. Other
subsets of ¢t that do not correspond to any candidates can be ignored.

Figure 6.9 shows a systematic way for enumerating the 3-itemsets contained
in . Assuming that each itemset keeps its items in increasing lexicographic
order, an itemset can be enumerated by specifying the smallest item first,
followed by the larger items. For instance, given t = {1,2,3,5,6}, all the 3-
itemsets contained in ¢ must begin with item 1, 2, or 3. It is not possible to
construct a 3-itemset that begins with items 5 or 6 because there are only two
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Transaction, t

Level 1

Level 2

v

123
125
126

Level 3 Subsets of 3 items

Figure 6.9. Enumerating subsets of three items from a transaction ¢.

items in t whose labels are greater than or equal to 5. The number of ways to
specify the first item of a 3-itemset contained in ¢ is illustrated by the Level
1 prefix structures depicted in Figure 6.9. For instance, 1 represents
a 3-itemset that begins with item 1, followed by two more items chosen from
the set {2,3,5,6}.

After fixing the first item, the prefix structures at Level 2 represent the
number of ways to select the second item. For example, 1 2 corresponds
to itemsets that begin with prefix (1 2) and are followed by items 3, 5, or 6.
Finally, the prefix structures at Level 3 represent the complete set of 3-itemsets
contained in ¢. For example, the 3-itemsets that begin with prefix {1 2} are
{1,2,3}, {1,2,5}, and {1,2,6}, while those that begin with prefix {2 3} are
{2,3,5} and {2,3,6}.

The prefix structures shown in Figure 6.9 demonstrate how itemsets con-
tained in a transaction can be systematically enumerated, i.e., by specifying
their items one by one, from the leftmost item to the rightmost item. We
still have to determine whether each enumerated 3-itemset corresponds to an
existing candidate itemset. If it matches one of the candidates, then the sup-
port count of the corresponding candidate is incremented. In the next section,
we illustrate how this matching operation can be performed efficiently using a
hash tree structure.
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Figure 6.10. Counting the support of itemsets using hash structure.

Support Counting Using a Hash Tree

In the Apriori algorithm, candidate itemsets are partitioned into different
buckets and stored in a hash tree. During support counting, itemsets contained
in each transaction are also hashed into their appropriate buckets. That way,
instead of comparing each itemset in the transaction with every candidate
itemset, it is matched only against candidate itemsets that belong to the same
bucket, as shown in Figure 6.10.

Figure 6.11 shows an example of a hash tree structure. Each internal node
of the tree uses the following hash function, h(p) = p mod 3, to determine
which branch of the current node should be followed next. For example, items
1, 4, and 7 are hashed to the same branch (i.e., the leftmost branch) because
they have the same remainder after dividing the number by 3. All candidate
itemsets are stored at the leaf nodes of the hash tree. The hash tree shown in
Figure 6.11 contains 15 candidate 3-itemsets, distributed across 9 leaf nodes.

Consider a transaction, t = {1,2,3,5,6}. To update the support counts
of the candidate itemsets, the hash tree must be traversed in such a way
that all the leaf nodes containing candidate 3-itemsets belonging to ¢ must be
visited at least once. Recall that the 3-itemsets contained in £ must begin with
items 1, 2, or 3, as indicated by the Level 1 prefix structures shown in Figure
6.9. Therefore, at the root node of the hash tree, the items 1, 2, and 3 of the
transaction are hashed separately. Item 1 is hashed to the left child of the root
node, item 2 is hashed to the middle child, and item 3 is hashed to the right
child. At the next level of the tree, the transaction is hashed on the second
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Figure 6.11. Hashing a transaction at the root node of a hash tree.

item listed in the Level 2 structures shown in Figure 6.9. For example, after
hashing on item 1 at the root node, items 2, 3, and 5 of the transaction are
hashed. Items 2 and 5 are hashed to the middle child, while item 3 is hashed
to the right child, as shown in Figure 6.12. This process continues until the
leaf nodes of the hash tree are reached. The candidate itemsets stored at the
visited leaf nodes are compared against the transaction. If a candidate is a
subset of the transaction, its support count is incremented. In this example, 5
out of the 9 leaf nodes are visited and 9 out of the 15 itemsets are compared
against the transaction.

6.2.5 Computational Complexity
The computational complexity of the Apriori algorithm can be affected by the

following factors.

Support Threshold Lowering the support threshold often results in more
itemsets being declared as frequent. This has an adverse effect on the com-
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Figure 6.12. Subset operation on the leftmost subtree of the root of a candidate hash tree.

putational complexity of the algorithm because more candidate itemsets must
be generated and counted, as shown in Figure 6.13. The maximum size of
frequent itemsets also tends to increase with lower support thresholds. As the
maximum size of the frequent itemsets increases, the algorithm will need to
make more passes over the data set.

Number of Items (Dimensionality) As the number of items increases,
more space will be needed to store the support counts of items. If the number of
frequent items also grows with the dimensionality of the data, the computation
and I/O costs will increase because of the larger number of candidate itemsets
generated by the algorithm.

Number of Transactions Since the Apriori algorithm makes repeated
passes over the data set, its run time increases with a larger number of trans-
actions.

Average Transaction Width For dense data sets, the average transaction
width can be very large. This affects the complexity of the Apriori algorithm in
two ways. First, the maximum size of frequent itemsets tends to increase as the
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Figure 6.13. Effect of support threshold on the number of candidate and frequent itemsets.
average transaction width increases. As a result, more candidate itemsets must

be examined during candidate generation and support counting, as illustrated
in Figure 6.14. Second, as the transaction width increases, more itemsets
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Figure 6.14. Effect of average transaction width on the number of candidate and frequent itemsets.

are contained in the transaction. This will increase the number of hash tree
traversals performed during support counting.

A detailed analysis of the time complexity for the Apriori algorithm is
presented next.
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Generation of frequent 1-itemsets For each transaction, we need to up-
date the support count for every item present in the transaction. Assuming
that w is the average transaction width, this operation requires O(Nw) time,
where NN is the total number of transactions.

Candidate generation To generate candidate k-itemsets, pairs of frequent
(k — 1)-itemsets are merged to determine whether they have at least k — 2
items in common. Each merging operation requires at most k — 2 equality
comparisons. In the best-case scenario, every merging step produces a viable
candidate k-itemset. In the worst-case scenario, the algorithm must merge ev-
ery pair of frequent (k—1)-itemsets found in the previous iteration. Therefore,
the overall cost of merging frequent itemsets is

w w
Z(k —2)|Ck| < Cost of merging < Z(k — 2)|Fr—1]*.
k=2 k=2

A hash tree is also constructed during candidate generation to store the can-
didate itemsets. Because the maximum depth of the tree is k, the cost for
populating the hash tree with candidate itemsets is O(Y_}_, k|Ck|). During
candidate pruning, we need to verify that the k — 2 subsets of every candidate
k-itemset are frequent. Since the cost for looking up a candidate in a hash
tree is O(k), the candidate pruning step requires O( > j_, k(k — 2)|Ck|) time.

Support counting Each transaction of length |{| produces (Iil) itemsets of
size k. This is also the effective number of hash tree traversals performed for
each transaction. The cost for support counting is O(N Dk (‘z)ak), where w
is the maximum transaction width and «y is the cost for updating the support
count of a candidate k-itemset in the hash tree.

6.3 Rule Generation

This section describes how to extract association rules efficiently from a given
frequent itemset. Each frequent k-itemset, Y, can produce up to 2¥—2 associa-
tion rules, ignoring rules that have empty antecedents or consequents () — Y
or Y — (). An association rule can be extracted by partitioning the itemset
Y into two non-empty subsets, X and ¥ — X, such that X — Y — X satisfies
the confidence threshold. Note that all such rules must have already met the
support threshold because they are generated from a frequent itemset.
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Example 6.2. Let X = {1,2,3} be a frequent itemset. There are six candi-
date association rules that can be generated from X: {1,2} — {3}, {1,3} —
{2}, {2,3} — {1}, {1} — {2,3}, {2} — {1,3}, and {3} — {1,2}. As
each of their support is identical to the support for X, the rules must satisfy
the support threshold. (]

Computing the confidence of an association rule does not require additional
scans of the transaction data set. Consider the rule {1,2} — {3}, which is
generated from the frequent itemset X = {1,2,3}. The confidence for this rule
is0({1,2,3})/0({1,2}). Because {1,2, 3} is frequent, the anti-monotone prop-
erty of support ensures that {1,2} must be frequent, too. Since the support
counts for both itemsets were already found during frequent itemset genera-
tion, there is no need to read the entire data set again.

6.3.1 Confidence-Based Pruning

Unlike the support measure, confidence does not have any monotone property.
For example, the confidence for X — Y can be larger, smaller, or equal to the
confidence for another rule X —— f’, where X C X and Y CY (see Exercise
3 on page 405). Nevertheless, if we compare rules generated from the same
frequent itemset Y, the following theorem holds for the confidence measure.

Theorem 6.2. If a rule X — Y — X does not satisfy the confidence threshold,
then any rule X' — Y — X', where X' is a subset of X, must not satisfy the
confidence threshold as well.

To prove this theorem, consider the following two rules: X’ — Y — X’ and
X — Y —X, where X’ C X. The confidence of the rules are o(Y) /o(X’) and
o(Y)/o(X), respectively. Since X' is a subset of X, o(X’) > o(X). Therefore,

the former rule cannot have a higher confidence than the latter rule.

6.3.2 Rule Generation in Apriori Algorithm

The Apriori algorithm uses a level-wise approach for generating association
rules, where each level corresponds to the number of items that belong to the
rule consequent. Initially, all the high-confidence rules that have only one item
in the rule consequent are extracted. These rules are then used to generate
new candidate rules. For example, if {acd} — {b} and {abd} — {c} are
high-confidence rules, then the candidate rule {ad} — {bc} is generated by
merging the consequents of both rules. Figure 6.15 shows a lattice structure
for the association rules generated from the frequent itemset {a, b, ¢, d}. If any
node in the lattice has low confidence, then according to Theorem 6.2, the
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Figure 6.15. Pruning of association rules using the confidence measure.

entire subgraph spanned by the node can be pruned immediately. Suppose
the confidence for {becd} — {a} is low. All the rules containing item a in
its consequent, including {cd} — {ab}, {bd} — {ac}, {bc} — {ad}, and
{d} — {abc} can be discarded.

A pseudocode for the rule generation step is shown in Algorithms 6.2 and
6.3. Note the similarity between the ap-genrules procedure given in Algo-
rithm 6.3 and the frequent itemset generation procedure given in Algorithm
6.1. The only difference is that, in rule generation, we do not have to make
additional passes over the data set to compute the confidence of the candidate
rules. Instead, we determine the confidence of each rule by using the support
counts computed during frequent itemset generation.

Algorithm 6.2 Rule generation of the Apriori algorithm.
1: for each frequent k-itemset fi, k > 2 do
22 Hiy={ili€ fi} {1-item consequents of the rule.}
3:  call ap-genrules(fi, H1.)
4: end for
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Algorithm 6.3 Procedure ap-genrules(fi, Hm).

1: k=|fi| {size of frequent itemset.}
2: m=|H,| {size of rule consequent.}
3: if k> m+1 then

4:  H,,11 = apriori-gen(H,,).
5: for each hpy1 € Hpy1 do
6: conf = o(fi)/o(fx — hmt1).
i if conf > minconf then
8: output the rule (fx — hms1) — hmy1-
9: else
10: delete hy,41 from Hypyq.
11: end if
12: end for
13:  call ap-genrules(f, Hins1.)
14: end if

6.3.3 An Example: Congressional Voting Records

This section demonstrates the results of applying association analysis to the
voting records of members of the United States House of Representatives. The
data is obtained from the 1984 Congressional Voting Records Database, which
is available at the UCI machine learning data repository. Each transaction
contains information about the party affiliation for a representative along with
his or her voting record on 16 key issues. There are 435 transactions and 34
items in the data set. The set of items are listed in Table 6.3.

The Apriori algorithm is then applied to the data set with minsup = 30%
and minconf = 90%. Some of the high-confidence rules extracted by the
algorithm are shown in Table 6.4. The first two rules suggest that most of the
members who voted yes for aid to El Salvador and no for budget resolution and
MX missile are Republicans; while those who voted no for aid to El Salvador
and yes for budget resolution and MX missile are Democrats. These high-
confidence rules show the key issues that divide members from both political
parties. If minconf is reduced, we may find rules that contain issues that cut
across the party lines. For example, with minconf = 40%, the rules suggest
that corporation cutbacks is an issue that receives almost equal number of
votes from both parties—52.3% of the members who voted no are Republicans,
while the remaining 47.7% of them who voted no are Democrats.



Table 6.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source:
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The UCI machine learning repository.

. physician fee freeze = yes

26.

1. Republican 18. aid to Nicaragua = no

2. Democrat 19. MX-missile = yes

3. handicapped-infants = yes 20. MX-missile = no

4. handicapped-infants = no 21. immigration = yes

5. water project cost sharing = yes  22. immigration = no

6. water project cost sharing = no 23. synfuel corporation cutback = yes
7. budget-resolution = yes 24. synfuel corporation cutback = no
8. budget-resolution = no 25. education spending = yes

education spending = no

353

10. physician fee freeze = no 27.
11. aid to El Salvador = yes 28.
12. aid to El Salvador = no 29.
13. religious groups in schools = yes  30.
14. religious groups in schools = no  31.
15. anti-satellite test ban = yes 32.
16. anti-satellite test ban = no 33.
17. aid to Nicaragua = yes 34.

right-to-sue = yes
right-to-sue = no
crime = yes

crime = no
duty-free-exports = yes
duty-free-exports = no

export administration act = yes
export administration act = no

Table 6.4. Association rules extracted from the 1984 United States Congressional Voting Records.

Association Rule Confidence

{budget resolution = no, MX-missile=no, aid to El Salvador = yes } 91.0%
— {Republican}

{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%
— {Democrat}

{crime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%
— {Republican}

{crime = no, right-to-sue = no, physician fee freeze = no} 100%
— {Democrat}

6.4 Compact Representation of Frequent Itemsets

In practice, the number of frequent itemsets produced from a transaction data
set can be very large. It is useful to identify a small representative set of

itemsets from which all other frequent itemsets can be derived. Two such
representations are presented in this section in the form of maximal and closed

frequent itemsets.
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Figure 6.16. Maximal frequent itemset.

6.4.1 Maximal Frequent Itemsets

Definition 6.3 (Maximal Frequent Itemset). A maximal frequent item-
set is defined as a frequent itemset for which none of its immediate supersets
are frequent.

To illustrate this concept, consider the itemset lattice shown in Figure
6.16. The itemsets in the lattice are divided into two groups: those that are
frequent and those that are infrequent. A frequent itemset border, which is
represented by a dashed line, is also illustrated in the diagram. Every itemset
located above the border is frequent, while those located below the border (the
shaded nodes) are infrequent. Among the itemsets residing near the border,
{a,d}, {a,c, e}, and {b,c,d, e} are considered to be maximal frequent itemsets
because their immediate supersets are infrequent. An itemset such as {a,d}
is maximal frequent because all of its immediate supersets, {a,b,d}, {a,c, d},
and {a,d,e}, are infrequent. In contrast, {a,c} is non-maximal because one
of its immediate supersets, {a,c, e}, is frequent.

Maximal frequent itemsets effectively provide a compact representation of
frequent itemsets. In other words, they form the smallest set of itemsets from
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which all frequent itemsets can be derived. For example, the frequent itemsets
shown in Figure 6.16 can be divided into two groups:

e Frequent itemsets that begin with item a and that may contain items ¢,
d, or e. This group includes itemsets such as {a}, {a,c}, {a,d}, {a,€},
and {a,c,e}.

e Frequent itemsets that begin with items b, ¢, d, or e. This group includes
itemsets such as {b}, {b,c}, {c,d},{b,c,d, e}, etc.

Frequent itemsets that belong in the first group are subsets of either {a,c,e}
or {a,d}, while those that belong in the second group are subsets of {b, c, d, e}.
Hence, the maximal frequent itemsets {a,c, e}, {a,d}, and {b,c,d, e} provide
a compact representation of the frequent itemsets shown in Figure 6.16.

Maximal frequent itemsets provide a valuable representation for data sets
that can produce very long, frequent itemsets, as there are exponentially many
frequent itemsets in such data. Nevertheless, this approach is practical only
if an efficient algorithm exists to explicitly find the maximal frequent itemsets
without having to enumerate all their subsets. We briefly describe one such
approach in Section 6.5.

Despite providing a compact representation, maximal frequent itemsets do
not contain the support information of their subsets. For example, the support
of the maximal frequent itemsets {a, c, e}, {a,d}, and {b,c,d,e} do not provide
any hint about the support of their subsets. An additional pass over the data
set is therefore needed to determine the support counts of the non-maximal
frequent itemsets. In some cases, it might be desirable to have a minimal
representation of frequent itemsets that preserves the support information.
We illustrate such a representation in the next section.

6.4.2 Closed Frequent Itemsets

Closed itemsets provide a minimal representation of itemsets without losing
their support information. A formal definition of a closed itemset is presented
below.

Definition 6.4 (Closed Itemset). An itemset X is closed if none of its
immediate supersets has exactly the same support count as X.

Put another way, X is not closed if at least one of its immediate supersets
has the same support count as X. Examples of closed itemsets are shown in
Figure 6.17. To better illustrate the support count of each itemset, we have
associated each node (itemset) in the lattice with a list of its corresponding
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O Closed Frequent Itemset

Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

transaction IDs. For example, since the node {b, c} is associated with transac-
tion IDs 1, 2, and 3, its support count is equal to three. From the transactions
given in this diagram, notice that every transaction that contains b also con-
tains c¢. Consequently, the support for {b} is identical to {b, c} and {b} should
not be considered a closed itemset. Similarly, since ¢ occurs in every transac-
tion that contains both a and d, the itemset {a, d} is not closed. On the other
hand, {b,c} is a closed itemset because it does not have the same support
count as any of its supersets.

Definition 6.5 (Closed Frequent Itemset). An itemset is a closed fre-
quent itemset if it is closed and its support is greater than or equal to minsup.

In the previous example, assuming that the support threshold is 40%, {b,c}
is a closed frequent itemset because its support is 60%. The rest of the closed
frequent itemsets are indicated by the shaded nodes.

Algorithms are available to explicitly extract closed frequent itemsets from
a given data set. Interested readers may refer to the bibliographic notes at the
end of this chapter for further discussions of these algorithms. We can use the
closed frequent itemsets to determine the support counts for the non-closed
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Algorithm 6.4 Support counting using closed frequent itemsets.
1: Let C denote the set of closed frequent itemsets
2: Let kyax denote the maximum size of closed frequent itemsets
3 Frpoo = {fIf €C, |f] = kmax}  {Find all frequent itemsets of size kpyax.}
4: for k = k. — 1 downto 1 do
5. Fp={f|lf C Fk+1, |f|=%k} {Find all frequent itemsets of size k.}
6: for each f € F; do
T: if f ¢ C then
8 f-support = max{f’.support|f' € Fxy1, f C f'}
9: end if

10: end for
11: end for

frequent itemsets. For example, consider the frequent itemset {a,d} shown
in Figure 6.17. Because the itemset is not closed, its support count must be
identical to one of its immediate supersets. The key is to determine which
superset (among {a,b,d}, {a,c,d}, or {a,d, e}) has exactly the same support
count as {a,d}. The Apriori principle states that any transaction that contains
the superset of {a,d} must also contain {a,d}. However, any transaction that
contains {a,d} does not have to contain the supersets of {a,d}. For this
reason, the support for {a,d} must be equal to the largest support among its
supersets. Since {a, ¢, d} has a larger support than both {a,b,d} and {a,d, e},
the support for {a, d} must be identical to the support for {a,c,d}. Using this
methodology, an algorithm can be developed to compute the support for the
non-closed frequent itemsets. The pseudocode for this algorithm is shown in
Algorithm 6.4. The algorithm proceeds in a specific-to-general fashion, i.e.,
from the largest to the smallest frequent itemsets. This is because, in order
to find the support for a non-closed frequent itemset, the support for all of its
supersets must be known.

To illustrate the advantage of using closed frequent itemsets, consider the
data set shown in Table 6.5, which contains ten transactions and fifteen items.
The items can be divided into three groups: (1) Group A, which contains
items a; through as; (2) Group B, which contains items b through bs; and
(3) Group C, which contains items ¢; through cs. Note that items within each
group are perfectly associated with each other and they do not appear with
items from another group. Assuming the support threshold is 20%, the total
number of frequent itemsets is 3 x (2° —1) = 93. However, there are only three
closed frequent itemsets in the data: ({a1, a2, a3, a4, as}, {b1,b2,bs,bs,bs}, and
{c1,c2,c3,c4,c5}). It is often sufficient to present only the closed frequent
itemsets to the analysts instead of the entire set of frequent itemsets.
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Table 6.5. A transaction data set for mining closed itemsets.
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Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent itemsets.

Closed frequent itemsets are useful for removing some of the redundant
association rules. An association rule X — Y is redundant if there exists
another rule X/ — Y’ where X is a subset of X’ and Y is a subset of Y’, such
that the support and confidence for both rules are identical. In the example
shown in Figure 6.17, {b} is not a closed frequent itemset while {b, c} is closed.
The association rule {b} — {d,e} is therefore redundant because it has the
same support and confidence as {b,c} — {d,e}. Such redundant rules are
not generated if closed frequent itemsets are used for rule generation.

Finally, note that all maximal frequent itemsets are closed because none
of the maximal frequent itemsets can have the same support count as their
immediate supersets. The relationships among frequent, maximal frequent,
and closed frequent itemsets are shown in Figure 6.18.
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6.5 Alternative Methods for Generating Frequent
Itemsets

Apriori is one of the earliest algorithms to have successfully addressed the
combinatorial explosion of frequent itemset generation. It achieves this by ap-
plying the Apriori principle to prune the exponential search space. Despite its
significant performance improvement, the algorithm still incurs considerable
I/O overhead since it requires making several passes over the transaction data
set. In addition, as noted in Section 6.2.5, the performance of the Apriori
algorithm may degrade significantly for dense data sets because of the increas-
ing width of transactions. Several alternative methods have been developed
to overcome these limitations and improve upon the efficiency of the Apriori
algorithm. The following is a high-level description of these methods.

Traversal of Itemset Lattice A search for frequent itemsets can be con-
ceptually viewed as a traversal on the itemset lattice shown in Figure 6.1.
The search strategy employed by an algorithm dictates how the lattice struc-
ture is traversed during the frequent itemset generation process. Some search
strategies are better than others, depending on the configuration of frequent
itemsets in the lattice. An overview of these strategies is presented next.

e General-to-Specific versus Specific-to-General: The Apriori al-
gorithm uses a general-to-specific search strategy, where pairs of frequent
(k—1)-itemsets are merged to obtain candidate k-itemsets. This general-
to-specific search strategy is effective, provided the maximum length of
a frequent itemset is not too long. The configuration of frequent item-
sets that works best with this strategy is shown in Figure 6.19(a), where
the darker nodes represent infrequent itemsets. Alternatively, a specific-
to-general search strategy looks for more specific frequent itemsets first,
before finding the more general frequent itemsets. This strategy is use-
ful to discover maximal frequent itemsets in dense transactions, where
the frequent itemset border is located near the bottom of the lattice,
as shown in Figure 6.19(b). The Apriori principle can be applied to
prune all subsets of maximal frequent itemsets. Specifically, if a candi-
date k-itemset is maximal frequent, we do not have to examine any of its
subsets of size k — 1. However, if the candidate k-itemset is infrequent,
we need to check all of its k — 1 subsets in the next iteration. Another
approach is to combine both general-to-specific and specific-to-general
search strategies. This bidirectional approach requires more space to
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Figure 6.19. General-to-specific, specific-to-general, and bidirectional search.

store the candidate itemsets, but it can help to rapidly identify the fre-
quent itemset border, given the configuration shown in Figure 6.19(c).

e Equivalence Classes: Another way to envision the traversal is to first
partition the lattice into disjoint groups of nodes (or equivalence classes).
A frequent itemset generation algorithm searches for frequent itemsets
within a particular equivalence class first before moving to another equiv-
alence class. As an example, the level-wise strategy used in the Apriori
algorithm can be considered to be partitioning the lattice on the basis
of itemset sizes; i.e., the algorithm discovers all frequent 1-itemsets first
before proceeding to larger-sized itemsets. Equivalence classes can also
be defined according to the prefix or suffix labels of an itemset. In this
case, two itemsets belong to the same equivalence class if they share
a common prefix or suffix of length k. In the prefix-based approach,
the algorithm can search for frequent itemsets starting with the prefix
a before looking for those starting with prefixes b, ¢, and so on. Both
prefix-based and suffix-based equivalence classes can be demonstrated
using the tree-like structure shown in Figure 6.20.

e Breadth-First versus Depth-First: The Apriori algorithm traverses
the lattice in a breadth-first manner, as shown in Figure 6.21(a). It first
discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets,
and so on, until no new frequent itemsets are generated. The itemset



6.5 Alternative Methods for Generating Frequent Itemsets 361

(a) Prefix tree. (b) Suffix tree.

Figure 6.20. Equivalence classes based on the prefix and suffix labels of itemsets.

(a) Breadth first (b) Depth first

Figure 6.21. Breadth-first and depth-first traversals.

lattice can also be traversed in a depth-first manner, as shown in Figures
6.21(b) and 6.22. The algorithm can start from, say, node a in Figure
6.22, and count its support to determine whether it is frequent. If so, the
algorithm progressively expands the next level of nodes, i.e., ab, abe, and
so on, until an infrequent node is reached, say, abed. It then backtracks
to another branch, say, abce, and continues the search from there.

The depth-first approach is often used by algorithms designed to find
maximal frequent itemsets. This approach allows the frequent itemset
border to be detected more quickly than using a breadth-first approach.
Once a maximal frequent itemset is found, substantial pruning can be
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Figure 6.22. Generating candidate itemsets using the depth-first approach.

performed on its subsets. For example, if the node bede shown in Figure
6.22 is maximal frequent, then the algorithm does not have to visit the
subtrees rooted at bd, be, ¢, d, and e because they will not contain any
maximal frequent itemsets. However, if abc is maximal frequent, only the
nodes such as ac and bc are not maximal frequent (but the subtrees of
ac and bc may still contain maximal frequent itemsets). The depth-first
approach also allows a different kind of pruning based on the support
of itemsets. For example, suppose the support for {a,b,c} is identical
to the support for {a,b}. The subtrees rooted at abd and abe can be
skipped because they are guaranteed not to have any maximal frequent
itemsets. The proof of this is left as an exercise to the readers.

Representation of Transaction Data Set There are many ways to rep-
resent a transaction data set. The choice of representation can affect the I/O
costs incurred when computing the support of candidate itemsets. Figure 6.23
shows two different ways of representing market basket transactions. The rep-
resentation on the left is called a horizontal data layout, which is adopted
by many association rule mining algorithms, including Apriori. Another pos-
sibility is to store the list of transaction identifiers (TID-list) associated with
each item. Such a representation is known as the vertical data layout. The
support for each candidate itemset is obtained by intersecting the TID-lists of
its subset items. The length of the TID-lists shrinks as we progress to larger
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Figure 6.23. Horizontal and vertical data format.

sized itemsets. However, one problem with this approach is that the initial
set of TID-lists may be too large to fit into main memory, thus requiring
more sophisticated techniques to compress the TID-lists. We describe another
effective approach to represent the data in the next section.

6.6 FP-Growth Algorithm

This section presents an alternative algorithm called FP-growth that takes
a radically different approach to discovering frequent itemsets. The algorithm
does not subscribe to the generate-and-test paradigm of Apriori. Instead, it
encodes the data set using a compact data structure called an FP-tree and
extracts frequent itemsets directly from this structure. The details of this
approach are presented next.

6.6.1 FP-Tree Representation

An FP-tree is a compressed representation of the input data. It is constructed
by reading the data set one transaction at a time and mapping each transaction
onto a path in the FP-tree. As different transactions can have several items
in common, their paths may overlap. The more the paths overlap with one
another, the more compression we can achieve using the FP-tree structure. If
the size of the FP-tree is small enough to fit into main memory, this will allow
us to extract frequent itemsets directly from the structure in memory instead
of making repeated passes over the data stored on disk.
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Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, ¢, d, and e.
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2. The algorithm makes a second pass over the data to construct the FP-
tree. After reading the first transaction, {a,b}, the nodes labeled as a
and b are created. A path is then formed from null — a — b to encode
the transaction. Every node along the path has a frequency count of 1.

3. After reading the second transaction, {b,c,d}, a new set of nodes is cre-
ated for items b, ¢, and d. A path is then formed to represent the
transaction by connecting the nodes null — b — ¢ — d. Every node
along this path also has a frequency count equal to one. Although the
first two transactions have an item in common, which is b, their paths
are disjoint because the transactions do not share a common prefix.

4. The third transaction, {a,c,d,e}, shares a common prefix item (which
is a) with the first transaction. As a result, the path for the third
transaction, null — a — ¢ — d — e, overlaps with the path for the
first transaction, null — a — b. Because of their overlapping path, the
frequency count for node a is incremented to two, while the frequency
counts for the newly created nodes, ¢, d, and e, are equal to one.

5. This process continues until every transaction has been mapped onto one
of the paths given in the FP-tree. The resulting FP-tree after reading
all the transactions is shown at the bottom of Figure 6.24.

The size of an FP-tree is typically smaller than the size of the uncompressed
data because many transactions in market basket data often share a few items
in common. In the best-case scenario, where all the transactions have the
same set of items, the FP-tree contains only a single branch of nodes. The
worst-case scenario happens when every transaction has a unique set of items.
As none of the transactions have any items in common, the size of the FP-tree
is effectively the same as the size of the original data. However, the physical
storage requirement for the FP-tree is higher because it requires additional
space to store pointers between nodes and counters for each item.

The size of an FP-tree also depends on how the items are ordered. If
the ordering scheme in the preceding example is reversed, i.e., from lowest
to highest support item, the resulting FP-tree is shown in Figure 6.25. The
tree appears to be denser because the branching factor at the root node has
increased from 2 to 5 and the number of nodes containing the high support
items such as a and b has increased from 3 to 12. Nevertheless, ordering
by decreasing support counts does not always lead to the smallest tree. For
example, suppose we augment the data set given in Figure 6.24 with 100
transactions that contain {e}, 80 transactions that contain {d}, 60 transactions



366 Chapter 6 Association Analysis

null

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 with a different item
ordering scheme.

that contain {c}, and 40 transactions that contain {b}. Item e is now most
frequent, followed by d, ¢, b, and a. With the augmented transactions, ordering
by decreasing support counts will result in an FP-tree similar to Figure 6.25,
while a scheme based on increasing support counts produces a smaller FP-tree
similar to Figure 6.24(iv).

An FP-tree also contains a list of pointers connecting between nodes that
have the same items. These pointers, represented as dashed lines in Figures
6.24 and 6.25, help to facilitate the rapid access of individual items in the tree.
We explain how to use the FP-tree and its corresponding pointers for frequent
itemset generation in the next section.

6.6.2 Frequent Itemset Generation in FP-Growth Algorithm

FP-growth is an algorithm that generates frequent itemsets from an FP-tree
by exploring the tree in a bottom-up fashion. Given the example tree shown in
Figure 6.24, the algorithm looks for frequent itemsets ending in e first, followed
by d, ¢, b, and finally, a. This bottom-up strategy for finding frequent item-
sets ending with a particular item is equivalent to the suffix-based approach
described in Section 6.5. Since every transaction is mapped onto a path in the
FP-tree, we can derive the frequent itemsets ending with a particular item,
say, e, by examining only the paths containing node e. These paths can be
accessed rapidly using the pointers associated with node e. The extracted
paths are shown in Figure 6.26(a). The details on how to process the paths to
obtain frequent itemsets will be explained later.
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(a) Paths containing node e (b) Paths containing node d
null null null
a8
(c) Paths containing node ¢ (d) Paths containing node b (e) Paths containing node a

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where
each subproblem involves finding frequent itemsets ending in e, d, ¢, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.
Suffix Frequent Itemsets

e {e}, {d,e}, {a,d,e}, {c,e}.{ae}

d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}

b {b}, {a,b}

a_ | {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes ¢, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent
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Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.
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3. Because {e} is frequent, the algorithm has to solve the subproblems of
finding frequent itemsets ending in de, ce, be, and ae. Before solving
these subproblems, it must first convert the prefix paths into a con-
ditional FP-tree, which is structurally similar to an FP-tree, except
it is used to find frequent itemsets ending with a particular suffix. A
conditional FP-tree is obtained in the following way:

(a) First, the support counts along the prefix paths must be updated
because some of the counts include transactions that do not contain
item e. For example, the rightmost path shown in Figure 6.27(a),
null — b:2 — c¢:2 — e:1, includes a transaction {b,c} that
does not contain item e. The counts along the prefix path must
therefore be adjusted to 1 to reflect the actual number of transac-
tions containing {b, c,e}.

(b) The prefix paths are truncated by removing the nodes for e. These
nodes can be removed because the support counts along the prefix
paths have been updated to reflect only transactions that contain e
and the subproblems of finding frequent itemsets ending in de, ce,
be, and ae no longer need information about node e.

(c) After updating the support counts along the prefix paths, some
of the items may no longer be frequent. For example, the node b
appears only once and has a support count equal to 1, which means
that there is only one transaction that contains both b and e. Item b
can be safely ignored from subsequent analysis because all itemsets
ending in be must be infrequent.

The conditional FP-tree for e is shown in Figure 6.27(b). The tree looks
different than the original prefix paths because the frequency counts have
been updated and the nodes b and e have been eliminated.

4. FP-growth uses the conditional FP-tree for e to solve the subproblems of
finding frequent itemsets ending in de, ce, and ae. To find the frequent
itemsets ending in de, the prefix paths for d are gathered from the con-
ditional FP-tree for e (Figure 6.27(c)). By adding the frequency counts
associated with node d, we obtain the support count for {d,e}. Since
the support count is equal to 2, {d,e} is declared a frequent itemset.
Next, the algorithm constructs the conditional FP-tree for de using the
approach described in step 3. After updating the support counts and
removing the infrequent item ¢, the conditional FP-tree for de is shown
in Figure 6.27(d). Since the conditional FP-tree contains only one item,
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a, whose support is equal to minsup, the algorithm extracts the fre-
quent itemset {a,d,e} and moves on to the next subproblem, which is
to generate frequent itemsets ending in ce. After processing the prefix
paths for ¢, only {c, e} is found to be frequent. The algorithm proceeds
to solve the next subprogram and found {a,e} to be the only frequent
itemset remaining.

This example illustrates the divide-and-conquer approach used in the FP-
growth algorithm. At each recursive step, a conditional FP-tree is constructed
by updating the frequency counts along the prefix paths and removing all
infrequent items. Because the subproblems are disjoint, FP-growth will not
generate any duplicate itemsets. In addition, the counts associated with the
nodes allow the algorithm to perform support counting while generating the
common suffix itemsets.

FP-growth is an interesting algorithm because it illustrates how a compact
representation of the transaction data set helps to efficiently generate frequent
itemsets. In addition, for certain transaction data sets, FP-growth outperforms
the standard Apriori algorithm by several orders of magnitude. The run-time
performance of FP-growth depends on the compaction factor of the data
set. If the resulting conditional FP-trees are very bushy (in the worst case, a
full prefix tree), then the performance of the algorithm degrades significantly
because it has to generate a large number of subproblems and merge the results
returned by each subproblem.

6.7 Evaluation of Association Patterns

Association analysis algorithms have the potential to generate a large number
of patterns. For example, although the data set shown in Table 6.1 contains
only six items, it can produce up to hundreds of association rules at certain
support and confidence thresholds. As the size and dimensionality of real
commercial databases can be very large, we could easily end up with thousands
or even millions of patterns, many of which might not be interesting. Sifting
through the patterns to identify the most interesting ones is not a trivial task
because “one person’s trash might be another person’s treasure.” It is therefore
important to establish a set of well-accepted criteria for evaluating the quality
of association patterns.

The first set of criteria can be established through statistical arguments.
Patterns that involve a set of mutually independent items or cover very few
transactions are considered uninteresting because they may capture spurious
relationships in the data. Such patterns can be eliminated by applying an
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objective interestingness measure that uses statistics derived from data
to determine whether a pattern is interesting. Examples of objective interest-
ingness measures include support, confidence, and correlation.

The second set of criteria can be established through subjective arguments.
A pattern is considered subjectively uninteresting unless it reveals unexpected
information about the data or provides useful knowledge that can lead to
profitable actions. For example, the rule {Butter} — {Bread} may not be
interesting, despite having high support and confidence values, because the
relationship represented by the rule may seem rather obvious. On the other
hand, the rule { Diapers} — {Beer} is interesting because the relationship is
quite unexpected and may suggest a new cross-selling opportunity for retailers.
Incorporating subjective knowledge into pattern evaluation is a difficult task
because it requires a considerable amount of prior information from the domain
experts.

The following are some of the approaches for incorporating subjective
knowledge into the pattern discovery task.

Visualization This approach requires a user-friendly environment to keep
the human user in the loop. It also allows the domain experts to interact with
the data mining system by interpreting and verifying the discovered patterns.

Template-based approach This approach allows the users to constrain
the type of patterns extracted by the mining algorithm. Instead of reporting
all the extracted rules, only rules that satisfy a user-specified template are
returned to the users.

Subjective interestingness measure A subjective measure can be defined
based on domain information such as concept hierarchy (to be discussed in
Section 7.3) or profit margin of items. The measure can then be used to filter
patterns that are obvious and non-actionable.

Readers interested in subjective interestingness measures may refer to re-
sources listed in the bibliography at the end of this chapter.

6.7.1 Objective Measures of Interestingness

An objective measure is a data-driven approach for evaluating the quality
of association patterns. It is domain-independent and requires minimal in-
put from the users, other than to specify a threshold for filtering low-quality
patterns. An objective measure is usually computed based on the frequency
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Table 6.7. A 2-way contingency table for variables A and B.

B | B
A\ fu | fuo | fi+
A for | foo | fos
Jri| feo | N

counts tabulated in a contingency table. Table 6.7 shows an example of a
contingency table for a pair of binary variables, A and B. We use the notation
A (B) to indicate that A (B) is absent from a transaction. Each entry f;; in
this 2 x 2 table denotes a frequency count. For example, fi; is the number of
times A and B appear together in the same transaction, while fj; is the num-
ber of transactions that contain B but not A. The row sum f;, represents
the support count for A, while the column sum fy; represents the support
count for B. Finally, even though our discussion focuses mainly on asymmet-
ric binary variables, note that contingency tables are also applicable to other
attribute types such as symmetric binary, nominal, and ordinal variables.

Limitations of the Support-Confidence Framework Existing associa-
tion rule mining formulation relies on the support and confidence measures to
eliminate uninteresting patterns. The drawback of support was previously de-
scribed in Section 6.8, in which many potentially interesting patterns involving
low support items might be eliminated by the support threshold. The draw-
back of confidence is more subtle and is best demonstrated with the following
example.

Example 6.3. Suppose we are interested in analyzing the relationship be-
tween people who drink tea and coffee. We may gather information about the
beverage preferences among a group of people and summarize their responses
into a table such as the one shown in Table 6.8.

Table 6.8. Beverage preferences among a group of 1000 people.

Coffee | Cof fee
Tea 150 50 200
Tea 650 150 800

800 200 1000
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The information given in this table can be used to evaluate the association
rule {T'ea} — {Cof fee}. At first glance, it may appear that people who drink
tea also tend to drink coffee because the rule’s support (15%) and confidence
(75%) values are reasonably high. This argument would have been acceptable
except that the fraction of people who drink coffee, regardless of whether they
drink tea, is 80%, while the fraction of tea drinkers who drink coffee is only
75%. Thus knowing that a person is a tea drinker actually decreases her
probability of being a coffee drinker from 80% to 75%! The rule {Tea} —
{Cof fee} is therefore misleading despite its high confidence value. (]

The pitfall of confidence can be traced to the fact that the measure ignores
the support of the itemset in the rule consequent. Indeed, if the support of
coffee drinkers is taken into account, we would not be surprised to find that
many of the people who drink tea also drink coffee. What is more surprising is
that the fraction of tea drinkers who drink coffee is actually less than the overall
fraction of people who drink coffee, which points to an inverse relationship
between tea drinkers and coffee drinkers.

Because of the limitations in the support-confidence framework, various
objective measures have been used to evaluate the quality of association pat-
terns. Below, we provide a brief description of these measures and explain
some of their strengths and limitations.

Interest Factor The tea-coffee example shows that high-confidence rules
can sometimes be misleading because the confidence measure ignores the sup-
port of the itemset appearing in the rule consequent. One way to address this
problem is by applying a metric known as lift:

c¢(A — B)

Lift = R

(6.4)

which computes the ratio between the rule’s confidence and the support of
the itemset in the rule consequent. For binary variables, lift is equivalent to
another objective measure called interest factor, which is defined as follows:

s(A,B) _ Nfu
s(A) x s(B)  firfr1

Interest factor compares the frequency of a pattern against a baseline fre-

I(A,B) = (6.5)

quency computed under the statistical independence assumption. The baseline
frequency for a pair of mutually independent variables is

fu_he fa
N N "N’

f1+f+1

or equivalently, fi1 = (6.6)
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Table 6.9. Contingency tables for the word pairs ({p,q} and {r,s}.

p | P r | T
g | 880 [ 50 [ 930 s |20 50 70
g| 50 20| 70 5|50 | 880 | 930
930 | 70 | 1000 70 | 930 | 1000

This equation follows from the standard approach of using simple fractions
as estimates for probabilities. The fraction fi1/N is an estimate for the joint
probability P(A, B), while fi4+/N and fi1/N are the estimates for P(A) and
P(B), respectively. If A and B are statistically independent, then P(A, B) =
P(A) x P(B), thus leading to the formula shown in Equation 6.6. Using

Equations 6.5 and 6.6, we can interpret the measure as follows:

=1, if A and B are independent;
I(A,B){ >1, if A and B are positively correlated; (6.7)
<1, if A and B are negatively correlated.

For the tea-coffee example shown in Table 6.8, I = nglgs = 0.9375, thus sug-

gesting a slight negative correlation between tea drinkers and coffee drinkers.

Limitations of Interest Factor We illustrate the limitation of interest
factor with an example from the text mining domain. In the text domain, it
is reasonable to assume that the association between a pair of words depends
on the number of documents that contain both words. For example, because
of their stronger association, we expect the words data and mining to appear
together more frequently than the words compiler and mining in a collection
of computer science articles.

Table 6.9 shows the frequency of occurrences between two pairs of words,
{p,q} and {r,s}. Using the formula given in Equation 6.5, the interest factor
for {p,q} is 1.02 and for {r,s} is 4.08. These results are somewhat troubling
for the following reasons. Although p and ¢ appear together in 88% of the
documents, their interest factor is close to 1, which is the value when p and ¢
are statistically independent. On the other hand, the interest factor for {r, s}
is higher than {p, ¢} even though r and s seldom appear together in the same
document. Confidence is perhaps the better choice in this situation because it
considers the association between p and g (94.6%) to be much stronger than
that between r and s (28.6%).
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Correlation Analysis Correlation analysis is a statistical-based technique
for analyzing relationships between a pair of variables. For continuous vari-
ables, correlation is defined using Pearson’s correlation coefficient (see Equa-
tion 2.10 on page 77). For binary variables, correlation can be measured using
the ¢-coefficient, which is defined as

_ _Jufoo — forfro .
V fi+F+1fo+ f+o

The value of correlation ranges from —1 (perfect negative correlation) to +1
(perfect positive correlation). If the variables are statistically independent,
then ¢ = 0. For example, the correlation between the tea and coffee drinkers

given in Table 6.8 is —0.0625.

¢

(6.8)

Limitations of Correlation Analysis The drawback of using correlation
can be seen from the word association example given in Table 6.9. Although
the words p and ¢ appear together more often than r and s, their ¢-coefficients
are identical, i.e., ¢(p,q) = ¢(r,s) = 0.232. This is because the ¢-coeflicient
gives equal importance to both co-presence and co-absence of items in a trans-
action. It is therefore more suitable for analyzing symmetric binary variables.
Another limitation of this measure is that it does not remain invariant when
there are proportional changes to the sample size. This issue will be discussed
in greater detail when we describe the properties of objective measures on page

377.

IS Measure IS is an alternative measure that has been proposed for han-
dling asymmetric binary variables. The measure is defined as follows:

s(A, B)

V/s(A)s(B)

Note that IS is large when the interest factor and support of the pattern

IS(A,B) =/1(A,B) x s(4, B) = (6.9)

are large. For example, the value of IS for the word pairs {p, ¢} and {r,s}
shown in Table 6.9 are 0.946 and 0.286, respectively. Contrary to the results
given by interest factor and the ¢-coefficient, the IS measure suggests that
the association between {p, ¢} is stronger than {r, s}, which agrees with what
we expect from word associations in documents.

It is possible to show that IS is mathematically equivalent to the cosine
measure for binary variables (see Equation 2.7 on page 75). In this regard, we
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Table 6.10. Example of a contingency table for items p and q.

q q
p | 800 [ 100 | 900
p|100| 0 | 100

900 | 100 | 1000

consider A and B as a pair of bit vectors, A e B = s(A, B) the dot product
between the vectors, and |A| = 1/s(A) the magnitude of vector A. Therefore:

s(A,B) _ AeB

Vs(A) xs(B) |A| x B

The IS measure can also be expressed as the geometric mean between the
confidence of association rules extracted from a pair of binary variables:

IS(A,B) = = cosine(A,B). (6.10)

IS(A,B) = \/S(:(lf) x 8%8? =c(A= B)xc(B— A4). (6.11)

Because the geometric mean between any two numbers is always closer to the
smaller number, the IS value of an itemset {p, ¢} is low whenever one of its
rules, p — ¢ or ¢ — p, has low confidence.

Limitations of IS Measure The IS value for a pair of independent item-
sets, A and B, is

_ B s(A,B) _ s(A)xs(B) (D s(B)
[Singep(4, B) = V3(A) xs(B) /s(A) xs(B) (4) x 5(B).

Since the value depends on s(A) and s(B), IS shares a similar problem as
the confidence measure—that the value of the measure can be quite large,
even for uncorrelated and negatively correlated patterns. For example, despite
the large IS value between items p and ¢ given in Table 6.10 (0.889), it is
still less than the expected value when the items are statistically independent

(ISIIICIC]:I == 0-9)
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Alternative Objective Interestingness Measures

Besides the measures we have described so far, there are other alternative mea-
sures proposed for analyzing relationships between pairs of binary variables.
These measures can be divided into two categories, symmetric and asym-
metric measures. A measure M is symmetric if M(A — B) = M(B — A).
For example, interest factor is a symmetric measure because its value is iden-
tical for the rules A — B and B — A. In contrast, confidence is an
asymmetric measure since the confidence for A — B and B — A may not
be the same. Symmetric measures are generally used for evaluating itemsets,
while asymmetric measures are more suitable for analyzing association rules.
Tables 6.11 and 6.12 provide the definitions for some of these measures in
terms of the frequency counts of a 2 x 2 contingency table.

Consistency among Objective Measures

Given the wide variety of measures available, it is reasonable to question
whether the measures can produce similar ordering results when applied to
a set of association patterns. If the measures are consistent, then we can
choose any one of them as our evaluation metric. Otherwise, it is important
to understand what their differences are in order to determine which measure
is more suitable for analyzing certain types of patterns.

Table 6.11. Examples of symmetric objective measures for the itemset { A, B}.

Measure (Symbol) Definition
Correlatio Nfii—figfia
rrelation (¢) Vit Tr1for Fro
Odds ratio () (f11f00) / (f10fo1)
Nfii+Nfoo—fig fr1—Fforfro
Kappa (k) N2—fiyfri—for fro

Interest (I) Nf11)/(fref1)

(
Cosine (I5) (f11)/ (Vs F)
Piatetsky-Shapiro (PS) | 4t — Ll
Collective strength (§) | —fatfee  » Nofiafor—Jorfso

firfritforfro N—f11—foo
Jaccard () fun/ (i + f11 — f11)
All-confidence (h) min [, 2]
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Table 6.12. Examples of asymmetric objective measures for the rule A — B.

Measure (Symbol) Definition
Goodman-Kruskal (A) (Z -maxy, fik — ma:rkf_,_k)/(N — maxy, f_,_k)
Mutual Information (M) | (3,3, $#log #28) /(- 3, Lit log &)

Jir f4i
J-Measure (J) -L log E% -@ log ﬁ%
Gini index (G) fT‘\;t (.}lL‘L) + (_&)2] )2
fo 00 f 012
+ fr s ()2 + (J)? - %)
Laplace (L) (fu+1)/(fir +2)
Conviction (V) (f1+f+0)/(me)
H 11 fi1 fi1
Certainty factor (F') 'J"fl_+ - /a-4)
Added Value (AV) % - ijlv-_l

Table 6.13. Example of contingency tables.

Example | fi1 | fio | for | foo
E4q 8123 83 424 | 1370
FEs 8330 2 622 | 1046
FEs 3954 | 3080 D 2961
Ey 2886 | 1363 | 1320 | 4431
E; 1500 | 2000 | 500 | 6000
Eg 4000 | 2000 | 1000 | 3000
E- 9481 | 298 127 94
Eg 4000 | 2000 | 2000 | 2000
Fq 7450 | 2483 4 63
Eqp 61 2483 4 7452

Suppose the symmetric and asymmetric measures are applied to rank the
ten contingency tables shown in Table 6.13. These contingency tables are cho-
sen to illustrate the differences among the existing measures. The ordering
produced by these measures are shown in Tables 6.14 and 6.15, respectively
(with 1 as the most interesting and 10 as the least interesting table). Although
some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rank-
ings given by the ¢-coefficient agree with those provided by & and collective
strength, but are somewhat different than the rankings produced by interest
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Table 6.14. Rankings of contingency tables using the symmetric measures given in Table 6.11.

¢ |lal|l | T |IS|PS|S|C|h
E; 1 3 1 6 2 2 1 2 2
Es 2 1 2 7 3 5] 2 3 3
Bs | 3|2|alals]1]3]6]s
Ey 4 8 3 3 7 3 4 7 5
Es | 5|76 2]1]9 6 6 | 9|9
Es | 619|556 4 5156 |7
E: | 716 ([7]9]1 8 7111
Es | 8|10 8| 8] 8 7 8 | 8 (7
Eg 9 4 9 110 4 9 9 4 4
Fipol|l10]| 5|10 1 [10] 10 |10 | 10 | 10

Table 6.15. Rankings of contingency tables using the asymmetric measures given in Table 6.12.

X|M|J|G|L|V]F]|AV
B, | L | L |1l ]|l 2]z2]2]5
B, 222|351 ]1] 66
Es |53 |5)2]|2|6|6]| 4
Es |46 |3|aflo]|3 ]3] 1
Es|o|7|4a|l6|8]|5]|5] 2
Es |3 |8 |65 |7]4a|4a]| 3
Er |75 |98 |3|7|7]| 09
Es|8|o|7|7]|1w0]|8|8]| 7
Eo |64 |10|l9|1]9|9] 10
Ep|10|10]| 8 |10] 6 [10|10] 8

factor and odds ratio. Furthermore, a contingency table such as E1g is ranked
lowest according to the ¢-coefficient, but highest according to interest factor.

Properties of Objective Measures

The results shown in Table 6.14 suggest that a significant number of the mea-
sures provide conflicting information about the quality of a pattern. To under-
stand their differences, we need to examine the properties of these measures.

Inversion Property Consider the bit vectors shown in Figure 6.28. The
0/1 bit in each column vector indicates whether a transaction (row) contains
a particular item (column). For example, the vector A indicates that item a
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Figure 6.28. Effect of the inversion operation. The vectors C' and E are inversions of vector A, while
the vector D is an inversion of vectors B and F'.

belongs to the first and last transactions, whereas the vector B indicates that
item b is contained only in the fifth transaction. The vectors C and E are in
fact related to the vector A—their bits have been inverted from 0’s (absence)
to 1’s (presence), and vice versa. Similarly, D is related to vectors B and F by
inverting their bits. The process of flipping a bit vector is called inversion.
If a measure is invariant under the inversion operation, then its value for the
vector pair (C,D) should be identical to its value for (A,B). The inversion
property of a measure can be tested as follows.

Definition 6.6 (Inversion Property). An objective measure M is invariant
under the inversion operation if its value remains the same when exchanging
the frequency counts f1; with foo and fip with fo:.

Among the measures that remain invariant under this operation include
the ¢-coefficient, odds ratio, k, and collective strength. These measures may
not be suitable for analyzing asymmetric binary data. For example, the ¢-
coefficient between C and D is identical to the ¢-coefficient between A and
B, even though items ¢ and d appear together more frequently than a and b.
Furthermore, the ¢-coefficient between C and D is less than that between E
and F even though items e and f appear together only once! We had previously
raised this issue when discussing the limitations of the ¢-coefficient on page
375. For asymmetric binary data, measures that do not remain invariant under
the inversion operation are preferred. Some of the non-invariant measures
include interest factor, 1.5, PS, and the Jaccard coeflicient.
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Null Addition Property Suppose we are interested in analyzing the re-
lationship between a pair of words, such as data and mining, in a set of
documents. If a collection of articles about ice fishing is added to the data set,
should the association between data and mining be affected? This process of
adding unrelated data (in this case, documents) to a given data set is known
as the null addition operation.

Definition 6.7 (Null Addition Property). An objective measure M is
invariant under the null addition operation if it is not affected by increasing
foo, while all other frequencies in the contingency table stay the same.

For applications such as document analysis or market basket analysis, the
measure is expected to remain invariant under the null addition operation.
Otherwise, the relationship between words may disappear simply by adding
enough documents that do not contain both words! Examples of measures
that satisfy this property include cosine (I.S) and Jaccard (§) measures, while
those that violate this property include interest factor, PS, odds ratio, and
the ¢-coeflicient.

Scaling Property Table 6.16 shows the contingency tables for gender and
the grades achieved by students enrolled in a particular course in 1993 and
2004. The data in these tables showed that the number of male students has
doubled since 1993, while the number of female students has increased by a
factor of 3. However, the male students in 2004 are not performing any better
than those in 1993 because the ratio of male students who achieve a high
grade to those who achieve a low grade is still the same, i.e., 3:4. Similarly,
the female students in 2004 are performing no better than those in 1993. The
association between grade and gender is expected to remain unchanged despite
changes in the sampling distribution.

Table 6.16. The grade-gender example.

Male | Female Male | Female
High 30 20 50 High 60 60 120
Low 40 10 50 Low 80 30 110
70 30 100 140 90 230

(a) Sample data from 1993. (b) Sample data from 2004.
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Table 6.17. Properties of symmetric measures.

Symbol | Measure Inversion | Null Addition | Scaling
o ¢-coeflicient Yes No No
a odds ratio Yes No Yes
K Cohen’s Yes No No
I Interest No No No

IS Cosine No Yes No
PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
¢ Jaccard No Yes No
h All-confidence No No No
s Support No No No

Definition 6.8 (Scaling Invariance Property). An objective measure M
is invariant under the row/column scaling operation if M (T") = M(T"), where
T is a contingency table with frequency counts [fi1; fio; fo1; foo), T is a
contingency table with scaled frequency counts [kiksfi1; kaksfio; kikafor;
kaka foo], and ki1, k2, k3, k4 are positive constants.

From Table 6.17, notice that only the odds ratio (a) is invariant under
the row and column scaling operations. All other measures such as the ¢-
coefficient, k, IS, interest factor, and collective strength (S) change their val-
ues when the rows and columns of the contingency table are rescaled. Although
we do not discuss the properties of asymmetric measures (such as confidence,
J-measure, Gini index, and conviction), it is clear that such measures do not
preserve their values under inversion and row/column scaling operations, but
are invariant under the null addition operation.

6.7.2 Measures beyond Pairs of Binary Variables

The measures shown in Tables 6.11 and 6.12 are defined for pairs of binary vari-
ables (e.g., 2-itemsets or association rules). However, many of them, such as
support and all-confidence, are also applicable to larger-sized itemsets. Other
measures, such as interest factor, 1.5, PS, and Jaccard coefficient, can be ex-
tended to more than two variables using the frequency tables tabulated in a
multidimensional contingency table. An example of a three-dimensional con-
tingency table for a, b, and c is shown in Table 6.18. Each entry f;j; in this
table represents the number of transactions that contain a particular combi-
nation of items a, b, and ¢. For example, fip; is the number of transactions
that contain a and ¢, but not b. On the other hand, a marginal frequency
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Table 6.18. Example of a three-dimensional contingency table.

c b b [ b b

a | fin | fim | fiya a | fio | fioo | fi40

a | four | Joor | fot1 a | foio | fooo | foto
frun | o1 | fo41 J+10 | froo | f++0

such as fi4+1 is the number of transactions that contain a and c, irrespective
of whether b is present in the transaction.

Given a k-itemset {71, i2,.. ., i}, the condition for statistical independence
can be stated as follows:

f' 4.4 X f+i et X X f++...'
filig.uik = 2Nk—1 = . (612)

With this definition, we can extend objective measures such as interest factor
and PS, which are based on deviations from statistical independence, to more
than two variables:

e Jiitsi

Jirtod X friget X oo X fhgin

pg = Jiizein it X Frigd X0 X Frp ik
N Nk

Another approach is to define the objective measure as the maximum, min-
imum, or average value for the associations between pairs of items in a pat-
tern. For example, given a k-itemset X = {i1,42,...,%k}, we may define the
¢-coefficient for X as the average ¢-coefficient between every pair of items
(ip,iq) in X. However, because the measure considers only pairwise associa-
tions, it may not capture all the underlying relationships within a pattern.

Analysis of multidimensional contingency tables is more complicated be-
cause of the presence of partial associations in the data. For example, some
associations may appear or disappear when conditioned upon the value of cer-
tain variables. This problem is known as Simpson’s paradox and is described
in the next section. More sophisticated statistical techniques are available to
analyze such relationships, e.g., loglinear models, but these techniques are
beyond the scope of this book.
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Table 6.19. A two-way contingency table between the sale of high-definition television and exercise
machine.

Buy Buy Exercise Machine
HDTV Yes No
Yes 99 81 180
No 54 66 120
153 147 300

Table 6.20. Example of a three-way contingency table.

Customer Buy Buy Exercise Machine | Total

Group HDTV Yes No

College Students Yes 1 9 10
No 4 30 34

Working Adult Yes 98 72 170
No 50 36 86

6.7.3 Simpson’s Paradox

It is important to exercise caution when interpreting the association between
variables because the observed relationship may be influenced by the presence
of other confounding factors, i.e., hidden variables that are not included in
the analysis. In some cases, the hidden variables may cause the observed
relationship between a pair of variables to disappear or reverse its direction, a
phenomenon that is known as Simpson’s paradox. We illustrate the nature of
this paradox with the following example.

Consider the relationship between the sale of high-definition television
(HDTV) and exercise machine, as shown in Table 6.19. The rule {HDTV=Yes}
— {Exercise machine=Yes} has a confidence of 99/180 = 55% and the rule
{HDTV=No} — {Exercise machine=Yes} has a confidence of 54/120 = 45%.
Together, these rules suggest that customers who buy high-definition televi-
sions are more likely to buy exercise machines than those who do not buy
high-definition televisions.

However, a deeper analysis reveals that the sales of these items depend
on whether the customer is a college student or a working adult. Table 6.20
summarizes the relationship between the sale of HDTVs and exercise machines
among college students and working adults. Notice that the support counts
given in the table for college students and working adults sum up to the fre-
quencies shown in Table 6.19. Furthermore, there are more working adults
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than college students who buy these items. For college students:

c({HDTV=Yes} — {Exercise machine=Yes}) = 1/10=10%,
c({HDTV=No} — {Exercise machine=Yes}) = 4/34 =11.8%,

while for working adults:

c({HDTV=Yes} — {Exercise machine=Yes}) = 98/170 = 57.7%,
c({HDTV=No} — {Exercise machine=Yes}) = 50/86 = 58.1%.

The rules suggest that, for each group, customers who do not buy high-
definition televisions are more likely to buy exercise machines, which contradict
the previous conclusion when data from the two customer groups are pooled
together. Even if alternative measures such as correlation, odds ratio, or
interest are applied, we still find that the sale of HDTV and exercise machine
is positively correlated in the combined data but is negatively correlated in
the stratified data (see Exercise 20 on page 414). The reversal in the direction
of association is known as Simpson’s paradox.

The paradox can be explained in the following way. Notice that most
customers who buy HDTVs are working adults. Working adults are also the
largest group of customers who buy exercise machines. Because nearly 85% of
the customers are working adults, the observed relationship between HDTV
and exercise machine turns out to be stronger in the combined data than
what it would have been if the data is stratified. This can also be illustrated
mathematically as follows. Suppose

a/b<c/d and p/q<r/s,

where a/b and p/q may represent the confidence of the rule A — B in two
different strata, while ¢/d and r/s may represent the confidence of the rule
A — B in the two strata. When the data is pooled together, the confidence
values of the rules in the combined data are (a+p)/(b+¢q) and (c+7)/(d+s),
respectively. Simpson’s paradox occurs when

a+p > c+t+r
b+q d+3s’

thus leading to the wrong conclusion about the relationship between the vari-
ables. The lesson here is that proper stratification is needed to avoid generat-
ing spurious patterns resulting from Simpson’s paradox. For example, market
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Figure 6.29. Support distribution of items in the census data set.

basket data from a major supermarket chain should be stratified according to
store locations, while medical records from various patients should be stratified
according to confounding factors such as age and gender.

6.8 Effect of Skewed Support Distribution

The performances of many association analysis algorithms are influenced by
properties of their input data. For example, the computational complexity of
the Apriori algorithm depends on properties such as the number of items in
the data and average transaction width. This section examines another impor-
tant property that has significant influence on the performance of association
analysis algorithms as well as the quality of extracted patterns. More specifi-
cally, we focus on data sets with skewed support distributions, where most of
the items have relatively low to moderate frequencies, but a small number of
them have very high frequencies.

An example of a real data set that exhibits such a distribution is shown in
Figure 6.29. The data, taken from the PUMS (Public Use Microdata Sample)
census data, contains 49,046 records and 2113 asymmetric binary variables.
We shall treat the asymmetric binary variables as items and records as trans-
actions in the remainder of this section. While more than 80% of the items
have support less than 1%, a handful of them have support greater than 90%.
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Table 6.21. Grouping the items in the census data set based on their support values.

Group G Gs Gs
Support <1% | 1% —90% | > 90%
Number of Items | 1735 358 20

To illustrate the effect of skewed support distribution on frequent itemset min-
ing, we divide the items into three groups, G1, Go, and G3, according to their
support levels. The number of items that belong to each group is shown in
Table 6.21.

Choosing the right support threshold for mining this data set can be quite
tricky. If we set the threshold too high (e.g., 20%), then we may miss many
interesting patterns involving the low support items from G;. In market bas-
ket analysis, such low support items may correspond to expensive products
(such as jewelry) that are seldom bought by customers, but whose patterns
are still interesting to retailers. Conversely, when the threshold is set too
low, it becomes difficult to find the association patterns due to the following
reasons. First, the computational and memory requirements of existing asso-
ciation analysis algorithms increase considerably with low support thresholds.
Second, the number of extracted patterns also increases substantially with low
support thresholds. Third, we may extract many spurious patterns that relate
a high-frequency item such as milk to a low-frequency item such as caviar.
Such patterns, which are called cross-support patterns, are likely to be spu-
rious because their correlations tend to be weak. For example, at a support
threshold equal to 0.05%, there are 18,847 frequent pairs involving items from
G1 and G3. Out of these, 93% of them are cross-support patterns; i.e., the pat-
terns contain items from both G; and (G3. The maximum correlation obtained
from the cross-support patterns is 0.029, which is much lower than the max-
imum correlation obtained from frequent patterns involving items from the
same group (which is as high as 1.0). Similar statement can be made about
many other interestingness measures discussed in the previous section. This
example shows that a large number of weakly correlated cross-support pat-
terns can be generated when the support threshold is sufficiently low. Before
presenting a methodology for eliminating such patterns, we formally define the
concept of cross-support patterns.
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Definition 6.9 (Cross-Support Pattern). A cross-support pattern is an

itemset X = {iy,49,...,%} whose support ratio
Ay min [s(i.ﬂ,s(é.z), s ,S(i.k)] , (6.13)
max [s(i1), s(i2), - - - , 8(ix)]

is less than a user-specified threshold h,.

Example 6.4. Suppose the support for milk is 70%, while the support for
sugar is 10% and caviar is 0.04%. Given h, = 0.01, the frequent itemset
{milk, sugar, caviar} is a cross-support pattern because its support ratio is

~ min [0.7,0.1,0.0004] _ 0.0004

r= = = 0.00058 < 0.01.
max [0.7,0.1,0.0004] 0.7

Existing measures such as support and confidence may not be sufficient
to eliminate cross-support patterns, as illustrated by the data set shown in
Figure 6.30. Assuming that h. = 0.3, the itemsets {p, ¢}, {p,r}, and {p,q,r}
are cross-support patterns because their support ratios, which are equal to
0.2, are less than the threshold h.. Although we can apply a high support
threshold, say, 20%, to eliminate the cross-support patterns, this may come
at the expense of discarding other interesting patterns such as the strongly
correlated itemset, {q,r} that has support equal to 16.7%.

Confidence pruning also does not help because the confidence of the rules
extracted from cross-support patterns can be very high. For example, the
confidence for {g} — {p} is 80% even though {p, ¢} is a cross-support pat-
tern. The fact that the cross-support pattern can produce a high-confidence
rule should not come as a surprise because one of its items (p) appears very
frequently in the data. Therefore, p is expected to appear in many of the
transactions that contain q. Meanwhile, the rule {¢} — {r} also has high
confidence even though {g¢,r} is not a cross-support pattern. This example
demonstrates the difficulty of using the confidence measure to distinguish be-
tween rules extracted from cross-support and non-cross-support patterns.

Returning to the previous example, notice that the rule {p} — {q} has
very low confidence because most of the transactions that contain p do not
contain ¢. In contrast, the rule {r} — {q}, which is derived from the pattern
{g,r}, has very high confidence. This observation suggests that cross-support
patterns can be detected by examining the lowest confidence rule that can be
extracted from a given itemset. The proof of this statement can be understood
as follows.
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Figure 6.30. A transaction data set containing three items, p, ¢, and r, where p is a high support item
and ¢ and r are low support items.

1. Recall the following anti-monotone property of confidence:

conf({ivia} — {i3,ia,...,ix}) < conf({iriais} — {ia,i5,...,%k}).

This property suggests that confidence never increases as we shift more
items from the left- to the right-hand side of an association rule. Because
of this property, the lowest confidence rule extracted from a frequent
itemset contains only one item on its left-hand side. We denote the set
of all rules with only one item on its left-hand side as R;.

2. Given a frequent itemset {i1,1%2,...,%}, the rule
{ij} — {ir,d2, ... 0j—1,9541, ..., ik}
has the lowest confidence in R if s(i;) = max [s(i1), s(i2),. .., s(ix)].

This follows directly from the definition of confidence as the ratio be-
tween the rule’s support and the support of the rule antecedent.
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3. Summarizing the previous points, the lowest confidence attainable from

a frequent itemset {i1,42,...,7} is
S({él, i..g, R ,‘e‘:k})
max [s(i1), s(i2), - - -, 5(ik)]

This expression is also known as the h-confidence or all-confidence
measure. Because of the anti-monotone property of support, the numer-
ator of the h-confidence measure is bounded by the minimum support
of any item that appears in the frequent itemset. In other words, the
h-confidence of an itemset X = {41, %2,...,4} must not exceed the fol-
lowing expression:

min [s(il), s(i2)y ...y S(ik)]

h-confidence(X) < max [5(21), 5(i2)s (i8]

Note the equivalence between the upper bound of h-confidence and the
support ratio (r) given in Equation 6.13. Because the support ratio for
a cross-support pattern is always less than h,, the h-confidence of the
pattern is also guaranteed to be less than h,.

Therefore, cross-support patterns can be eliminated by ensuring that the
h-confidence values for the patterns exceed h.. As a final note, it is worth
mentioning that the advantages of using h-confidence go beyond eliminating
cross-support patterns. The measure is also anti-monotone, i.e.,

h-confidence({i1,%2,...,%}) > h-confidence({i1, 42, ...,%k+1}),

and thus can be incorporated directly into the mining algorithm. Furthermore,
h-confidence ensures that the items contained in an itemset are strongly asso-
ciated with each other. For example, suppose the h-confidence of an itemset
X is 80%. If one of the items in X is present in a transaction, there is at least
an 80% chance that the rest of the items in X also belong to the same trans-
action. Such strongly associated patterns are called hyperclique patterns.

6.9 Bibliographic Notes

The association rule mining task was first introduced by Agrawal et al. in
[228, 229] to discover interesting relationships among items in market basket



Cluster Analysis:
Basic Concepts and
Algorithms

Cluster analysis divides data into groups (clusters) that are meaningful, useful,
or both. If meaningful groups are the goal, then the clusters should capture the
natural structure of the data. In some cases, however, cluster analysis is only a
useful starting point for other purposes, such as data summarization. Whether
for understanding or utility, cluster analysis has long played an important
role in a wide variety of fields: psychology and other social sciences, biology,
statistics, pattern recognition, information retrieval, machine learning, and
data mining.

There have been many applications of cluster analysis to practical prob-
lems. We provide some specific examples, organized by whether the purpose
of the clustering is understanding or utility.

Clustering for Understanding Classes, or conceptually meaningful groups
of objects that share common characteristics, play an important role in how
people analyze and describe the world. Indeed, human beings are skilled at
dividing objects into groups (clustering) and assigning particular objects to
these groups (classification). For example, even relatively young children can
quickly label the objects in a photograph as buildings, vehicles, people, ani-
mals, plants, etc. In the context of understanding data, clusters are potential
classes and cluster analysis is the study of techniques for automatically finding
classes. The following are some examples:
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¢ Biology. Biologists have spent many years creating a taxonomy (hi-
erarchical classification) of all living things: kingdom, phylum, class,
order, family, genus, and species. Thus, it is perhaps not surprising that
much of the early work in cluster analysis sought to create a discipline
of mathematical taxonomy that could automatically find such classifi-
cation structures. More recently, biologists have applied clustering to
analyze the large amounts of genetic information that are now available.
For example, clustering has been used to find groups of genes that have
similar functions.

e Information Retrieval. The World Wide Web consists of billions of
Web pages, and the results of a query to a search engine can return
thousands of pages. Clustering can be used to group these search re-
sults into a small number of clusters, each of which captures a particular
aspect of the query. For instance, a query of “movie” might return
Web pages grouped into categories such as reviews, trailers, stars, and
theaters. Each category (cluster) can be broken into subcategories (sub-
clusters), producing a hierarchical structure that further assists a user’s
exploration of the query results.

e Climate. Understanding the Earth’s climate requires finding patterns
in the atmosphere and ocean. To that end, cluster analysis has been
applied to find patterns in the atmospheric pressure of polar regions and
areas of the ocean that have a significant impact on land climate.

e Psychology and Medicine. An illness or condition frequently has a
number of variations, and cluster analysis can be used to identify these
different subcategories. For example, clustering has been used to identify
different types of depression. Cluster analysis can also be used to detect
patterns in the spatial or temporal distribution of a disease.

e Business. Businesses collect large amounts of information on current
and potential customers. Clustering can be used to segment customers
into a small number of groups for additional analysis and marketing
activities.

Clustering for Utility Cluster analysis provides an abstraction from in-
dividual data objects to the clusters in which those data objects reside. Ad-
ditionally, some clustering techniques characterize each cluster in terms of a
cluster prototype; i.e., a data object that is representative of the other ob-
jects in the cluster. These cluster prototypes can be used as the basis for a
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number of data analysis or data processing techniques. Therefore, in the con-
text of utility, cluster analysis is the study of techniques for finding the most
representative cluster prototypes.

e Summarization. Many data analysis techniques, such as regression or
PCA, have a time or space complexity of O(m?) or higher (where m is
the number of objects), and thus, are not practical for large data sets.
However, instead of applying the algorithm to the entire data set, it can
be applied to a reduced data set consisting only of cluster prototypes.
Depending on the type of analysis, the number of prototypes, and the
accuracy with which the prototypes represent the data, the results can
be comparable to those that would have been obtained if all the data
could have been used.

e Compression. Cluster prototypes can also be used for data compres-
sion. In particular, a table is created that consists of the prototypes for
each cluster; i.e., each prototype is assigned an integer value that is its
position (index) in the table. Each object is represented by the index
of the prototype associated with its cluster. This type of compression is
known as vector quantization and is often applied to image, sound,
and video data, where (1) many of the data objects are highly similar
to one another, (2) some loss of information is acceptable, and (3) a
substantial reduction in the data size is desired.

e Efficiently Finding Nearest Neighbors. Finding nearest neighbors
can require computing the pairwise distance between all points. Often
clusters and their cluster prototypes can be found much more efficiently.
If objects are relatively close to the prototype of their cluster, then we can
use the prototypes to reduce the number of distance computations that
are necessary to find the nearest neighbors of an object. Intuitively, if two
cluster prototypes are far apart, then the objects in the corresponding
clusters cannot be nearest neighbors of each other. Consequently, to
find an object’s nearest neighbors it is only necessary to compute the
distance to objects in nearby clusters, where the nearness of two clusters
is measured by the distance between their prototypes. This idea is made
more precise in Exercise 25 on page 94.

This chapter provides an introduction to cluster analysis. We begin with
a high-level overview of clustering, including a discussion of the various ap-
proaches to dividing objects into sets of clusters and the different types of
clusters. We then describe three specific clustering techniques that represent
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broad categories of algorithms and illustrate a variety of concepts: K-means,
agglomerative hierarchical clustering, and DBSCAN. The final section of this
chapter is devoted to cluster validity—methods for evaluating the goodness
of the clusters produced by a clustering algorithm. More advanced clustering
concepts and algorithms will be discussed in Chapter 9. Whenever possible,
we discuss the strengths and weaknesses of different schemes. In addition,
the bibliographic notes provide references to relevant books and papers that
explore cluster analysis in greater depth.

8.1 Overview

Before discussing specific clustering techniques, we provide some necessary
background. First, we further define cluster analysis, illustrating why it is
difficult and explaining its relationship to other techniques that group data.
Then we explore two important topics: (1) different ways to group a set of
objects into a set of clusters, and (2) types of clusters.

8.1.1 What Is Cluster Analysis?

Cluster analysis groups data objects based only on information found in the
data that describes the objects and their relationships. The goal is that the
objects within a group be similar (or related) to one another and different from
(or unrelated to) the objects in other groups. The greater the similarity (or
homogeneity) within a group and the greater the difference between groups,
the better or more distinct the clustering.

In many applications, the notion of a cluster is not well defined. To better
understand the difficulty of deciding what constitutes a cluster, consider Figure
8.1, which shows twenty points and three different ways of dividing them into
clusters. The shapes of the markers indicate cluster membership. Figures
8.1(b) and 8.1(d) divide the data into two and six parts, respectively. However,
the apparent division of each of the two larger clusters into three subclusters
may simply be an artifact of the human visual system. Also, it may not be
unreasonable to say that the points form four clusters, as shown in Figure
8.1(c). This figure illustrates that the definition of a cluster is imprecise and
that the best definition depends on the nature of data and the desired results.

Cluster analysis is related to other techniques that are used to divide data
objects into groups. For instance, clustering can be regarded as a form of
classification in that it creates a labeling of objects with class (cluster) labels.
However, it derives these labels only from the data. In contrast, classification
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Figure 8.1. Different ways of clustering the same set of points.

in the sense of Chapter 4 is supervised classification; i.e., new, unlabeled
objects are assigned a class label using a model developed from objects with
known class labels. For this reason, cluster analysis is sometimes referred
to as unsupervised classification. When the term classification is used
without any qualification within data mining, it typically refers to supervised
classification.

Also, while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches
outside the traditional bounds of cluster analysis. For example, the term
partitioning is often used in connection with techniques that divide graphs into
subgraphs and that are not strongly connected to clustering. Segmentation
often refers to the division of data into groups using simple techniques; e.g.,
an image can be split into segments based only on pixel intensity and color, or
people can be divided into groups based on their income. Nonetheless, some
work in graph partitioning and in image and market segmentation is related
to cluster analysis.

8.1.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clusterings: hierarchical (nested)
versus partitional (unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

Hierarchical versus Partitional The most commonly discussed distinc-
tion among different types of clusterings is whether the set of clusters is nested
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or unnested, or in more traditional terminology, hierarchical or partitional. A
partitional clustering is simply a division of the set of data objects into
non-overlapping subsets (clusters) such that each data object is in exactly one
subset. Taken individually, each collection of clusters in Figures 8.1 (b-d) is
a partitional clustering.

If we permit clusters to have subclusters, then we obtain a hierarchical
clustering, which is a set of nested clusters that are organized as a tree. Each
node (cluster) in the tree (except for the leaf nodes) is the union of its children
(subclusters), and the root of the tree is the cluster containing all the objects.
Often, but not always, the leaves of the tree are singleton clusters of individual
data objects. If we allow clusters to be nested, then one interpretation of
Figure 8.1(a) is that it has two subclusters (Figure 8.1(b)), each of which, in
turn, has three subclusters (Figure 8.1(d)). The clusters shown in Figures 8.1
(a—d), when taken in that order, also form a hierarchical (nested) clustering
with, respectively, 1, 2, 4, and 6 clusters on each level. Finally, note that a
hierarchical clustering can be viewed as a sequence of partitional clusterings
and a partitional clustering can be obtained by taking any member of that
sequence; i.e., by cutting the hierarchical tree at a particular level.

Exclusive versus Overlapping versus Fuzzy The clusterings shown in
Figure 8.1 are all exclusive, as they assign each object to a single cluster.
There are many situations in which a point could reasonably be placed in more
than one cluster, and these situations are better addressed by non-exclusive
clustering. In the most general sense, an overlapping or non-exclusive
clustering is used to reflect the fact that an object can simultaneously belong
to more than one group (class). For instance, a person at a university can be
both an enrolled student and an employee of the university. A non-exclusive
clustering is also often used when, for example, an object is “between” two
or more clusters and could reasonably be assigned to any of these clusters.
Imagine a point halfway between two of the clusters of Figure 8.1. Rather
than make a somewhat arbitrary assignment of the object to a single cluster,
it is placed in all of the “equally good” clusters.

In a fuzzy clustering, every object belongs to every cluster with a mem-
bership weight that is between 0 (absolutely doesn’t belong) and 1 (absolutely
belongs). In other words, clusters are treated as fuzzy sets. (Mathematically,
a fuzzy set is one in which an object belongs to any set with a weight that
is between 0 and 1. In fuzzy clustering, we often impose the additional con-
straint that the sum of the weights for each object must equal 1.) Similarly,
probabilistic clustering techniques compute the probability with which each
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point belongs to each cluster, and these probabilities must also sum to 1. Be-
cause the membership weights or probabilities for any object sum to 1, a fuzzy
or probabilistic clustering does not address true multiclass situations, such as
the case of a student employee, where an object belongs to multiple classes.
Instead, these approaches are most appropriate for avoiding the arbitrariness
of assigning an object to only one cluster when it may be close to several. In
practice, a fuzzy or probabilistic clustering is often converted to an exclusive
clustering by assigning each object to the cluster in which its membership
weight or probability is highest.

Complete versus Partial A complete clustering assigns every object to
a cluster, whereas a partial clustering does not. The motivation for a partial
clustering is that some objects in a data set may not belong to well-defined
groups. Many times objects in the data set may represent noise, outliers, or
“uninteresting background.” For example, some newspaper stories may share
a common theme, such as global warming, while other stories are more generic
or one-of-a-kind. Thus, to find the important topics in last month’s stories, we
may want to search only for clusters of documents that are tightly related by a
common theme. In other cases, a complete clustering of the objects is desired.
For example, an application that uses clustering to organize documents for
browsing needs to guarantee that all documents can be browsed.

8.1.3 Different Types of Clusters

Clustering aims to find useful groups of objects (clusters), where usefulness is
defined by the goals of the data analysis. Not surprisingly, there are several
different notions of a cluster that prove useful in practice. In order to visually
illustrate the differences among these types of clusters, we use two-dimensional
points, as shown in Figure 8.2, as our data objects. We stress, however, that
the types of clusters described here are equally valid for other kinds of data.

Well-Separated A cluster is a set of objects in which each object is closer
(or more similar) to every other object in the cluster than to any object not
in the cluster. Sometimes a threshold is used to specify that all the objects in
a cluster must be sufficiently close (or similar) to one another. This idealistic
definition of a cluster is satisfied only when the data contains natural clusters
that are quite far from each other. Figure 8.2(a) gives an example of well-
separated clusters that consists of two groups of points in a two-dimensional
space. The distance between any two points in different groups is larger than
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the distance between any two points within a group. Well-separated clusters
do not need to be globular, but can have any shape.

Prototype-Based A cluster is a set of objects in which each object is closer
(more similar) to the prototype that defines the cluster than to the prototype
of any other cluster. For data with continuous attributes, the prototype of a
cluster is often a centroid, i.e., the average (mean) of all the points in the clus-
ter. When a centroid is not meaningful, such as when the data has categorical
attributes, the prototype is often a medoid, i.e., the most representative point
of a cluster. For many types of data, the prototype can be regarded as the
most central point, and in such instances, we commonly refer to prototype-
based clusters as center-based clusters. Not surprisingly, such clusters tend
to be globular. Figure 8.2(b) shows an example of center-based clusters.

Graph-Based If the data is represented as a graph, where the nodes are
objects and the links represent connections among objects (see Section 2.1.2),
then a cluster can be defined as a connected component; i.e., a group of
objects that are connected to one another, but that have no connection to
objects outside the group. An important example of graph-based clusters are
contiguity-based clusters, where two objects are connected only if they are
within a specified distance of each other. This implies that each object in a
contiguity-based cluster is closer to some other object in the cluster than to
any point in a different cluster. Figure 8.2(c) shows an example of such clusters
for two-dimensional points. This definition of a cluster is useful when clusters
are irregular or intertwined, but can have trouble when noise is present since,
as illustrated by the two spherical clusters of Figure 8.2(c), a small bridge of
points can merge two distinct clusters.

Other types of graph-based clusters are also possible. One such approach
(Section 8.3.2) defines a cluster as a clique; i.e., a set of nodes in a graph that
are completely connected to each other. Specifically, if we add connections
between objects in the order of their distance from one another, a cluster is
formed when a set of objects forms a clique. Like prototype-based clusters,
such clusters tend to be globular.

Density-Based A cluster is a dense region of objects that is surrounded by
a region of low density. Figure 8.2(d) shows some density-based clusters for
data created by adding noise to the data of Figure 8.2(c). The two circular
clusters are not merged, as in Figure 8.2(c), because the bridge between them
fades into the noise. Likewise, the curve that is present in Figure 8.2(c) also
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fades into the noise and does not form a cluster in Figure 8.2(d). A density-
based definition of a cluster is often employed when the clusters are irregular or
intertwined, and when noise and outliers are present. By contrast, a contiguity-
based definition of a cluster would not work well for the data of Figure 8.2(d)
since the noise would tend to form bridges between clusters.

Shared-Property (Conceptual Clusters) More generally, we can define
a cluster as a set of objects that share some property. This definition encom-
passes all the previous definitions of a cluster; e.g., objects in a center-based
cluster share the property that they are all closest to the same centroid or
medoid. However, the shared-property approach also includes new types of
clusters. Consider the clusters shown in Figure 8.2(e). A triangular area
(cluster) is adjacent to a rectangular one, and there are two intertwined circles
(clusters). In both cases, a clustering algorithm would need a very specific
concept of a cluster to successfully detect these clusters. The process of find-
ing such clusters is called conceptual clustering. However, too sophisticated
a notion of a cluster would take us into the area of pattern recognition, and
thus, we only consider simpler types of clusters in this book.

Road Map

In this chapter, we use the following three simple, but important techniques
to introduce many of the concepts involved in cluster analysis.

e K-means. This is a prototype-based, partitional clustering technique
that attempts to find a user-specified number of clusters (K), which are
represented by their centroids.

e Agglomerative Hierarchical Clustering. This clustering approach
refers to a collection of closely related clustering techniques that produce
a hierarchical clustering by starting with each point as a singleton cluster
and then repeatedly merging the two closest clusters until a single, all-
encompassing cluster remains. Some of these techniques have a natural
interpretation in terms of graph-based clustering, while others have an
interpretation in terms of a prototype-based approach.

e DBSCAN. This is a density-based clustering algorithm that produces
a partitional clustering, in which the number of clusters is automatically
determined by the algorithm. Points in low-density regions are classi-
fied as noise and omitted; thus, DBSCAN does not produce a complete
clustering.
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(a) Well-separated clusters. Each (b) Center-based clusters. Each
point is closer to all of the points in its point is closer to the center of its
cluster than to any point in another cluster than to the center of any
cluster. other cluster.

(c) Contiguity-based clusters. Each (d) Density-based clusters. Clus-
point is closer to at least one point ters are regions of high density sep-
in its cluster than to any point in arated by regions of low density.

another cluster.

(e) Conceptual clusters. Points in a cluster share some general
property that derives from the entire set of points. (Points in the
intersection of the circles belong to both.)

Figure 8.2. Different types of clusters as illustrated by sets of two-dimensional points.

8.2 K-means

Prototype-based clustering techniques create a one-level partitioning of the
data objects. There are a number of such techniques, but two of the most
prominent are K-means and K-medoid. K-means defines a prototype in terms
of a centroid, which is usually the mean of a group of points, and is typically
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applied to objects in a continuous n-dimensional space. K-medoid defines a
prototype in terms of a medoid, which is the most representative point for a
group of points, and can be applied to a wide range of data since it requires
only a proximity measure for a pair of objects. While a centroid almost never
corresponds to an actual data point, a medoid, by its definition, must be an
actual data point. In this section, we will focus solely on K-means, which is
one of the oldest and most widely used clustering algorithms.

8.2.1 The Basic K-means Algorithm

The K-means clustering technique is simple, and we begin with a description
of the basic algorithm. We first choose K initial centroids, where K is a user-
specified parameter, namely, the number of clusters desired. Each point is
then assigned to the closest centroid, and each collection of points assigned to
a centroid is a cluster. The centroid of each cluster is then updated based on
the points assigned to the cluster. We repeat the assignment and update steps
until no point changes clusters, or equivalently, until the centroids remain the
same.

K-means is formally described by Algorithm 8.1. The operation of K-means
is illustrated in Figure 8.3, which shows how, starting from three centroids, the
final clusters are found in four assignment-update steps. In these and other
figures displaying K-means clustering, each subfigure shows (1) the centroids
at the start of the iteration and (2) the assignment of the points to those
centroids. The centroids are indicated by the “4” symbol; all points belonging
to the same cluster have the same marker shape.

Algorithm 8.1 Basic K-means algorithm.

: Select K points as initial centroids.

repeat
Form K clusters by assigning each point to its closest centroid.
Recompute the centroid of each cluster.

until Centroids do not change.

AN S

In the first step, shown in Figure 8.3(a), points are assigned to the initial
centroids, which are all in the larger group of points. For this example, we use
the mean as the centroid. After points are assigned to a centroid, the centroid
is then updated. Again, the figure for each step shows the centroid at the
beginning of the step and the assignment of points to those centroids. In the
second step, points are assigned to the updated centroids, and the centroids
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Figure 8.3. Using the K-means algorithm to find three clusters in sample data.

are updated again. In steps 2, 3, and 4, which are shown in Figures 8.3 (b),
(c), and (d), respectively, two of the centroids move to the two small groups of
points at the bottom of the figures. When the K-means algorithm terminates
in Figure 8.3(d), because no more changes occur, the centroids have identified
the natural groupings of points.

For some combinations of proximity functions and types of centroids, K-
means always converges to a solution; i.e., K-means reaches a state in which no
points are shifting from one cluster to another, and hence, the centroids don’t
change. Because most of the convergence occurs in the early steps, however,
the condition on line 5 of Algorithm 8.1 is often replaced by a weaker condition,
e.g., repeat until only 1% of the points change clusters.

We consider each of the steps in the basic K-means algorithm in more detail
and then provide an analysis of the algorithm’s space and time complexity.

Assigning Points to the Closest Centroid

To assign a point to the closest centroid, we need a proximity measure that
quantifies the notion of “closest” for the specific data under consideration.
Euclidean (L) distance is often used for data points in Euclidean space, while
cosine similarity is more appropriate for documents. However, there may be
several types of proximity measures that are appropriate for a given type of
data. For example, Manhattan (L) distance can be used for Euclidean data,
while the Jaccard measure is often employed for documents.

Usually, the similarity measures used for K-means are relatively simple
since the algorithm repeatedly calculates the similarity of each point to each
centroid. In some cases, however, such as when the data is in low-dimensional
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Table 8.1. Table of notation.
Symbol | Description

X An object.
C; The " cluster.
c; The centroid of cluster C;.

c The centroid of all points.

m; The number of objects in the it* cluster.
m The number of objects in the data set.
K The number of clusters.

Euclidean space, it is possible to avoid computing many of the similarities,
thus significantly speeding up the K-means algorithm. Bisecting K-means
(described in Section 8.2.3) is another approach that speeds up K-means by
reducing the number of similarities computed.

Centroids and Objective Functions

Step 4 of the K-means algorithm was stated rather generally as “recompute
the centroid of each cluster,” since the centroid can vary, depending on the
proximity measure for the data and the goal of the clustering. The goal of
the clustering is typically expressed by an objective function that depends on
the proximities of the points to one another or to the cluster centroids; e.g.,
minimize the squared distance of each point to its closest centroid. We illus-
trate this with two examples. However, the key point is this: once we have
specified a proximity measure and an objective function, the centroid that we
should choose can often be determined mathematically. We provide mathe-
matical details in Section 8.2.6, and provide a non-mathematical discussion of
this observation here.

Data in Euclidean Space Consider data whose proximity measure is Eu-
clidean distance. For our objective function, which measures the quality of a
clustering, we use the sum of the squared error (SSE), which is also known
as scatter. In other words, we calculate the error of each data point, i.e., its
Euclidean distance to the closest centroid, and then compute the total sum
of the squared errors. Given two different sets of clusters that are produced
by two different runs of K-means, we prefer the one with the smallest squared
error since this means that the prototypes (centroids) of this clustering are
a better representation of the points in their cluster. Using the notation in

Table 8.1, the SSE is formally defined as follows:
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K
SSE=" " dist(c;,x)* (8.1)

i=1 xeC;

where dist is the standard Euclidean (Lg) distance between two objects in
Euclidean space.

Given these assumptions, it can be shown (see Section 8.2.6) that the
centroid that minimizes the SSE of the cluster is the mean. Using the notation
in Table 8.1, the centroid (mean) of the i** cluster is defined by Equation 8.2.

Cc; = L Z X (82)

my
xeC;

To illustrate, the centroid of a cluster containing the three two-dimensional
points, (1,1), (2,3), and (6,2),is (1 +2+6)/3,((1+3+2)/3) =(3,2).

Steps 3 and 4 of the K-means algorithm directly attempt to minimize
the SSE (or more generally, the objective function). Step 3 forms clusters
by assigning points to their nearest centroid, which minimizes the SSE for
the given set of centroids. Step 4 recomputes the centroids so as to further
minimize the SSE. However, the actions of K-means in Steps 3 and 4 are only
guaranteed to find a local minimum with respect to the SSE since they are
based on optimizing the SSE for specific choices of the centroids and clusters,
rather than for all possible choices. We will later see an example in which this
leads to a suboptimal clustering.

Document Data To illustrate that K-means is not restricted to data in
Euclidean space, we consider document data and the cosine similarity measure.
Here we assume that the document data is represented as a document-term
matrix as described on page 31. Our objective is to maximize the similarity
of the documents in a cluster to the cluster centroid; this quantity is known
as the cohesion of the cluster. For this objective it can be shown that the
cluster centroid is, as for Euclidean data, the mean. The analogous quantity
to the total SSE is the total cohesion, which is given by Equation 8.3.

K
Total Cohesion = Z Z cosine(x, ;) (8.3)

i=1 xeC}

The General Case There are a number of choices for the proximity func-
tion, centroid, and objective function that can be used in the basic K-means
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Table 8.2. K-means: Common choices for proximity, centroids, and objective functions.

Proximity Function Centroid | Objective Function
Manhattan (Lj) median | Minimize sum of the L; distance of an ob-
ject to its cluster centroid
Squared Euclidean (L2) mean | Minimize sum of the squared Lo distance
of an object to its cluster centroid
cosine mean Maximize sum of the cosine similarity of
an object to its cluster centroid
Bregman divergence mean Minimize sum of the Bregman divergence
of an object to its cluster centroid

algorithm and that are guaranteed to converge. Table 8.2 shows some possible
choices, including the two that we have just discussed. Notice that for Man-
hattan (L) distance and the objective of minimizing the sum of the distances,
the appropriate centroid is the median of the points in a cluster.

The last entry in the table, Bregman divergence (Section 2.4.5), is actually
a class of proximity measures that includes the squared Euclidean distance, L2,
the Mahalanobis distance, and cosine similarity. The importance of Bregman
divergence functions is that any such function can be used as the basis of a K-
means style clustering algorithm with the mean as the centroid. Specifically,
if we use a Bregman divergence as our proximity function, then the result-
ing clustering algorithm has the usual properties of K-means with respect to
convergence, local minima, etc. Furthermore, the properties of such a cluster-
ing algorithm can be developed for all possible Bregman divergences. Indeed,
K-means algorithms that use cosine similarity or squared Euclidean distance
are particular instances of a general clustering algorithm based on Bregman
divergences.

For the rest our K-means discussion, we use two-dimensional data since
it is easy to explain K-means and its properties for this type of data. But,
as suggested by the last few paragraphs, K-means is a very general clustering
algorithm and can be used with a wide variety of data types, such as documents
and time series.

Choosing Initial Centroids

When random initialization of centroids is used, different runs of K-means
typically produce different total SSEs. We illustrate this with the set of two-
dimensional points shown in Figure 8.3, which has three natural clusters of
points. Figure 8.4(a) shows a clustering solution that is the global minimum of
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Figure 8.4. Three optimal and non-optimal clusters.

the SSE for three clusters, while Figure 8.4(b) shows a suboptimal clustering
that is only a local minimum.

Choosing the proper initial centroids is the key step of the basic K-means
procedure. A common approach is to choose the initial centroids randomly,
but the resulting clusters are often poor.

Example 8.1 (Poor Initial Centroids). Randomly selected initial cen-
troids may be poor. We provide an example of this using the same data set
used in Figures 8.3 and 8.4. Figures 8.3 and 8.5 show the clusters that re-
sult from two particular choices of initial centroids. (For both figures, the
positions of the cluster centroids in the various iterations are indicated by
crosses.) In Figure 8.3, even though all the initial centroids are from one natu-
ral cluster, the minimum SSE clustering is still found. In Figure 8.5, however,
even though the initial centroids seem to be better distributed, we obtain a
suboptimal clustering, with higher squared error. ]

Example 8.2 (Limits of Random Initialization). One technique that
is commonly used to address the problem of choosing initial centroids is to
perform multiple runs, each with a different set of randomly chosen initial
centroids, and then select the set of clusters with the minimum SSE. While
simple, this strategy may not work very well, depending on the data set and
the number of clusters sought. We demonstrate this using the sample data set
shown in Figure 8.6(a). The data consists of two pairs of clusters, where the
clusters in each (top-bottom) pair are closer to each other than to the clusters
in the other pair. Figure 8.6 (b-d) shows that if we start with two initial
centroids per pair of clusters, then even when both centroids are in a single
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Figure 8.5. Poor starting centroids for K-means.

cluster, the centroids will redistribute themselves so that the “true” clusters
are found. However, Figure 8.7 shows that if a pair of clusters has only one
initial centroid and the other pair has three, then two of the true clusters will
be combined and one true cluster will be split.

Note that an optimal clustering will be obtained as long as two initial
centroids fall anywhere in a pair of clusters, since the centroids will redistribute
themselves, one to each cluster. Unfortunately, as the number of clusters
becomes larger, it is increasingly likely that at least one pair of clusters will
have only one initial centroid. (See Exercise 4 on page 559.) In this case,
because the pairs of clusters are farther apart than clusters within a pair, the
K-means algorithm will not redistribute the centroids between pairs of clusters,
and thus, only a local minimum will be achieved. ]

Because of the problems with using randomly selected initial centroids,
which even repeated runs may not overcome, other techniques are often em-
ployed for initialization. One effective approach is to take a sample of points
and cluster them using a hierarchical clustering technique. K clusters are ex-
tracted from the hierarchical clustering, and the centroids of those clusters are
used as the initial centroids. This approach often works well, but is practical
only if (1) the sample is relatively small, e.g., a few hundred to a few thousand
(hierarchical clustering is expensive), and (2) K is relatively small compared
to the sample size.

The following procedure is another approach to selecting initial centroids.
Select the first point at random or take the centroid of all points. Then, for
each successive initial centroid, select the point that is farthest from any of
the initial centroids already selected. In this way, we obtain a set of initial



504 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

A g B 2. A LA o
A A a e ath 0% 9
AL 00 A A A 0CO
N %~ o AA D 095
A AL A o0 AAD A oWV
o %o
A & A v
o +a
O po o Y A O (o]
o
i %
o v o o
oo” Vvvy n%‘u O'n""vvv
O p 7 0O o o}
v v
(a) Initial points. (b) Iteration 1.
A o} A o
A A
A A
A A a 509 9 A A A 009 9
A o0 00
AAD 004 NN °%o
A AL A o 00 A AL A o o0
%o
*® o A o
o o
o oo o [u] oO o
g2o® Vw oo o VVV %
of o v_ v O g v V'FV
o'o v'wvy oo v'w
o 5 AR o o vV
v v
(c) Iteration 2. (d) Iteration 3.

Figure 8.6. Two pairs of clusters with a pair of initial centroids within each pair of clusters.

centroids that is guaranteed to be not only randomly selected but also well
separated. Unfortunately, such an approach can select outliers, rather than
points in dense regions (clusters). Also, it is expensive to compute the farthest
point from the current set of initial centroids. To overcome these problems,
this approach is often applied to a sample of the points. Since outliers are
rare, they tend not to show up in a random sample. In contrast, points
from every dense region are likely to be included unless the sample size is very
small. Also, the computation involved in finding the initial centroids is greatly
reduced because the sample size is typically much smaller than the number of
points.

Later on, we will discuss two other approaches that are useful for produc-
ing better-quality (lower SSE) clusterings: using a variant of K-means that
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Figure 8.7. Two pairs of clusters with more or fewer than two initial centroids within a pair of clusters.

is less susceptible to initialization problems (bisecting K-means) and using

postprocessing to “fixup” the set of clusters produced.

Time and Space Complexity

The space requirements for K-means are modest because only the data points
and centroids are stored. Specifically, the storage required is O((m + K)n),
where m is the number of points and n is the number of attributes. The time
requirements for K-means are also modest—basically linear in the number of

data points. In particular, the time required is O(I * K *m*n), where I is the
number of iterations required for convergence. As mentioned, I is often small

and can usually be safely bounded, as most changes typically occur in the
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first few iterations. Therefore, K-means is linear in m, the number of points,
and is efficient as well as simple provided that K, the number of clusters, is
significantly less than m.

8.2.2 K-means: Additional Issues
Handling Empty Clusters

One of the problems with the basic K-means algorithm given earlier is that
empty clusters can be obtained if no points are allocated to a cluster during
the assignment step. If this happens, then a strategy is needed to choose a
replacement centroid, since otherwise, the squared error will be larger than
necessary. One approach is to choose the point that is farthest away from
any current centroid. If nothing else, this eliminates the point that currently
contributes most to the total squared error. Another approach is to choose
the replacement centroid from the cluster that has the highest SSE. This will
typically split the cluster and reduce the overall SSE of the clustering. If there
are several empty clusters, then this process can be repeated several times.

Outliers

When the squared error criterion is used, outliers can unduly influence the
clusters that are found. In particular, when outliers are present, the resulting
cluster centroids (prototypes) may not be as representative as they otherwise
would be and thus, the SSE will be higher as well. Because of this, it is often
useful to discover outliers and eliminate them beforehand. It is important,
however, to appreciate that there are certain clustering applications for which
outliers should not be eliminated. When clustering is used for data com-
pression, every point must be clustered, and in some cases, such as financial
analysis, apparent outliers, e.g., unusually profitable customers, can be the
most interesting points.

An obvious issue is how to identify outliers. A number of techniques for
identifying outliers will be discussed in Chapter 10. If we use approaches that
remove outliers before clustering, we avoid clustering points that will not clus-
ter well. Alternatively, outliers can also be identified in a postprocessing step.
For instance, we can keep track of the SSE contributed by each point, and
eliminate those points with unusually high contributions, especially over mul-
tiple runs. Also, we may want to eliminate small clusters since they frequently
represent groups of outliers.
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Reducing the SSE with Postprocessing

An obvious way to reduce the SSE is to find more clusters, i.e., to use a larger
K. However, in many cases, we would like to improve the SSE, but don’t
want to increase the number of clusters. This is often possible because K-
means typically converges to a local minimum. Various techniques are used
to “fix up” the resulting clusters in order to produce a clustering that has
lower SSE. The strategy is to focus on individual clusters since the total SSE
is simply the sum of the SSE contributed by each cluster. (We will use the
terminology total SSE and cluster SSE, respectively, to avoid any potential
confusion.) We can change the total SSE by performing various operations
on the clusters, such as splitting or merging clusters. One commonly used
approach is to use alternate cluster splitting and merging phases. During a
splitting phase, clusters are divided, while during a merging phase, clusters
are combined. In this way, it is often possible to escape local SSE minima and
still produce a clustering solution with the desired number of clusters. The
following are some techniques used in the splitting and merging phases.

Two strategies that decrease the total SSE by increasing the number of
clusters are the following;:

Split a cluster: The cluster with the largest SSE is usually chosen, but we
could also split the cluster with the largest standard deviation for one
particular attribute.

Introduce a new cluster centroid: Often the point that is farthest from
any cluster center is chosen. We can easily determine this if we keep
track of the SSE contributed by each point. Another approach is to

choose randomly from all points or from the points with the highest
SSE.

Two strategies that decrease the number of clusters, while trying to mini-
mize the increase in total SSE, are the following:

Disperse a cluster: This is accomplished by removing the centroid that cor-
responds to the cluster and reassigning the points to other clusters. Ide-
ally, the cluster that is dispersed should be the one that increases the
total SSE the least.

Merge two clusters: The clusters with the closest centroids are typically
chosen, although another, perhaps better, approach is to merge the two
clusters that result in the smallest increase in total SSE. These two
merging strategies are the same ones that are used in the hierarchical
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clustering techniques known as the centroid method and Ward’s method,
respectively. Both methods are discussed in Section 8.3.

Updating Centroids Incrementally

Instead of updating cluster centroids after all points have been assigned to a
cluster, the centroids can be updated incrementally, after each assignment of
a point to a cluster. Notice that this requires either zero or two updates to
cluster centroids at each step, since a point either moves to a new cluster (two
updates) or stays in its current cluster (zero updates). Using an incremental
update strategy guarantees that empty clusters are not produced since all
clusters start with a single point, and if a cluster ever has only one point, then
that point will always be reassigned to the same cluster.

In addition, if incremental updating is used, the relative weight of the point
being added may be adjusted; e.g., the weight of points is often decreased as
the clustering proceeds. While this can result in better accuracy and faster
convergence, it can be difficult to make a good choice for the relative weight,
especially in a wide variety of situations. These update issues are similar to
those involved in updating weights for artificial neural networks.

Yet another benefit of incremental updates has to do with using objectives
other than “minimize SSE.” Suppose that we are given an arbitrary objective
function to measure the goodness of a set of clusters. When we process an
individual point, we can compute the value of the objective function for each
possible cluster assignment, and then choose the one that optimizes the objec-
tive. Specific examples of alternative objective functions are given in Section
8.5.2.

On the negative side, updating centroids incrementally introduces an or-
der dependency. In other words, the clusters produced may depend on the
order in which the points are processed. Although this can be addressed by
randomizing the order in which the points are processed, the basic K-means
approach of updating the centroids after all points have been assigned to clus-
ters has no order dependency. Also, incremental updates are slightly more
expensive. However, K-means converges rather quickly, and therefore, the
number of points switching clusters quickly becomes relatively small.

8.2.3 Bisecting K-means

The bisecting K-means algorithm is a straightforward extension of the basic
K-means algorithm that is based on a simple idea: to obtain K clusters, split
the set of all points into two clusters, select one of these clusters to split, and
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so on, until K clusters have been produced. The details of bisecting K-means
are given by Algorithm 8.2.

Algorithm 8.2 Bisecting K-means algorithm.
1: Initialize the list of clusters to contain the cluster consisting of all points.
2: repeat
Remove a cluster from the list of clusters.
{Perform several “trial” bisections of the chosen cluster.}
for i = 1 to number of trials do
Bisect the selected cluster using basic K-means.
end for
Select the two clusters from the bisection with the lowest total SSE.
Add these two clusters to the list of clusters.
until Until the list of clusters contains K clusters.

1

S LTI

There are a number of different ways to choose which cluster to split. We
can choose the largest cluster at each step, choose the one with the largest
SSE, or use a criterion based on both size and SSE. Different choices result in
different clusters.

We often refine the resulting clusters by using their centroids as the initial
centroids for the basic K-means algorithm. This is necessary because, although
the K-means algorithm is guaranteed to find a clustering that represents a local
minimum with respect to the SSE, in bisecting K-means we are using the K-
means algorithm “locally,” i.e., to bisect individual clusters. Therefore, the
final set of clusters does not represent a clustering that is a local minimum
with respect to the total SSE.

Example 8.3 (Bisecting K-means and Initialization). To illustrate that
bisecting K-means is less susceptible to initialization problems, we show, in
Figure 8.8, how bisecting K-means finds four clusters in the data set originally
shown in Figure 8.6(a). In iteration 1, two pairs of clusters are found; in
iteration 2, the rightmost pair of clusters is split; and in iteration 3, the leftmost
pair of clusters is split. Bisecting K-means has less trouble with initialization
because it performs several trial bisections and takes the one with the lowest
SSE, and because there are only two centroids at each step. (]

Finally, by recording the sequence of clusterings produced as K-means
bisects clusters, we can also use bisecting K-means to produce a hierarchical
clustering.
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Figure 8.8. Bisecting K-means on the four clusters example.

8.2.4 K-means and Different Types of Clusters

K-means and its variations have a number of limitations with respect to finding
different types of clusters. In particular, K-means has difficulty detecting the
“natural” clusters, when clusters have non-spherical shapes or widely different
sizes or densities. This is illustrated by Figures 8.9, 8.10, and 8.11. In Figure
8.9, K-means cannot find the three natural clusters because one of the clusters
is much larger than the other two, and hence, the larger cluster is broken, while
one of the smaller clusters is combined with a portion of the larger cluster. In
Figure 8.10, K-means fails to find the three natural clusters because the two
smaller clusters are much denser than the larger cluster. Finally, in Figure
8.11, K-means finds two clusters that mix portions of the two natural clusters
because the shape of the natural clusters is not globular.

The difficulty in these three situations is that the K-means objective func-
tion is a mismatch for the kinds of clusters we are trying to find since it is
minimized by globular clusters of equal size and density or by clusters that are
well separated. However, these limitations can be overcome, in some sense, if
the user is willing to accept a clustering that breaks the natural clusters into a
number of subclusters. Figure 8.12 shows what happens to the three previous
data sets if we find six clusters instead of two or three. Each smaller cluster is
pure in the sense that it contains only points from one of the natural clusters.

8.2.5 Strengths and Weaknesses

K-means is simple and can be used for a wide variety of data types. It is also
quite efficient, even though multiple runs are often performed. Some variants,
including bisecting K-means, are even more efficient, and are less suscepti-
ble to initialization problems. K-means is not suitable for all types of data,
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(a) Original points. (b) Three K-means clusters.

Figure 8.9. K-means with clusters of different size.
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Figure 8.11. K-means with non-globular clusters.
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Figure 8.12. Using K-means to find clusters that are subclusters of the natural clusters.
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however. It cannot handle non-globular clusters or clusters of different sizes
and densities, although it can typically find pure subclusters if a large enough
number of clusters is specified. K-means also has trouble clustering data that
contains outliers. Qutlier detection and removal can help significantly in such
situations. Finally, K-means is restricted to data for which there is a notion of
a center (centroid). A related technique, K-medoid clustering, does not have
this restriction, but is more expensive.

8.2.6 K-means as an Optimization Problem

Here, we delve into the mathematics behind K-means. This section, which can
be skipped without loss of continuity, requires knowledge of calculus through
partial derivatives. Familiarity with optimization techniques, especially those
based on gradient descent, may also be helpful.

As mentioned earlier, given an objective function such as “minimize SSE,”
clustering can be treated as an optimization problem. One way to solve this
problem—to find a global optimum—is to enumerate all possible ways of di-
viding the points into clusters and then choose the set of clusters that best
satisfies the objective function, e.g., that minimizes the total SSE. Of course,
this exhaustive strategy is computationally infeasible and as a result, a more
practical approach is needed, even if such an approach finds solutions that are
not guaranteed to be optimal. One technique, which is known as gradient
descent, is based on picking an initial solution and then repeating the fol-
lowing two steps: compute the change to the solution that best optimizes the
objective function and then update the solution.

We assume that the data is one-dimensional, i.e., dist(z,y) = (z — y)>.
This does not change anything essential, but greatly simplifies the notation.

Derivation of K-means as an Algorithm to Minimize the SSE

In this section, we show how the centroid for the K-means algorithm can be
mathematically derived when the proximity function is Euclidean distance
and the objective is to minimize the SSE. Specifically, we investigate how we
can best update a cluster centroid so that the cluster SSE is minimized. In
mathematical terms, we seek to minimize Equation 8.1, which we repeat here,
specialized for one-dimensional data.

K
SSE=Y ") (ci—x)? (8.4)

i=1 zeC;
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Here, C; is the it® cluster, « is a point in C;, and ¢; is the mean of the t?
cluster. See Table 8.1 for a complete list of notation.

We can solve for the k" centroid ¢, which minimizes Equation 8.4, by
differentiating the SSE, setting it equal to 0, and solving, as indicated below.

8 8 =
6—CkSSE = 6_22;(01_1:
K
0
Sp I
eC;
= ZQ*(ck—mk)ZU
zeCy
ZQ*(ck—mk)—Démkqﬁ—Z:rkéck——z:rk
zeCh, z€Cy k seCy

Thus, as previously indicated, the best centroid for minimizing the SSE of
a cluster is the mean of the points in the cluster.

Derivation of K-means for SAE

To demonstrate that the K-means algorithm can be applied to a variety of
different objective functions, we consider how to partition the data into K
clusters such that the sum of the Manhattan (L;) distances of points from the
center of their clusters is minimized. We are seeking to minimize the sum of
the L; absolute errors (SAE) as given by the following equation, where disty,
is the L, distance. Again, for notational simplicity, we use one-dimensional
data, i.e., disty,, = |¢; — x|.

K
SAE =) ) disty, (ci, z) (8.5)

i=1 zeC;

We can solve for the k* centroid cj, which minimizes Equation 8.5, by
differentiating the SAE, setting it equal to 0, and solving.
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If we solve for ¢, we find that ¢, = median{z € Ci}, the median of the
points in the cluster. The median of a group of points is straightforward to
compute and less susceptible to distortion by outliers.

8.3 Agglomerative Hierarchical Clustering

Hierarchical clustering techniques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms, but they still enjoy widespread use. There are
two basic approaches for generating a hierarchical clustering:

Agglomerative: Start with the points as individual clusters and, at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster
until only singleton clusters of individual points remain. In this case, we
need to decide which cluster to split at each step and how to do the
splitting.

Agglomerative hierarchical clustering techniques are by far the most common,
and, in this section, we will focus exclusively on these methods. A divisive
hierarchical clustering technique is described in Section 9.4.2.

A hierarchical clustering is often displayed graphically using a tree-like
diagram called a dendrogram, which displays both the cluster-subcluster
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(a) Dendrogram. (b) Nested cluster diagram.

Figure 8.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 8.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is described in Section 8.3.2.

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge
the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in Algorithm 8.3.

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

: Compute the proximity matrix, if necessary.

repeat
Merge the closest two clusters.
Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters.

o

o

until Only one cluster remains.
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Defining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example, many agglomerative hierarchical
clustering techniques, such as MIN, MAX, and Group Average, come from
a graph-based view of clusters. MIN defines cluster proximity as the prox-
imity between the closest two points that are in different clusters, or using
graph terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-based clusters as shown in Figure 8.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to be the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.) Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of points from different clusters. Figure 8.14
illustrates these three approaches.

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

If, instead, we take a prototype-based view, in which each cluster is repre-
sented by a centroid, different definitions of cluster proximity are more natural.
When using centroids, the cluster proximity is commonly defined as the prox-
imity between cluster centroids. An alternative technique, Ward’s method,
also assumes that a cluster is represented by its centroid, but it measures the
proximity between two clusters in terms of the increase in the SSE that re-
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sults from merging the two clusters. Like K-means, Ward’s method attempts
to minimize the sum of the squared distances of points from their cluster
centroids.

Time and Space Complexity

The basic agglomerative hierarchical clustering algorithm just presented uses
a proximity matrix. This requires the storage of %mg proximities (assuming
the proximity matrix is symmetric) where m is the number of data points.
The space needed to keep track of the clusters is proportional to the number
of clusters, which is m — 1, excluding singleton clusters. Hence, the total space
complexity is O(m?).

The analysis of the basic agglomerative hierarchical clustering algorithm
is also straightforward with respect to computational complexity. O(m?) time
is required to compute the proximity matrix. After that step, there are m — 1
iterations involving steps 3 and 4 because there are m clusters at the start and
two clusters are merged during each iteration. If performed as a linear search of
the proximity matrix, then for the it* iteration, step 3 requires O((m—i+1)2)
time, which is proportional to the current number of clusters squared. Step
4 only requires O(m — i 4+ 1) time to update the proximity matrix after the
merger of two clusters. (A cluster merger affects only O(m —i+ 1) proximities
for the techniques that we consider.) Without modification, this would yield
a time complexity of O(m?). If the distances from each cluster to all other
clusters are stored as a sorted list (or heap), it is possible to reduce the cost
of finding the two closest clusters to O(m — i + 1). However, because of the
additional complexity of keeping data in a sorted list or heap, the overall time
required for a hierarchical clustering based on Algorithm 8.3 is O(m?logm).

The space and time complexity of hierarchical clustering severely limits the
size of data sets that can be processed. We discuss scalability approaches for
clustering algorithms, including hierarchical clustering techniques, in Section

9.5.
8.3.2 Specific Techniques

Sample Data

To illustrate the behavior of the various hierarchical clustering algorithms,
we shall use sample data that consists of 6 two-dimensional points, which are
shown in Figure 8.15. The z and y coordinates of the points and the Euclidean
distances between them are shown in Tables 8.3 and 8.4, respectively.
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0.6

. 1
0.5
Point | z Coordinate | y Coordinate
04f-® o pl 0.40 0.53
03 3 6 p2 0.22 0.38
o p3 0.35 0.32
' L pd 0.26 0.19
01 p5 0.08 0.41
. p6 0.45 0.30
0 041 02 0.3 0.4 0.5 0.6
Figure 8.15. Set of 6 two-dimensional points. Table 8.3. zy coordinates of 6 points.

pl p2 p3 pd P53 pb6

pl [ 0.00 [ 0.24 | 0.22 [ 0.37 | 0.34 | 0.23
p2 | 0.24 { 0.00 | 0.15 | 0.20 | 0.14 | 0.25
p3 (022015 | 0.00 [ 0.15 | 0.28 | 0.11
p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22
p5 | 034 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39
p6 | 0.23 [ 0.25 | 0.11 | 0.22 | 0.39 | 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6
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(a) Single link clustering. (b) Single link dendrogram.

Figure 8.16. Single link clustering of the six points shown in Figure 8.15.

is 0.11, and that is the height at which they are joined into one cluster in the
dendrogram. As another example, the distance between clusters {3,6} and

{2,5} is given by

dist({3,6},{2,5}) = min(dist(3,2),dist(6,2),dist(3,5),dist(6,5))
min(0.15,0.25,0.28, 0.39)
0.15.

Complete Link or MAX or CLIQUE

For the complete link or MAX version of hierarchical clustering, the proximity
of two clusters is defined as the maximum of the distance (minimum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then a group of points is
not a cluster until all the points in it are completely linked, i.e., form a clique.
Complete link is less susceptible to noise and outliers, but it can break large
clusters and it favors globular shapes.

Example 8.5 (Complete Link). Figure 8.17 shows the results of applying
MAX to the sample data set of six points. As with single link, points 3 and 6
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(a) Complete link clustering. (b) Complete link dendrogram.

Figure 8.17. Complete link clustering of the six points shown in Figure 8.15.

are merged first. However, {3,6} is merged with {4}, instead of {2,5} or {1}
because

dist({3,6},{4}) max(dist(3,4), dist(6,4))

max(0.15,0.22)

0.22.

dist({3,6},{2,5}) = max(dist(3,2),dist(6,2),dist(3,5),dist(6,5))
max(0.15,0.25, 0.28,0.39)

0.39.

dist({3,6},{1}) = max(dist(3,1),dist(6,1))

max(0.22,0.23)

= 0.23.

Group Average

For the group average version of hierarchical clustering, the proximity of two
clusters is defined as the average pairwise proximity among all pairs of points
in the different clusters. This is an intermediate approach between the single
and complete link approaches. Thus, for group average, the cluster proxim-
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(a) Group average clustering. (b) Group average dendrogram.

Figure 8.18. Group average clustering of the six points shown in Figure 8.15.

ity proximity(C;, Cj) of clusters C; and Cj, which are of size m; and mj,
respectively, is expressed by the following equation:

3 ec, prozimity(x,y)

yeC;

proxzimity(C;, Cj) = (8.6)

m; * mj
Example 8.6 (Group Average). Figure 8.18 shows the results of applying
the group average approach to the sample data set of six points. To illustrate
how group average works, we calculate the distance between some clusters.

dist({3,6,4},{1}) (0.22 +0.3740.23) /(3 + 1)

— 0.28
dist({2,5},{1}) = (0.2357+0.3421)/(2+ 1)
= 0.2889
dist({3,6,4},{2,5}) = (0.15+ 0.28 + 0.25 + 0.39 + 0.20 + 0.29) /(6 * 2)
— 0.26

Because dist({3,6,4},{2,5}) is smaller than dist({3,6,4},{1}) and dist({2,5},{1}),
clusters {3,6,4} and {2,5} are merged at the fourth stage. [
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(a) Ward’s clustering. (b) Ward’s dendrogram.

Figure 8.19. Ward’s clustering of the six points shown in Figure 8.15.

Ward’s Method and Centroid Methods

For Ward’s method, the proximity between two clusters is defined as the in-
crease in the squared error that results when two clusters are merged. Thus,
this method uses the same objective function as K-means clustering. While
it may seem that this feature makes Ward’s method somewhat distinct from
other hierarchical techniques, it can be shown mathematically that Ward’s
method is very similar to the group average method when the proximity be-
tween two points is taken to be the square of the distance between them.

Example 8.7 (Ward’s Method). Figure 8.19 shows the results of applying
Ward’s method to the sample data set of six points. The clustering that is
produced is different from those produced by single link, complete link, and
group average. [

Centroid methods calculate the proximity between two clusters by calcu-
lating the distance between the centroids of clusters. These techniques may
seem similar to K-means, but as we have remarked, Ward’s method is the
correct hierarchical analog.

Centroid methods also have a characteristic—often considered bad—that
is not possessed by the other hierarchical clustering techniques that we have
discussed: the possibility of inversions. Specifically, two clusters that are
merged may be more similar (less distant) than the pair of clusters that were
merged in a previous step. For the other methods, the distance between
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Table 8.5. Table of Lance-Williams coefficients for common hierarchical clustering approaches.

Clustering Method oA ap B v
Single Link 1/2 1/2 0f-1/2
Complete Link 1/2 1/2 0 1/2
Group Average i e 0 0
Centroid m:rr:ns m::ﬁns ( ™ ;n —: r::; )2 0
Ward:s m ,: 1»;‘:‘;:—qu T ::—B;: ;::—cinq LA +_1'::3Q+mq 0

merged clusters monotonically increases (or is, at worst, non-increasing) as
we proceed from singleton clusters to one all-inclusive cluster.

8.3.3 The Lance-Williams Formula for Cluster Proximity

Any of the cluster proximities that we have discussed in this section can be
viewed as a choice of different parameters (in the Lance-Williams formula
shown below in Equation 8.7) for the proximity between clusters ) and R,
where R is formed by merging clusters A and B. In this equation, p(.,.) is
a proximity function, while m4, mp, and mg are the number of points in
clusters A, B, and @, respectively. In other words, after we merge clusters A
and B to form cluster R, the proximity of the new cluster, R, to an existing
cluster, ), is a linear function of the proximities of @ with respect to the
original clusters A and B. Table 8.5 shows the values of these coefficients for
the techniques that we have discussed.

p(R, Q) = QA _‘p(A, Q) +aB p(B, Q) + ﬁp(A, B) 5N |_‘p(A, Q) - _’p(B, Q)| (8'7)

Any hierarchical clustering technique that can be expressed using the
Lance-Williams formula does not need to keep the original data points. In-
stead, the proximity matrix is updated as clustering occurs. While a general
formula is appealing, especially for implementation, it is easier to understand
the different hierarchical methods by looking directly at the definition of clus-
ter proximity that each method uses.

8.3.4 Key Issues in Hierarchical Clustering
Lack of a Global Objective Function

We previously mentioned that agglomerative hierarchical clustering cannot be
viewed as globally optimizing an objective function. Instead, agglomerative
hierarchical clustering techniques use various criteria to decide locally, at each
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step, which clusters should be merged (or split for divisive approaches). This
approach yields clustering algorithms that avoid the difficulty of attempting
to solve a hard combinatorial optimization problem. (It can be shown that
the general clustering problem for an objective function such as “minimize
SSE” is computationally infeasible.) Furthermore, such approaches do not
have problems with local minima or difficulties in choosing initial points. Of
course, the time complexity of O(m? logm) and the space complexity of O(m?)
are prohibitive in many cases.

Ability to Handle Different Cluster Sizes

One aspect of agglomerative hierarchical clustering that we have not yet dis-
cussed is how to treat the relative sizes of the pairs of clusters that are merged.
(This discussion applies only to cluster proximity schemes that involve sums,
such as centroid, Ward’s, and group average.) There are two approaches:
weighted, which treats all clusters equally, and unweighted, which takes
the number of points in each cluster into account. Note that the terminology
of weighted or unweighted refers to the data points, not the clusters. In other
words, treating clusters of unequal size equally gives different weights to the
points in different clusters, while taking the cluster size into account gives
points in different clusters the same weight.

We will illustrate this using the group average technique discussed in Sec-
tion 8.3.2, which is the unweighted version of the group average technique.
In the clustering literature, the full name of this approach is the Unweighted
Pair Group Method using Arithmetic averages (UPGMA). In Table 8.5, which
gives the formula for updating cluster similarity, the coefficients for UPGMA

involve the size of each of the clusters that were merged: ag = m, apg =
—mB__ 3 =0,y = 0. For the weighted version of group average—known as

ma+mp’

WPGMA—the coefficients are constants: ay = 1/2,ap = 1/2,8 = 0,7 = 0.
In general, unweighted approaches are preferred unless there is reason to be-
lieve that individual points should have different weights; e.g., perhaps classes
of objects have been unevenly sampled.

Merging Decisions Are Final

Agglomerative hierarchical clustering algorithms tend to make good local de-
cisions about combining two clusters since they can use information about the
pairwise similarity of all points. However, once a decision is made to merge
two clusters, it cannot be undone at a later time. This approach prevents
a local optimization criterion from becoming a global optimization criterion.
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For example, although the “minimize squared error” criterion from K-means
is used in deciding which clusters to merge in Ward’s method, the clusters at
each level do not represent local minima with respect to the total SSE. Indeed,
the clusters are not even stable, in the sense that a point in one cluster may
be closer to the centroid of some other cluster than it is to the centroid of its
current cluster. Nonetheless, Ward’s method is often used as a robust method
of initializing a K-means clustering, indicating that a local “minimize squared
error” objective function does have a connection to a global “minimize squared
error” objective function.

There are some techniques that attempt to overcome the limitation that
merges are final. One approach attempts to fix up the hierarchical clustering
by moving branches of the tree around so as to improve a global objective
function. Another approach uses a partitional clustering technique such as K-
means to create many small clusters, and then performs hierarchical clustering
using these small clusters as the starting point.

8.3.5 Strengths and Weaknesses

The strengths and weakness of specific agglomerative hierarchical clustering
algorithms were discussed above. More generally, such algorithms are typi-
cally used because the underlying application, e.g., creation of a taxonomy,
requires a hierarchy. Also, there have been some studies that suggest that
these algorithms can produce better-quality clusters. However, agglomerative
hierarchical clustering algorithms are expensive in terms of their computa-
tional and storage requirements. The fact that all merges are final can also
cause trouble for noisy, high-dimensional data, such as document data. In
turn, these two problems can be addressed to some degree by first partially
clustering the data using another technique, such as K-means.

8.4 DBSCAN

Density-based clustering locates regions of high density that are separated
from one another by regions of low density. DBSCAN is a simple and effec-
tive density-based clustering algorithm that illustrates a number of important
concepts that are important for any density-based clustering approach. In this
section, we focus solely on DBSCAN after first considering the key notion of
density. Other algorithms for finding density-based clusters are described in
the next chapter.
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8.4.1 Traditional Density: Center-Based Approach

Although there are not as many approaches for defining density as there are for
defining similarity, there are several distinct methods. In this section we dis-
cuss the center-based approach on which DBSCAN is based. Other definitions
of density will be presented in Chapter 9.

In the center-based approach, density is estimated for a particular point in
the data set by counting the number of points within a specified radius, Eps,
of that point. This includes the point itself. This technique is graphically
illustrated by Figure 8.20. The number of points within a radius of Eps of
point A is 7, including A itself.

This method is simple to implement, but the density of any point will
depend on the specified radius. For instance, if the radius is large enough,
then all points will have a density of m, the number of points in the data set.
Likewise, if the radius is too small, then all points will have a density of 1.
An approach for deciding on the appropriate radius for low-dimensional data
is given in the next section in the context of our discussion of DBSCAN.

Classification of Points According to Center-Based Density

The center-based approach to density allows us to classify a point as being (1)
in the interior of a dense region (a core point), (2) on the edge of a dense region
(a border point), or (3) in a sparsely occupied region (a noise or background
point). Figure 8.21 graphically illustrates the concepts of core, border, and
noise points using a collection of two-dimensional points. The following text
provides a more precise description.

Core points: These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user-
specified distance parameter, Eps, exceeds a certain threshold, MinPts,
which is also a user-specified parameter. In Figure 8.21, point A is a
core point, for the indicated radius (Eps) if MinPts < 7.

Border points: A border point is not a core point, but falls within the neigh-
borhood of a core point. In Figure 8.21, point B is a border point. A
border point can fall within the neighborhoods of several core points.

Noise points: A noise point is any point that is neither a core point nor a
border point. In Figure 8.21, point C is a noise point.
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Figure 8.20. Center-based
density. Figure 8.21. Core, border, and noise points.

8.4.2 The DBSCAN Algorithm

Given the previous definitions of core points, border points, and noise points,
the DBSCAN algorithm can be informally described as follows. Any two core
points that are close enough—within a distance Eps of one another—are put
in the same cluster. Likewise, any border point that is close enough to a core
point is put in the same cluster as the core point. (Ties may need to be resolved
if a border point is close to core points from different clusters.) Noise points
are discarded. The formal details are given in Algorithm 8.4. This algorithm
uses the same concepts and finds the same clusters as the original DBSCAN,
but is optimized for simplicity, not efficiency.

Algorithm 8.4 DBSCAN algorithm.

: Label all points as core, border, or noise points.

Eliminate noise points.

Put an edge between all core points that are within Eps of each other.
Make each group of connected core points into a separate cluster.

Assign each border point to one of the clusters of its associated core points.

AR -

Time and Space Complexity

The basic time complexity of the DBSCAN algorithm is O(m x time to find
points in the Eps-neighborhood), where m is the number of points. In the
worst case, this complexity is O(m?). However, in low-dimensional spaces,
there are data structures, such as kd-trees, that allow efficient retrieval of all
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points within a given distance of a specified point, and the time complexity
can be as low as O(mlogm). The space requirement of DBSCAN, even for
high-dimensional data, is O(m) because it is only necessary to keep a small
amount of data for each point, i.e., the cluster label and the identification of
each point as a core, border, or noise point.

Selection of DBSCAN Parameters

There is, of course, the issue of how to determine the parameters Eps and
MinPts. The basic approach is to look at the behavior of the distance from
a point to its k** nearest neighbor, which we will call the k-dist. For points
that belong to some cluster, the value of k-dist will be small if &k is not larger
than the cluster size. Note that there will be some variation, depending on the
density of the cluster and the random distribution of points, but on average,
the range of variation will not be huge if the cluster densities are not radically
different. However, for points that are not in a cluster, such as noise points,
the k-dist will be relatively large. Therefore, if we compute the k-dist for
all the data points for some k, sort them in increasing order, and then plot
the sorted values, we expect to see a sharp change at the value of k-dist that
corresponds to a suitable value of Eps. If we select this distance as the Eps
parameter and take the value of k as the MinPts parameter, then points for
which k-dist is less than Eps will be labeled as core points, while other points
will be labeled as noise or border points.

Figure 8.22 shows a sample data set, while the k-dist graph for the data is
given in Figure 8.23. The value of Eps that is determined in this way depends
on k, but does not change dramatically as k changes. If the value of k is too
small, then even a small number of closely spaced points that are noise or
outliers will be incorrectly labeled as clusters. If the value of k is too large,
then small clusters (of size less than k) are likely to be labeled as noise. The
original DBSCAN algorithm used a value of £ = 4, which appears to be a
reasonable value for most two-dimensional data sets.

Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely.
Consider Figure 8.24, which shows four clusters embedded in noise. The den-
sity of the clusters and noise regions is indicated by their darkness. The noise
around the pair of denser clusters, A and B, has the same density as clusters
C and D. If the Eps threshold is low enough that DBSCAN finds C and D as

clusters, then A and B and the points surrounding them will become a single
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Figure 8.24. Four clusters embedded in noise.

cluster. If the Eps threshold is high enough that DBSCAN finds A and B as
separate clusters, and the points surrounding them are marked as noise, then
C and D and the points surrounding them will also be marked as noise.

An Example

To illustrate the use of DBSCAN, we show the clusters that it finds in the
relatively complicated two-dimensional data set shown in Figure 8.22. This
data set consists of 3000 two-dimensional points. The Eps threshold for this
data was found by plotting the sorted distances of the fourth nearest neighbor
of each point (Figure 8.23) and identifying the value at which there is a sharp
increase. We selected Eps = 10, which corresponds to the knee of the curve.
The clusters found by DBSCAN using these parameters, i.e., MinPts = 4 and
Eps = 10, are shown in Figure 8.25(a). The core points, border points, and
noise points are displayed in Figure 8.25(b).

8.4.3 Strengths and Weaknesses

Because DBSCAN uses a density-based definition of a cluster, it is relatively
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus,
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Figure 8.25. DBSCAN clustering of 3000 two-dimensional points.
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DBSCAN can find many clusters that could not be found using K-means,
such as those in Figure 8.22. As indicated previously, however, DBSCAN has
trouble when the clusters have widely varying densities. It also has trouble
with high-dimensional data because density is more difficult to define for such
data. One possible approach to dealing with such issues is given in Section
9.4.8. Finally, DBSCAN can be expensive when the computation of nearest
neighbors requires computing all pairwise proximities, as is usually the case
for high-dimensional data.

8.5 Cluster Evaluation

In supervised classification, the evaluation of the resulting classification model
is an integral part of the process of developing a classification model, and
there are well-accepted evaluation measures and procedures, e.g., accuracy
and cross-validation, respectively. However, because of its very nature, cluster
evaluation is not a well-developed or commonly used part of cluster analysis.
Nonetheless, cluster evaluation, or cluster validation as it is more tradition-
ally called, is important, and this section will review some of the most common
and easily applied approaches.

There might be some confusion as to why cluster evaluation is necessary.
Many times, cluster analysis is conducted as a part of an exploratory data
analysis. Hence, evaluation seems like an unnecessarily complicated addition
to what is supposed to be an informal process. Furthermore, since there
are a number of different types of clusters—in some sense, each clustering
algorithm defines its own type of cluster—it may seem that each situation
might require a different evaluation measure. For instance, K-means clusters
might be evaluated in terms of the SSE, but for density-based clusters, which
need not be globular, SSE would not work well at all.

Nonetheless, cluster evaluation should be a part of any cluster analysis.
A key motivation is that almost every clustering algorithm will find clusters
in a data set, even if that data set has no natural cluster structure. For
instance, consider Figure 8.26, which shows the result of clustering 100 points
that are randomly (uniformly) distributed on the unit square. The original
points are shown in Figure 8.26(a), while the clusters found by DBSCAN, K-
means, and complete link are shown in Figures 8.26(b), 8.26(c), and 8.26(d),
respectively. Since DBSCAN found three clusters (after we set Eps by looking
at the distances of the fourth nearest neighbors), we set K-means and complete
link to find three clusters as well. (In Figure 8.26(b) the noise is shown by
the small markers.) However, the clusters do not look compelling for any of
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the three methods. In higher dimensions, such problems cannot be so easily
detected.

8.5.1 Overview

Being able to distinguish whether there is non-random structure in the data
is just one important aspect of cluster validation. The following is a list of
several important issues for cluster validation.

1. Determining the clustering tendency of a set of data, i.e., distinguish-
ing whether non-random structure actually exists in the data.

2. Determining the correct number of clusters.

3. Evaluating how well the results of a cluster analysis fit the data without
reference to external information.

4. Comparing the results of a cluster analysis to externally known results,
such as externally provided class labels.

5. Comparing two sets of clusters to determine which is better.

Notice that items 1, 2, and 3 do not make use of any external information—
they are unsupervised techniques—while item 4 requires external information.
Item 5 can be performed in either a supervised or an unsupervised manner. A
further distinction can be made with respect to items 3, 4, and 5: Do we want
to evaluate the entire clustering or just individual clusters?

While it is possible to develop various numerical measures to assess the
different aspects of cluster validity mentioned above, there are a number of
challenges. First, a measure of cluster validity may be quite limited in the
scope of its applicability. For example, most work on measures of clustering
tendency has been done for two- or three-dimensional spatial data. Second,
we need a framework to interpret any measure. If we obtain a value of 10 for a
measure that evaluates how well cluster labels match externally provided class
labels, does this value represent a good, fair, or poor match? The goodness
of a match often can be measured by looking at the statistical distribution of
this value, i.e., how likely it is that such a value occurs by chance. Finally, if
a measure is too complicated to apply or to understand, then few will use it.

The evaluation measures, or indices, that are applied to judge various
aspects of cluster validity are traditionally classified into the following three

types.
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Figure 8.26. Clustering of 100 uniformly distributed points.
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Unsupervised. Measures the goodness of a clustering structure without re-
spect to external information. An example of this is the SSE. Unsu-
pervised measures of cluster validity are often further divided into two
classes: measures of cluster cohesion (compactness, tightness), which
determine how closely related the objects in a cluster are, and measures
of cluster separation (isolation), which determine how distinct or well-
separated a cluster is from other clusters. Unsupervised measures are
often called internal indices because they use only information present
in the data set.

Supervised. Measures the extent to which the clustering structure discovered
by a clustering algorithm matches some external structure. An example
of a supervised index is entropy, which measures how well cluster labels
match externally supplied class labels. Supervised measures are often
called external indices because they use information not present in
the data set.

Relative. Compares different clusterings or clusters. A relative cluster eval-
uation measure is a supervised or unsupervised evaluation measure that
is used for the purpose of comparison. Thus, relative measures are not
actually a separate type of cluster evaluation measure, but are instead a
specific use of such measures. As an example, two K-means clusterings
can be compared using either the SSE or entropy.

In the remainder of this section, we provide specific details concerning clus-
ter validity. We first describe topics related to unsupervised cluster evaluation,
beginning with (1) measures based on cohesion and separation, and (2) two
techniques based on the proximity matrix. Since these approaches are useful
only for partitional sets of clusters, we also describe the popular cophenetic
correlation coefficient, which can be used for the unsupervised evaluation of
a hierarchical clustering. We end our discussion of unsupervised evaluation
with brief discussions about finding the correct number of clusters and evalu-
ating clustering tendency. We then consider supervised approaches to cluster
validity, such as entropy, purity, and the Jaccard measure. We conclude this
section with a short discussion of how to interpret the values of (unsupervised
or supervised) validity measures.
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8.5.2 Unsupervised Cluster Evaluation Using Cohesion and
Separation

Many internal measures of cluster validity for partitional clustering schemes
are based on the notions of cohesion or separation. In this section, we use
cluster validity measures for prototype- and graph-based clustering techniques
to explore these notions in some detail. In the process, we will also see some
interesting relationships between prototype- and graph-based clustering.

In general, we can consider expressing overall cluster validity for a set of
K clusters as a weighted sum of the validity of individual clusters,

K
overall validity = Zwi validity(C;). (8.8)

i=1

The validity function can be cohesion, separation, or some combination of these
quantities. The weights will vary depending on the cluster validity measure.
In some cases, the weights are simply 1 or the size of the cluster, while in other
cases they reflect a more complicated property, such as the square root of the
cohesion. See Table 8.6. If the validity function is cohesion, then higher values
are better. If it is separation, then lower values are better.

Graph-Based View of Cohesion and Separation

For graph-based clusters, the cohesion of a cluster can be defined as the sum of
the weights of the links in the proximity graph that connect points within the
cluster. See Figure 8.27(a). (Recall that the proximity graph has data objects
as nodes, a link between each pair of data objects, and a weight assigned to
each link that is the proximity between the two data objects connected by the
link.) Likewise, the separation between two clusters can be measured by the
sum of the weights of the links from points in one cluster to points in the other
cluster. This is illustrated in Figure 8.27(b).

Mathematically, cohesion and separation for a graph-based cluster can be
expressed using Equations 8.9 and 8.10, respectively. The prozimity function
can be a similarity, a dissimilarity, or a simple function of these quantities.

cohesion(C;) = Zpro:rimity(x,y) (8.9)
vec,

separation(C;,C;) = Zp’ro:t:imity(x,y) (8.10)
xeC;

yEC‘j—
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(a) Cohesion. (b) Separation.

Figure 8.27. Graph-based view of cluster cohesion and separation.

Prototype-Based View of Cohesion and Separation

For prototype-based clusters, the cohesion of a cluster can be defined as the
sum of the proximities with respect to the prototype (centroid or medoid) of
the cluster. Similarly, the separation between two clusters can be measured
by the proximity of the two cluster prototypes. This is illustrated in Figure
8.28, where the centroid of a cluster is indicated by a “+”.

Cohesion for a prototype-based cluster is given in Equation 8.11, while
two measures for separation are given in Equations 8.12 and 8.13, respec-
tively, where c; is the prototype (centroid) of cluster C; and c is the overall
prototype (centroid). There are two measures for separation because, as we
will see shortly, the separation of cluster prototypes from an overall prototype
is sometimes directly related to the separation of cluster prototypes from one
another. Note that Equation 8.11 is the cluster SSE if we let proximity be the
squared Euclidean distance.

cohesion(C;) = Z proximity(x, c;) (8.11)

KEC§
separation(C;,C;) = proximity(c;,c;) (8.12)
separation(C;) = prozimity(c;,c) (8.13)

Overall Measures of Cohesion and Separation

The previous definitions of cluster cohesion and separation gave us some sim-
ple and well-defined measures of cluster validity that can be combined into
an overall measure of cluster validity by using a weighted sum, as indicated
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(a) Cohesion. (b) Separation.

Figure 8.28. Prototype-based view of cluster cohesion and separation.

in Equation 8.8. However, we need to decide what weights to use. Not sur-
prisingly, the weights used can vary widely, although typically they are some
measure of cluster size.

Table 8.6 provides examples of validity measures based on cohesion and
separation. 7 is a measure of cohesion in terms of the pairwise proximity of
objects in the cluster divided by the cluster size. Z, is a measure of cohesion
based on the sum of the proximities of objects in the cluster to the cluster
centroid. & is a measure of separation defined as the proximity of a cluster
centroid to the overall centroid multiplied by the number of objects in the
cluster. G;, which is a measure based on both cohesion and separation, is
the sum of the pairwise proximity of all objects in the cluster with all objects
outside the cluster—the total weight of the edges of the proximity graph that
must be cut to separate the cluster from all other clusters—divided by the
sum of the pairwise proximity of objects in the cluster.

Table 8.6. Table of graph-based cluster evaluation measures.

Name| Cluster Measure Cluster Weight Type
graph-based
I erg,- prozimity(x,y) % cohesion
yeCy ‘
prototype-based
T > _xec, proximity(x, c;) 1 cohesion
prototype-based
& prozimity(c;, c) m; separation
. ) graph-based
Gy D =1 Y xec; proximity(x,y) — separation and
E : ! ! 3 : t .
” e Zygg: prozimity(x,y) cohesion
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Note that any unsupervised measure of cluster validity potentially can be
used as an objective function for a clustering algorithm and vice versa. The
CLUstering TOolkit (CLUTO) (see the bibliographic notes) uses the cluster
evaluation measures described in Table 8.6, as well as some other evaluation
measures not mentioned here, to drive the clustering process. It does this by
using an algorithm that is similar to the incremental K-means algorithm dis-
cussed in Section 8.2.2. Specifically, each point is assigned to the cluster that
produces the best value for the cluster evaluation function. The cluster eval-
uation measure I3 corresponds to traditional K-means and produces clusters
that have good SSE values. The other measures produce clusters that are not
as good with respect to SSE, but that are more optimal with respect to the
specified cluster validity measure.

Relationship between Prototype-Based Cohesion and Graph-Based
Cohesion

While the graph-based and prototype-based approaches to measuring the co-
hesion and separation of a cluster seem distinct, for some proximity measures
they are equivalent. For instance, for the SSE and points in Euclidean space,
it can be shown (Equation 8.14) that the average pairwise distance between
the points in a cluster is equivalent to the SSE of the cluster. See Exercise 27
on page 566.

1
_ Lo N2 : 2
Cluster SSE = E dist(ci,x)" = S E E dist(x,y) (8.14)
xeC; xeC; yeC;

Two Approaches to Prototype-Based Separation

When proximity is measured by Euclidean distance, the traditional measure of
separation between clusters is the between group sum of squares (SSB), which
is the sum of the squared distance of a cluster centroid, ¢;, to the overall mean,
c, of all the data points. By summing the SSB over all clusters, we obtain the
total SSB, which is given by Equation 8.15, where c; is the mean of the i
cluster and c is the overall mean. The higher the total SSB of a clustering,
the more separated the clusters are from one another.

K
Total SSB = ) _ m; dist(c;, c)? (8.15)

i=1
It is straightforward to show that the total SSB is directly related to the
pairwise distances between the centroids. In particular, if the cluster sizes are
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equal, i.e., m; = m/K, then this relationship takes the simple form given by
Equation 8.16. (See Exercise 28 on page 566.) It is this type of equivalence that
motivates the definition of prototype separation in terms of both Equations

8.12 and 8.13.

K K
Total SSB = S Z Z % dist(c;, c;)? (8.16)

Relationship between Cohesion and Separation

In some cases, there is also a strong relationship between cohesion and separa-
tion. Specifically, it is possible to show that the sum of the total SSE and the
total SSB is a constant; i.e., that it is equal to the total sum of squares (TSS),
which is the sum of squares of the distance of each point to the overall mean
of the data. The importance of this result is that minimizing SSE (cohesion)
is equivalent to maximizing SSB (separation).

We provide the proof of this fact below, since the approach illustrates
techniques that are also applicable to proving the relationships stated in the
last two sections. To simplify the notation, we assume that the data is one-
dimensional, i.e., dist(z,y) = (z—y)?. Also, we use the fact that the cross-term
Zgil > zec; (T —ci)(c—ci) is 0. (See Exercise 29 on page 566.)

K
TSS = > ) (-0

i=1 xeC;
K

= D> D (@-c)—(c—)?
i=1 x€C;
K K K

- Y T2y Y e-a)e-a)+ Y Xle-af
i=1 x2€C; i=1xeC; i=1 xeC;
K K

- S ey S ey
i=1 xeC; i=1 reCy

K

= ) > (@-c)’+)_[Cil(c—a)?

i=1 xeC; i=1

= SSE +SSB
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Evaluating Individual Clusters and Objects

So far, we have focused on using cohesion and separation in the overall eval-
uation of a group of clusters. Many of these measures of cluster validity also
can be used to evaluate individual clusters and objects. For example, we can
rank individual clusters according to their specific value of cluster validity, i.e.,
cluster cohesion or separation. A cluster that has a high value of cohesion may
be considered better than a cluster that has a lower value. This information
often can be used to improve the quality of a clustering. If, for example, a
cluster is not very cohesive, then we may want to split it into several subclus-
ters. On the other hand, if two clusters are relatively cohesive, but not well
separated, we may want to merge them into a single cluster.

We can also evaluate the objects within a cluster in terms of their con-
tribution to the overall cohesion or separation of the cluster. Objects that
contribute more to the cohesion and separation are near the “interior” of the
cluster. Those objects for which the opposite is true are probably near the
“edge” of the cluster. In the following section, we consider a cluster evalua-
tion measure that uses an approach based on these ideas to evaluate points,
clusters, and the entire set of clusters.

The Silhouette Coefficient

The popular method of silhouette coefficients combines both cohesion and sep-
aration. The following steps explain how to compute the silhouette coefficient
for an individual point, a process that consists of the following three steps.
We use distances, but an analogous approach can be used for similarities.

1. For the it* object, calculate its average distance to all other objects in
its cluster. Call this value a;.

2. For the it" object and any cluster not containing the object, calculate
the object’s average distance to all the objects in the given cluster. Find
the minimum such value with respect to all clusters; call this value b;.

3. For the it" object, the silhouette coefficient is s; = (b; — a;)/ max(as, b;).

The value of the silhouette coefficient can vary between —1 and 1. A
negative value is undesirable because this corresponds to a case in which a;,
the average distance to points in the cluster, is greater than b;, the minimum
average distance to points in another cluster. We want the silhouette coefficient
to be positive (a; < b;), and for a; to be as close to 0 as possible, since the
coeflicient assumes its maximum value of 1 when a; = 0.
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Figure 8.29. Silhouette coefficients for points in ten clusters.

We can compute the average silhouette coefficient of a cluster by simply
taking the average of the silhouette coefficients of points belonging to the
cluster. An overall measure of the goodness of a clustering can be obtained by
computing the average silhouette coefficient of all points.

Example 8.8 (Silhouette Coefficient). Figure 8.29 shows a plot of the
silhouette coefficients for points in 10 clusters. Darker shades indicate lower
silhouette coefficients. ]

8.5.3 Unsupervised Cluster Evaluation Using the Proximity
Matrix

In this section, we examine a couple of unsupervised approaches for assessing
cluster validity that are based on the proximity matrix. The first compares an
actual and idealized proximity matrix, while the second uses visualization.

Measuring Cluster Validity via Correlation

If we are given the similarity matrix for a data set and the cluster labels from
a cluster analysis of the data set, then we can evaluate the “goodness” of
the clustering by looking at the correlation between the similarity matrix and
an ideal version of the similarity matrix based on the cluster labels. (With
minor changes, the following applies to proximity matrices, but for simplicity,
we discuss only similarity matrices.) More specifically, an ideal cluster is one
whose points have a similarity of 1 to all points in the cluster, and a similarity
of 0 to all points in other clusters. Thus, if we sort the rows and columns
of the similarity matrix so that all objects belonging to the same class are
together, then an ideal similarity matrix has a block diagonal structure. In
other words, the similarity is non-zero, i.e., 1, inside the blocks of the similarity
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matrix whose entries represent intra-cluster similarity, and 0 elsewhere. The
ideal similarity matrix is constructed by creating a matrix that has one row
and one column for each data point—just like an actual similarity matrix—
and assigning a 1 to an entry if the associated pair of points belongs to the
same cluster. All other entries are 0.

High correlation between the ideal and actual similarity matrices indicates
that the points that belong to the same cluster are close to each other, while
low correlation indicates the opposite. (Since the actual and ideal similarity
matrices are symmetric, the correlation is calculated only among the n(n—1)/2
entries below or above the diagonal of the matrices.) Consequently, this is not
a good measure for many density- or contiguity-based clusters, because they
are not globular and may be closely intertwined with other clusters.

Example 8.9 (Correlation of Actual and Ideal Similarity Matrices).
To illustrate this measure, we calculated the correlation between the ideal and
actual similarity matrices for the K-means clusters shown in Figure 8.26(c)
(random data) and Figure 8.30(a) (data with three well-separated clusters).
The correlations were 0.5810 and 0.9235, respectively, which reflects the ex-
pected result that the clusters found by K-means in the random data are worse
than the clusters found by K-means in data with well-separated clusters. =

Judging a Clustering Visually by Its Similarity Matrix

The previous technique suggests a more general, qualitative approach to judg-
ing a set of clusters: Order the similarity matrix with respect to cluster labels
and then plot it. In theory, if we have well-separated clusters, then the simi-
larity matrix should be roughly block-diagonal. If not, then the patterns dis-
played in the similarity matrix can reveal the relationships between clusters.
Again, all of this can be applied to dissimilarity matrices, but for simplicity,
we will only discuss similarity matrices.

Example 8.10 (Visualizing a Similarity Matrix). Consider the points in
Figure 8.30(a), which form three well-separated clusters. If we use K-means to
group these points into three clusters, then we should have no trouble finding
these clusters since they are well-separated. The separation of these clusters
is illustrated by the reordered similarity matrix shown in Figure 8.30(b). (For
uniformity, we have transformed the distances into similarities using the for-
mula s = 1 — (d —min_d)/(maz_d —min_d).) Figure 8.31 shows the reordered
similarity matrices for clusters found in the random data set of Figure 8.26 by

DBSCAN, K-means, and complete link.
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(a) Well-separated clusters. (b) Similarity matrix sorted by K-means

cluster labels.

Figure 8.30. Similarity matrix for well-separated clusters.

The well-separated clusters in Figure 8.30 show a very strong, block-
diagonal pattern in the reordered similarity matrix. However, there are also
weak block diagonal patterns—see Figure 8.31—in the reordered similarity
matrices of the clusterings found by K-means, DBSCAN, and complete link
in the random data. Just as people can find patterns in clouds, data mining
algorithms can find clusters in random data. While it is entertaining to find
patterns in clouds, it is pointless and perhaps embarrassing to find clusters in
noise. [

This approach may seem hopelessly expensive for large data sets, since
the computation of the proximity matrix takes O(m?) time, where m is the
number of objects, but with sampling, this method can still be used. We can
take a sample of data points from each cluster, compute the similarity between
these points, and plot the result. It may be necessary to oversample small
clusters and undersample large ones to obtain an adequate representation of
all clusters.

8.5.4 Unsupervised Evaluation of Hierarchical Clustering

The previous approaches to cluster evaluation are intended for partitional
clusterings. Here we discuss the cophenetic correlation, a popular evaluation
measure for hierarchical clusterings. The cophenetic distance between two
objects is the proximity at which an agglomerative hierarchical clustering tech-
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(a) Similarity matrix (b) Similarity matrix (c) Similarity matrix
sorted by DBSCAN sorted by K-means sorted by complete link

cluster labels. cluster labels. cluster labels.

Figure 8.31. Similarity matrices for clusters from random data.

nique puts the objects in the same cluster for the first time. For example, if at
some point in the agglomerative hierarchical clustering process, the smallest
distance between the two clusters that are merged is 0.1, then all points in
one cluster have a cophenetic distance of 0.1 with respect to the points in the
other cluster. In a cophenetic distance matrix, the entries are the cophenetic
distances between each pair of objects. The cophenetic distance is different
for each hierarchical clustering of a set of points.

Example 8.11 (Cophenetic Distance Matrix). Table 8.7 shows the cophen-
tic distance matrix for the single link clustering shown in Figure 8.16. (The
data for this figure consists of the 6 two-dimensional points given in Table
8.3.)

Table 8.7. Cophenetic distance matrix for single link and data in table 8.3

Point | P1 P2 P3 P4 P5 P6
P1 0 0.222 | 0.222 | 0.222 | 0.222 | 0.222
P2 0.222 0 0.148 | 0.151 | 0.139 | 0.148
P3 0.222 | 0.148 0 0.151 | 0.148 | 0.110
P4 0.222 | 0.151 | 0.151 0 0.151 | 0.151
P5 0.222 | 0.139 | 0.148 | 0.151 0 0.148
P6 0.222 | 0.148 | 0.110 | 0.151 | 0.148 0

The CoPhenetic Correlation Coefficient (CPCC) is the correlation
between the entries of this matrix and the original dissimilarity matrix and is
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a standard measure of how well a hierarchical clustering (of a particular type)
fits the data. Omne of the most common uses of this measure is to evaluate
which type of hierarchical clustering is best for a particular type of data.

Example 8.12 (Cophenetic Correlation Coefficient). We calculated the
CPCC for the hierarchical clusterings shown in Figures 8.16-8.19.These values
are shown in Table 8.8. The hierarchical clustering produced by the single
link technique seems to fit the data less well than the clusterings produced by
complete link, group average, and Ward’s method.

Table 8.8. Cophenetic correlation coefficient for data of Table 8.3 and four agglomerative hierarchical
clustering techniques.

Technique CPCC
Single Link 0.44
Complete Link | 0.63
Group Average | 0.66
Ward’s 0.64

8.5.5 Determining the Correct Number of Clusters

Various unsupervised cluster evaluation measures can be used to approxi-
mately determine the correct or natural number of clusters.

Example 8.13 (Number of Clusters). The data set of Figure 8.29 has 10
natural clusters. Figure 8.32 shows a plot of the SSE versus the number of
clusters for a (bisecting) K-means clustering of the data set, while Figure 8.33
shows the average silhouette coefficient versus the number of clusters for the
same data. There is a distinct knee in the SSE and a distinct peak in the
silhouette coefficient when the number of clusters is equal to 10. [

Thus, we can try to find the natural number of clusters in a data set by
looking for the number of clusters at which there is a knee, peak, or dip in
the plot of the evaluation measure when it is plotted against the number of
clusters. Of course, such an approach does not always work well. Clusters may
be considerably more intertwined or overlapping than those shown in Figure
8.29. Also, the data may consist of nested clusters. Actually, the clusters in
Figure 8.29 are somewhat nested; i.e., there are 5 pairs of clusters since the
clusters are closer top to bottom than they are left to right. There is a knee
that indicates this in the SSE curve, but the silhouette coefficient curve is not
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Figure 8.32. SSE versus number of clusters for Figure 8.33. Average silhouette coefficient ver-
the data of Figure 8.29. sus number of clusters for the data of Figure
8.29.

as clear. In summary, while caution is needed, the technique we have just
described can provide insight into the number of clusters in the data.

8.5.6 Clustering Tendency

One obvious way to determine if a data set has clusters is to try to cluster
it. However, almost all clustering algorithms will dutifully find clusters when
given data. To address this issue, we could evaluate the resulting clusters and
only claim that a data set has clusters if at least some of the clusters are of good
quality. However, this approach does not address the fact the clusters in the
data can be of a different type than those sought by our clustering algorithm.
To handle this additional problem, we could use multiple algorithms and again
evaluate the quality of the resulting clusters. If the clusters are uniformly poor,
then this may indeed indicate that there are no clusters in the data.

Alternatively, and this is the focus of measures of clustering tendency, we
can try to evaluate whether a data set has clusters without clustering. The
most common approach, especially for data in Euclidean space, has been to
use statistical tests for spatial randomness. Unfortunately, choosing the cor-
rect model, estimating the parameters, and evaluating the statistical signifi-
cance of the hypothesis that the data is non-random can be quite challenging.
Nonetheless, many approaches have been developed, most of them for points
in low-dimensional Euclidean space.

Example 8.14 (Hopkins Statistic). For this approach, we generate p points
that are randomly distributed across the data space and also sample p actual
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data points. For both sets of points we find the distance to the nearest neigh-
bor in the original data set. Let the u; be the nearest neighbor distances of the
artificially generated points, while the w; are the nearest neighbor distances
of the sample of points from the original data set. The Hopkins statistic H is
then defined by Equation 8.17.

P :
i=1 Wi

Db ui 20w
If the randomly generated points and the sample of data points have

roughly the same nearest neighbor distances, then H will be near 0.5. Values
of H near 0 and 1 indicate, respectively, data that is highly clustered and

H=

(8.17)

data that is regularly distributed in the data space. To give an example, the
Hopkins statistic for the data of Figure 8.26 was computed for p = 20 and 100
different trials. The average value of H was 0.56 with a standard deviation
of 0.03. The same experiment was performed for the well-separated points of
Figure 8.30. The average value of H was 0.95 with a standard deviation of
0.006. [

8.5.7 Supervised Measures of Cluster Validity

When we have external information about data, it is typically in the form of
externally derived class labels for the data objects. In such cases, the usual
procedure is to measure the degree of correspondence between the cluster labels
and the class labels. But why is this of interest? After all, if we have the class
labels, then what is the point in performing a cluster analysis? Motivations for
such an analysis are the comparison of clustering techniques with the “ground
truth” or the evaluation of the extent to which a manual classification process
can be automatically produced by cluster analysis.

We consider two different kinds of approaches. The first set of techniques
use measures from classification, such as entropy, purity, and the F-measure.
These measures evaluate the extent to which a cluster contains objects of a
single class. The second group of methods is related to the similarity measures
for binary data, such as the Jaccard measure that we saw in Chapter 2. These
approaches measure the extent to which two objects that are in the same class
are in the same cluster and vice versa. For convenience, we will refer to these
two types of measures as classification-oriented and similarity-oriented,
respectively.
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Classification-Oriented Measures of Cluster Validity

There are a number of measures—entropy, purity, precision, recall, and the
F-measure—that are commonly used to evaluate the performance of a classi-
fication model. In the case of classification, we measure the degree to which
predicted class labels correspond to actual class labels, but for the measures
just mentioned, nothing fundamental is changed by using cluster labels in-
stead of predicted class labels. Next, we quickly review the definitions of these
measures, which were discussed in Chapter 4.

Entropy: The degree to which each cluster consists of objects of a single class.
For each cluster, the class distribution of the data is calculated first, i.e.,
for cluster j we compute p;;, the probability that a member of cluster i
belongs to class j as pij = m;j/m;, where m; is the number of objects in
cluster i and m;; is the number of objects of class j in cluster i. Using
this class distribution, the entropy of each cluster i is calculated using
the standard formula, e; = — Z;;l pij logy pij, where L is the number of
classes. The total entropy for a set of clusters is calculated as the sum
of the entropies of each cluster weighted by the size of each cluster, i.e.,
e = Zfil Zie;, where K is the number of clusters and m is the total
number of data points.

Purity: Another measure of the extent to which a cluster contains objects of
a single class. Using the previous terminology, the purity of cluster i is

pi = max p;j, the overall purity of a clustering is purity = Zfil Zip;.
J

Precision: The fraction of a cluster that consists of objects of a specified class.
The precision of cluster i with respect to class j is precision(i, j) = pi;.

Recall: The extent to which a cluster contains all objects of a specified class.
The recall of cluster i with respect to class j is recall(i, j) = m;;/m;,
where m; is the number of objects in class j.

F-measure A combination of both precision and recall that measures the
extent to which a cluster contains only objects of a particular class and all
objects of that class. The F-measure of cluster ¢ with respect to class j is
F(i,7) = (2 x precision(i, j) x recall(i, 7))/ (precision(i, ) +recall(i, )).

Example 8.15 (Supervised Evaluation Measures). We present an exam-
ple to illustrate these measures. Specifically, we use K-means with the cosine
similarity measure to cluster 3204 newspaper articles from the Los Angeles
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Table 8.9. K-means clustering results for the LA Times document data set.

Cluster | Enter- Financial | Foreign | Metro | National | Sports | Entropy | Purity
tainment
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 il 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total | 354 555 341 943 273 738 1.1450 | 0.7203

Times. These articles come from six different classes: Entertainment, Finan-
cial, Foreign, Metro, National, and Sports. Table 8.9 shows the results of a
K-means clustering to find six clusters. The first column indicates the clus-
ter, while the next six columns together form the confusion matrix; i.e., these
columns indicate how the documents of each category are distributed among
the clusters. The last two columns are the entropy and purity of each cluster,
respectively.

Ideally, each cluster will contain documents from only one class. In reality,
each cluster contains documents from many classes. Nevertheless, many clus-
ters contain documents primarily from just one class. In particular, cluster
3, which contains mostly documents from the Sports section, is exceptionally
good, both in terms of purity and entropy. The purity and entropy of the
other clusters is not as good, but can typically be greatly improved if the data
is partitioned into a larger number of clusters.

Precision, recall, and the F-measure can be calculated for each cluster. To
give a concrete example, we consider cluster 1 and the Metro class of Table
8.9. The precision is 506/677 = 0.75, recall is 506/943 = 0.26, and hence, the
F value is 0.39. In contrast, the F value for cluster 3 and Sports is 0.94. ]

Similarity-Oriented Measures of Cluster Validity

The measures that we discuss in this section are all based on the premise
that any two objects that are in the same cluster should be in the same class
and vice versa. We can view this approach to cluster validity as involving
the comparison of two matrices: (1) the ideal cluster similarity matrix
discussed previously, which has a 1 in the ijt* entry if two objects, i and 7,
are in the same cluster and 0, otherwise, and (2) an ideal class similarity
matrix defined with respect to class labels, which has a 1 in the ij* entry if
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two objects, ¢ and j, belong to the same class, and a 0 otherwise. As before, we
can take the correlation of these two matrices as the measure of cluster validity.
This measure is known as the I statistic in clustering validation literature.

Example 8.16 (Correlation between Cluster and Class Matrices). To
demonstrate this idea more concretely, we give an example involving five data
points, p1, p2, p3, P4, ps, two clusters, C1 = {p1,p2,p3} and Cz = {p4,ps}, and
two classes, L1 = {p1,p2} and L2 = {p3,ps4,ps}. The ideal cluster and class
similarity matrices are given in Tables 8.10 and 8.11. The correlation between
the entries of these two matrices is 0.359.

Table 8.10. Ideal cluster similarity matrix. Table 8.11. Ideal class similarity matrix.
Point | p1 p2 p3 pd p5 Point | p1 p2 p3 pd pbd
pl 1 1 1 0 0 pl 1 1 0 0 0
p2 1 1 1 0 0 p2 1 1 0 0 0
p3 1 1 1 0 0 p3 0 0 1 1 1
p4 0o 0 0 1 1 p4 0o 0 1 1 1
pb 0o 0 0 1 1 p5 0 0 1 1 1

More generally, we can use any of the measures for binary similarity that
we saw in Section 2.4.5. (For example, we can convert these two matrices into
binary vectors by appending the rows.) We repeat the definitions of the four
quantities used to define those similarity measures, but modify our descriptive
text to fit the current context. Specifically, we need to compute the following
four quantities for all pairs of distinct objects. (There are m(m — 1)/2 such
pairs, if m is the number of objects.)

foo = number of pairs of objects having a different class and a different cluster
fo1 = number of pairs of objects having a different class and the same cluster
fio = number of pairs of objects having the same class and a different cluster
f11 = number of pairs of objects having the same class and the same cluster

In particular, the simple matching coefficient, which is known as the Rand
statistic in this context, and the Jaccard coeflicient are two of the most fre-
quently used cluster validity measures.

Joo + /11
Joo + for + fio + fa

Rand statistic = (8.18)
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fi1
for + fio+ fun

Example 8.17 (Rand and Jaccard Measures). Based on these formulas,
we can readily compute the Rand statistic and Jaccard coefficient for the
example based on Tables 8.10 and 8.11. Noting that foo =4, fo1 = 2, fi0 = 2,
and fi; = 2, the Rand statistic = (2 + 4) /10 = 0.6 and the Jaccard coefficient
= 2/(24+2+4+2 ) = 0.33. L]

Jaccard coefficient =

(8.19)

We also note that the four quantities, foo, fo1, fio, and fi1, define a con-
tingency table as shown in Table 8.12.

Table 8.12. Two-way contingency table for determining whether pairs of objects are in the same class
and same cluster.

Same Cluster | Different Cluster
Same Class f11 fio
Different Class fo1 foo

Previously, in the context of association analysis—see Section 6.7.1—we
presented an extensive discussion of measures of association that can be used
for this type of contingency table. (Compare Table 8.12 with Table 6.7.) Those
measures can also be applied to cluster validity.

Cluster Validity for Hierarchical Clusterings

So far in this section, we have discussed supervised measures of cluster va-
lidity only for partitional clusterings. Supervised evaluation of a hierarchical
clustering is more difficult for a variety of reasons, including the fact that a
preexisting hierarchical structure often does not exist. Here, we will give an
example of an approach for evaluating a hierarchical clustering in terms of a
(flat) set of class labels, which are more likely to be available than a preexisting
hierarchical structure.

The key idea of this approach is to evaluate whether a hierarchical clus-
tering contains, for each class, at least one cluster that is relatively pure and
includes most of the objects of that class. To evaluate a hierarchical cluster-
ing with respect to this goal, we compute, for each class, the F-measure for
each cluster in the cluster hierarchy. For each class, we take the maximum F-
measure attained for any cluster. Finally, we calculate an overall F-measure for
the hierarchical clustering by computing the weighted average of all per-class
F-measures, where the weights are based on the class sizes. More formally,
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this hierarchical F-measure is defined as follows:
_ mj -
F= zj: = m?xF(z,_})

where the maximum is taken over all clusters 7 at all levels, m; is the number
of objects in class j, and m is the total number of objects.

8.5.8 Assessing the Significance of Cluster Validity Measures

Cluster validity measures are intended to help us measure the goodness of the
clusters that we have obtained. Indeed, they typically give us a single number
as a measure of that goodness. However, we are then faced with the problem
of interpreting the significance of this number, a task that may be even more
difficult.

The minimum and maximum values of cluster evaluation measures may
provide some guidance in many cases. For instance, by definition, a purity of
0 is bad, while a purity of 1 is good, at least if we trust our class labels and
want our cluster structure to reflect the class structure. Likewise, an entropy
of 0 is good, as is an SSE of 0.

Sometimes, however, there may not be a minimum or maximum value,
or the scale of the data may affect the interpretation. Also, even if there
are minimum and maximum values with obvious interpretations, intermediate
values still need to be interpreted. In some cases, we can use an absolute
standard. If, for example, we are clustering for utility, we may be willing to
tolerate only a certain level of error in the approximation of our points by a
cluster centroid.

But if this is not the case, then we must do something else. A common
approach is to interpret the value of our validity measure in statistical terms.
Specifically, we attempt to judge how likely it is that our observed value may
be achieved by random chance. The value is good if it is unusual; i.e., if it is
unlikely to be the result of random chance. The motivation for this approach
is that we are only interested in clusters that reflect non-random structure in
the data, and such structures should generate unusually high (low) values of
our cluster validity measure, at least if the validity measures are designed to
reflect the presence of strong cluster structure.

Example 8.18 (Significance of SSE). To show how this works, we present
an example based on K-means and the SSE. Suppose that we want a measure of
how good the well-separated clusters of Figure 8.30 are with respect to random
data. We generate many random sets of 100 points having the same range as
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Figure 8.34. Histogram of SSE for 500 random data sets.

the points in the three clusters, find three clusters in each data set using K-
means, and accumulate the distribution of SSE values for these clusterings. By
using this distribution of the SSE values, we can then estimate the probability
of the SSE value for the original clusters. Figure 8.34 shows the histogram of
the SSE from 500 random runs. The lowest SSE shown in Figure 8.34 is 0.0173.
For the three clusters of Figure 8.30, the SSE is 0.0050. We could therefore
conservatively claim that there is less than a 1% chance that a clustering such
as that of Figure 8.30 could occur by chance. ]

To conclude, we stress that there is more to cluster evaluation—supervised
or unsupervised—than obtaining a numerical measure of cluster validity. Un-
less this value has a natural interpretation based on the definition of the mea-
sure, we need to interpret this value in some way. If our cluster evaluation
measure is defined such that lower values indicate stronger clusters, then we
can use statistics to evaluate whether the value we have obtained is unusually
low, provided we have a distribution for the evaluation measure. We have pre-
sented an example of how to find such a distribution, but there is considerably
more to this topic, and we refer the reader to the bibliographic notes for more
pointers.

Finally, even when an evaluation measure is used as a relative measure,
i.e., to compare two clusterings, we still need to assess the significance in the
difference between the evaluation measures of the two clusterings. Although
one value will almost always be better than another, it can be difficult to
determine if the difference is significant. Note that there are two aspects to
this significance: whether the difference is statistically significant (repeatable)
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and whether the magnitude of the difference is meaningful with respect to the
application. Many would not regard a difference of 0.1% as significant, even if
it is consistently reproducible.

8.6 Bibliographic Notes

Discussion in this chapter has been most heavily influenced by the books on
cluster analysis written by Jain and Dubes [396], Anderberg [374], and Kauf-
man and Rousseeuw [400]. Additional clustering books that may also be of
interest include those by Aldenderfer and Blashfield [373], Everitt et al. [388],
Hartigan [394], Mirkin [405], Murtagh [407], Romesburg [409], and Spath [413].
A more statistically oriented approach to clustering is given by the pattern
recognition book of Duda et al. [385], the machine learning book of Mitchell
[406], and the book on statistical learning by Hastie et al. [395]. A general
survey of clustering is given by Jain et al. [397], while a survey of spatial data
mining techniques is provided by Han et al. [393]. Behrkin [379] provides a
survey of clustering techniques for data mining. A good source of references
to clustering outside of the data mining field is the article by Arabie and Hu-
bert [376]. A paper by Kleinberg [401] provides a discussion of some of the
trade-offs that clustering algorithms make and proves that it is impossible to
for a clustering algorithm to simultaneously possess three simple properties.
The K-means algorithm has a long history, but is still the subject of current
research. The original K-means algorithm was proposed by MacQueen [403].
The ISODATA algorithm by Ball and Hall [377] was an early, but sophisticated
version of K-means that employed various pre- and postprocessing techniques
to improve on the basic algorithm. The K-means algorithm and many of its
variations are described in detail in the books by Anderberg [374] and Jain
and Dubes [396]. The bisecting K-means algorithm discussed in this chapter
was described in a paper by Steinbach et al. [414], and an implementation
of this and other clustering approaches is freely available for academic use in
the CLUTO (CLUstering TOolkit) package created by Karypis [382]. Boley
[380] has created a divisive partitioning clustering algorithm (PDDP) based
on finding the first principal direction (component) of the data, and Savaresi
and Boley [411] have explored its relationship to bisecting K-means. Recent
variations of K-means are a new incremental version of K-means (Dhillon et al.
[383]), X-means (Pelleg and Moore [408]), and K-harmonic means (Zhang et al
[416]). Hamerly and Elkan [392] discuss some clustering algorithms that pro-
duce better results than K-means. While some of the previously mentioned
approaches address the initialization problem of K-means in some manner,
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other approaches to improving K-means initialization can also be found in the
work of Bradley and Fayyad [381]. Dhillon and Modha [384] present a gen-
eralization of K-means, called spherical K-means, that works with commonly
used similarity functions. A general framework for K-means clustering that
uses dissimilarity functions based on Bregman divergences was constructed by
Banerjee et al. [378].

Hierarchical clustering techniques also have a long history. Much of the
initial activity was in the area of taxonomy and is covered in books by Jardine
and Sibson [398] and Sneath and Sokal [412]. General-purpose discussions of
hierarchical clustering are also available in most of the clustering books men-
tioned above. Agglomerative hierarchical clustering is the focus of most work
in the area of hierarchical clustering, but divisive approaches have also received
some attention. For example, Zahn [415] describes a divisive hierarchical tech-
nique that uses the minimum spanning tree of a graph. While both divisive
and agglomerative approaches typically take the view that merging (splitting)
decisions are final, there has been some work by Fisher [389] and Karypis et
al. [399] to overcome these limitations.

Ester et al. proposed DBSCAN [387], which was later generalized to the
GDBSCAN algorithm by Sander et al. [410] in order to handle more general
types of data and distance measures, such as polygons whose closeness is mea-
sured by the degree of intersection. An incremental version of DBSCAN was
developed by Kriegel et al. [386]. One interesting outgrowth of DBSCAN is
OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst et
al. [375]), which allows the visualization of cluster structure and can also be
used for hierarchical clustering.

An authoritative discussion of cluster validity, which strongly influenced
the discussion in this chapter, is provided in Chapter 4 of Jain and Dubes’
clustering book [396]. More recent reviews of cluster validity are those of
Halkidi et al. [390, 391] and Milligan [404]. Silhouette coefficients are described
in Kaufman and Rousseeuw’s clustering book [400]. The source of the cohesion
and separation measures in Table 8.6 is a paper by Zhao and Karypis [417],
which also contains a discussion of entropy, purity, and the hierarchical F-
measure. The original source of the hierarchical F-measure is an article by
Larsen and Aone [402].
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Classification:
Alternative Techniques

The previous chapter described a simple, yet quite effective, classification tech-
nique known as decision tree induction. Issues such as model overfitting and
classifier evaluation were also discussed in great detail. This chapter presents
alternative techniques for building classification models—from simple tech-
niques such as rule-based and nearest-neighbor classifiers to more advanced
techniques such as support vector machines and ensemble methods. Other
key issues such as the class imbalance and multiclass problems are also dis-
cussed at the end of the chapter.

5.1 Rule-Based Classifier

A rule-based classifier is a technique for classifying records using a collection
of “if .. .then...” rules. Table 5.1 shows an example of a model generated by a
rule-based classifier for the vertebrate classification problem. The rules for the
model are represented in a disjunctive normal form, R = (r;VraV... ), where
R is known as the rule set and r;’s are the classification rules or disjuncts.

Table 5.1. Example of a rule set for the vertebrate classification problem.

r1:  (Gives Birth = no) A (Aerial Creature = yes) — Birds

ro:  (Gives Birth = no) A (Aquatic Creature = yes) — Fishes

r3:  (Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals
r4:  (Gives Birth = no) A (Aerial Creature = no) — Reptiles

r5:  (Aquatic Creature = semi) — Amphibians
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Each classification rule can be expressed in the following way:
ri . (Condition;) — y;. (5.1)

The left-hand side of the rule is called the rule antecedent or precondition.
It contains a conjunction of attribute tests:

Condition; = (A1 op v1) A (A2 op v2) A ... (A op k), (5.2)

where (A;,v;) is an attribute-value pair and op is a logical operator chosen
from the set {=,#,<,>,<,>}. Each attribute test (A; op v;) is known as
a conjunct. The right-hand side of the rule is called the rule consequent,
which contains the predicted class y;.

A rule r covers a record x if the precondition of r matches the attributes
of z. r is also said to be fired or triggered whenever it covers a given record.
For an illustration, consider the rule r; given in Table 5.1 and the following
attributes for two vertebrates: hawk and grizzly bear.

Name Body Skin Gives | Aquatic Aerial Has | Hiber-
Temperature Cover | Birth | Creature | Creature | Legs | nates

hawk warm-blooded | feather no no yes yes no

grizzly bear | warm-blooded fur yes no no yes ves |

r1 covers the first vertebrate because its precondition is satisfied by the hawk’s
attributes. The rule does not cover the second vertebrate because grizzly bears
give birth to their young and cannot fly, thus violating the precondition of 71.

The quality of a classification rule can be evaluated using measures such as
coverage and accuracy. Given a data set D and a classification ruler : A — v,
the coverage of the rule is defined as the fraction of records in D that trigger
the rule . On the other hand, its accuracy or confidence factor is defined as
the fraction of records triggered by r whose class labels are equal to y. The
formal definitions of these measures are

Coverage(r) %
Accuracy(r) |AT2|—y| , (5.3)

where |A| is the number of records that satisfy the rule antecedent, |A Nyl is
the number of records that satisfy both the antecedent and consequent, and
|D| is the total number of records.
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Table 5.2. The vertebrate data set.
Name Body Skin Gives | Aquatic Aerial Has | Hiber- | Class Label
Temperature Cover Birth | Creature | Creature | Legs | nates
human warm-blooded hair yes no no yes no Mammals
python cold-blooded scales no no no no yes Reptiles
salmon cold-blooded scales no yes no no no Fishes
whale warm-blooded hair yes yes no no no Mammals
frog cold-blooded none no semi no yes yes Amphibians
komodo cold-blooded scales no no no yes no Reptiles
dragon
bat warm-blooded hair yes no yes yes yes Mamimals
pigeon warm-blooded | feathers no no yes yes no Birds
cat warm-blooded fur yes no no yes no Mammals
guppy cold-blooded scales yes yes no no no Fishes
alligator cold-blooded scales no semi no yes no Reptiles
penguin warm-blooded | feathers no semi no yes no Birds
porcupine warm-blooded quills yes no no yes yes Mammals
eel cold-blooded scales no yes no no no Fishes
salamander | cold-blooded none no semi no yes yes Amphibians

Example 5.1. Consider the data set shown in Table 5.2. The rule

(Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals

has a coverage of 33% since five of the fifteen records support the rule an-
tecedent. The rule accuracy is 100% because all five vertebrates covered by
the rule are mammals.

5.1.1 How a Rule-Based Classifier Works

A rule-based classifier classifies a test record based on the rule triggered by
the record. To illustrate how a rule-based classifier works, consider the rule
set shown in Table 5.1 and the following vertebrates:

Name Body Skin | Gives | Aquatic Aerial Has | Hiber-
Temperature | Cover | Birth | Creature | Creature | Legs | nates
lemur warm-blooded fur yes no no yes yes
turtle cold-blooded | scales no semi no yes no
dogfish shark | cold-blooded | scales yes yes no no no

e The first vertebrate, which is a lemur, is warm-blooded and gives birth
to its young. It triggers the rule rs, and thus, is classified as a mammal.
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e The second vertebrate, which is a turtle, triggers the rules r4 and rs.
Since the classes predicted by the rules are contradictory (reptiles versus
amphibians), their conflicting classes must be resolved.

e None of the rules are applicable to a dogfish shark. In this case, we
need to ensure that the classifier can still make a reliable prediction even
though a test record is not covered by any rule.

The previous example illustrates two important properties of the rule set gen-
erated by a rule-based classifier.

Mutually Exclusive Rules The rules in a rule set R are mutually exclusive
if no two rules in R are triggered by the same record. This property ensures
that every record is covered by at most one rule in R. An example of a
mutually exclusive rule set is shown in Table 5.3.

Exhaustive Rules A rule set R has exhaustive coverage if there is a rule
for each combination of attribute values. This property ensures that every
record is covered by at least one rule in R. Assuming that Body Temperature
and Gives Birth are binary variables, the rule set shown in Table 5.3 has
exhaustive coverage.

Table 5.3. Example of a mutually exclusive and exhaustive rule set.

r1: (Body Temperature = cold-blooded) — Non-mammals
re: (Body Temperature = warm-blooded) A (Gives Birth = yes) — Mammals
r3: (Body Temperature = warm-blooded) A (Gives Birth = no) — Non-mammals

Together, these properties ensure that every record is covered by exactly
one rule. Unfortunately, many rule-based classifiers, including the one shown
in Table 5.1, do not have such properties. If the rule set is not exhaustive,
then a default rule, 74 : () — yq4, must be added to cover the remaining
cases. A default rule has an empty antecedent and is triggered when all other
rules have failed. y4 is known as the default class and is typically assigned to
the majority class of training records not covered by the existing rules.

If the rule set is not mutually exclusive, then a record can be covered by
several rules, some of which may predict conflicting classes. There are two
ways to overcome this problem.
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Ordered Rules In this approach, the rules in a rule set are ordered in
decreasing order of their priority, which can be defined in many ways (e.g.,
based on accuracy, coverage, total description length, or the order in which
the rules are generated). An ordered rule set is also known as a decision
list. When a test record is presented, it is classified by the highest-ranked rule
that covers the record. This avoids the problem of having conflicting classes
predicted by multiple classification rules.

Unordered Rules This approach allows a test record to trigger multiple
classification rules and considers the consequent of each rule as a vote for
a particular class. The votes are then tallied to determine the class label
of the test record. The record is usually assigned to the class that receives
the highest number of votes. In some cases, the vote may be weighted by
the rule’s accuracy. Using unordered rules to build a rule-based classifier has
both advantages and disadvantages. Unordered rules are less susceptible to
errors caused by the wrong rule being selected to classify a test record (unlike
classifiers based on ordered rules, which are sensitive to the choice of rule-
ordering criteria). Model building is also less expensive because the rules do
not have to be kept in sorted order. Nevertheless, classifying a test record can
be quite an expensive task because the attributes of the test record must be
compared against the precondition of every rule in the rule set.

In the remainder of this section, we will focus on rule-based classifiers that
use ordered rules.

5.1.2 Rule-Ordering Schemes

Rule ordering can be implemented on a rule-by-rule basis or on a class-by-class
basis. The difference between these schemes is illustrated in Figure 5.1.

Rule-Based Ordering Scheme This approach orders the individual rules
by some rule quality measure. This ordering scheme ensures that every test
record is classified by the “best” rule covering it. A potential drawback of this
scheme is that lower-ranked rules are much harder to interpret because they
assume the negation of the rules preceding them. For example, the fourth rule
shown in Figure 5.1 for rule-based ordering,

Aquatic Creature = semi — Amphibians,

has the following interpretation: If the vertebrate does not have any feathers
or cannot fly, and is cold-blooded and semi-aquatic, then it is an amphibian.
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Rule-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no)

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

==> Reptiles
(Skin Cover=scales, Aquatic Creature=no)
(Skin Cover=scales, Aquatic Creature=yes) ==> Reptiles
==> Fishes
(Skin Cover=scales, Aquatic Creature=yes)

(Skin Cover=none) ==> Amphibians ==> Fishes

Figure 5.1. Comparison between rule-based and class-based ordering schemes.

The additional conditions (that the vertebrate does not have any feathers or
cannot fly, and is cold-blooded) are due to the fact that the vertebrate does
not satisfy the first three rules. If the number of rules is large, interpreting the
meaning of the rules residing near the bottom of the list can be a cumbersome
task.

Class-Based Ordering Scheme In this approach, rules that belong to the
same class appear together in the rule set R. The rules are then collectively
sorted on the basis of their class information. The relative ordering among the
rules from the same class is not important; as long as one of the rules fires,
the clags will be assigned to the test record. This makes rule interpretation
slightly easier. However, it is possible for a high-quality rule to be overlooked
in favor of an inferior rule that happens to predict the higher-ranked class.

Since most of the well-known rule-based classifiers (such as C4.5rules and
RIPPER) employ the class-based ordering scheme, the discussion in the re-
mainder of this section focuses mainly on this type of ordering scheme.

5.1.3 How to Build a Rule-Based Classifier

To build a rule-based classifier, we need to extract a set of rules that identifies
key relationships between the attributes of a data set and the class label.
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There are two broad classes of methods for extracting classification rules: (1)
direct methods, which extract classification rules directly from data, and (2)
indirect methods, which extract classification rules from other classification
models, such as decision trees and neural networks.

Direct methods partition the attribute space into smaller subspaces so that
all the records that belong to a subspace can be classified using a single classi-
fication rule. Indirect methods use the classification rules to provide a succinct
description of more complex classification models. Detailed discussions of these
methods are presented in Sections 5.1.4 and 5.1.5, respectively.

5.1.4 Direct Methods for Rule Extraction

The sequential covering algorithm is often used to extract rules directly
from data. Rules are grown in a greedy fashion based on a certain evaluation
measure. The algorithm extracts the rules one class at a time for data sets
that contain more than two classes. For the vertebrate classification problem,
the sequential covering algorithm may generate rules for classifying birds first,
followed by rules for classifying mammals, amphibians, reptiles, and finally,
fishes (see Figure 5.1). The criterion for deciding which class should be gen-
erated first depends on a number of factors, such as the class prevalence (i.e.,
fraction of training records that belong to a particular class) or the cost of
misclassifying records from a given class.

A summary of the sequential covering algorithm is given in Algorithm
5.1. The algorithm starts with an empty decision list, R. The Learn-One-
Rule function is then used to extract the best rule for class y that covers the
current set of training records. During rule extraction, all training records
for class y are considered to be positive examples, while those that belong to

Algorithm 5.1 Sequential covering algorithm.

: Let E be the training records and A be the set of attribute-value pairs, {(A4;,v;)}.
: Let Y, be an ordered set of classes {y1,¥2,..., ¥}
: Let R = { } be the initial rule list.
: for each class y € Y, — {yx} do
while stopping condition is not met do
r « Learn-One-Rule (E, A4, y).
Remove training records from FE that are covered by 7.
Add r to the bottom of the rule list: R — RV r.
end while
end for
11: Insert the default rule, {} — ys, to the bottom of the rule list R.

R e B SRE A > s

,_.
e
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other classes are considered to be negative examples. A rule is desirable if it
covers most of the positive examples and none (or very few) of the negative
examples. Once such a rule is found, the training records covered by the rule
are eliminated. The new rule is added to the bottom of the decision list .
This procedure is repeated until the stopping criterion is met. The algorithm
then proceeds to generate rules for the next class.

Figure 5.2 demonstrates how the sequential covering algorithm works for
a data set that contains a collection of positive and negative examples. The
rule R1, whose coverage is shown in Figure 5.2(b), is extracted first because
it covers the largest fraction of positive examples. All the training records
covered by R1 are subsequently removed and the algorithm proceeds to look
for the next best rule, which is R2.

T+ - Rt | —
S e S % B B
_ - - 4+ - - — 4 -
+ _ + + _ n
tet o+ N
(a) Original Data (b) Step 1
R1 _ R1 a
- - o - o e
- -+ _
: R2
MRS S et
(c) Step 2 (d) Step 3

Figure 5.2. An example of the sequential covering algorithm.
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Learn-One-Rule Function

The objective of the Learn-One-Rule function is to extract a classification
rule that covers many of the positive examples and none (or very few) of the
negative examples in the training set. However, finding an optimal rule is
computationally expensive given the exponential size of the search space. The
Learn-One-Rule function addresses the exponential search problem by growing
the rules in a greedy fashion. It generates an initial rule 7 and keeps refining
the rule until a certain stopping criterion is met. The rule is then pruned to
improve its generalization error.

Rule-Growing Strategy There are two common strategies for growing a
classification rule: general-to-specific or specific-to-general. Under the general-
to-specific strategy, an initial rule r : {} — vy is created, where the left-hand
side is an empty set and the right-hand side contains the target class. The rule
has poor quality because it covers all the examples in the training set. New

Skin Cover = hair
=> Mammals

Body Temperature = warm-blooded
=> Mammals

Has Legs = No
== Mammals

Body Temperature = warm-blooded,
Has Legs = yes => Mammals

Body Temperature = warm-blooded,
Gives Birth = yes => Mammals

(a) General-to-specific

Body Temperature=warm-blooded, Skin Cover=hair,
Gives Birth=yes, Aquatic creature=no, Aerial Creature=no
Has Legs=yes, Hibernates=no => Mammals

Body Temperature=warm-blooded,
Skin Cover=hair, Gives Birth=yes,
Aquatic creature=no, Aerial Creature=no
Has Legs=yes => Mammals

Skin Cover=hair, Gives Birth=yes
Aquatic Creature=no, Aerial Creature=no,
Has Legs=yes, Hibernates=no
=> Mammals

(b) Specific-to-general

Figure 5.3. General-to-specific and specific-to-general rule-growing strategies.
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conjuncts are subsequently added to improve the rule’s quality. Figure 5.3(a)
shows the general-to-specific rule-growing strategy for the vertebrate classifi-
cation problem. The conjunct Body Temperature=warm-blooded is initially
chosen to form the rule antecedent. The algorithm then explores all the possi-
ble candidates and greedily chooses the next conjunct, Gives Birth=yes, to
be added into the rule antecedent. This process continues until the stopping
criterion is met (e.g., when the added conjunct does not improve the quality
of the rule).

For the specific-to-general strategy, one of the positive examples is ran-
domly chosen as the initial seed for the rule-growing process. During the
refinement step, the rule is generalized by removing one of its conjuncts so
that it can cover more positive examples. Figure 5.3(b) shows the specific-to-
general approach for the vertebrate classification problem. Suppose a positive
example for mammals is chosen as the initial seed. The initial rule contains
the same conjuncts as the attribute values of the seed. To improve its cov-
erage, the rule is generalized by removing the conjunct Hibernate=no. The
refinement step is repeated until the stopping criterion is met, e.g., when the
rule starts covering negative examples.

The previous approaches may produce suboptimal rules because the rules
are grown in a greedy fashion. To avoid this problem, a beam search may be
used, where k of the best candidate rules are maintained by the algorithm.
Each candidate rule is then grown separately by adding (or removing) a con-
junct from its antecedent. The quality of the candidates are evaluated and the
k best candidates are chosen for the next iteration.

Rule Evaluation An evaluation metric is needed to determine which con-
junct should be added (or removed) during the rule-growing process. Accu-
racy is an obvious choice because it explicitly measures the fraction of training
examples classified correctly by the rule. However, a potential limitation of ac-
curacy is that it does not take into account the rule’s coverage. For example,
consider a training set that contains 60 positive examples and 100 negative
examples. Suppose we are given the following two candidate rules:

Rule 7r1: covers 50 positive examples and 5 negative examples,
Rule 73: covers 2 positive examples and no negative examples.

The accuracies for r; and ro are 90.9% and 100%, respectively. However,
r1 is the better rule despite its lower accuracy. The high accuracy for r is
potentially spurious because the coverage of the rule is too low.
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The following approaches can be used to handle this problem.

1. A statistical test can be used to prune rules that have poor coverage.
For example, we may compute the following likelihood ratio statistic:

k
R=2" filog(fi/es),

i=1

where k is the number of classes, f; is the observed frequency of class ¢
examples that are covered by the rule, and e; is the expected frequency
of a rule that makes random predictions. Note that R has a chi-square
distribution with k — 1 degrees of freedom. A large R value suggests
that the number of correct predictions made by the rule is significantly
larger than that expected by random guessing. For example, since
covers 55 examples, the expected frequency for the positive class is ey =
55x60/160 = 20.625, while the expected frequency for the negative class
is e_ = 55 x 100/160 = 34.375. Thus, the likelihood ratio for 71 is

R(r1) = 2 x [50 x log,(50/20.625) + 5 x log,(5/34.375)] = 99.9.

Similarly, the expected frequencies for ro are e, = 2 x 60/160 = 0.75
and e_ =2 x 100/160 = 1.25. The likelihood ratio statistic for s is

R(r2) =2 x [2 x logy(2/0.75) + 0 x logy(0/1.25)] = 5.66.

This statistic therefore suggests that r; is a better rule than ry.

2. An evaluation metric that takes into account the rule coverage can be
used. Consider the following evaluation metrics:

fr+1
1 e 5.4
Laplace ik (5.4)
k
m-estimate = f+—+-ﬁ, (5.5)
n+k

where n is the number of examples covered by the rule, f. is the number
of positive examples covered by the rule, k is the total number of classes,
and py is the prior probability for the positive class. Note that the m-
estimate is equivalent to the Laplace measure by choosing py = 1/k.
Depending on the rule coverage, these measures capture the trade-off
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between rule accuracy and the prior probability of the positive class. If
the rule does not cover any training example, then the Laplace mea-
sure reduces to 1/k, which is the prior probability of the positive class
assuming a uniform class distribution. The m-estimate also reduces to
the prior probability (p4) when n = 0. However, if the rule coverage
is large, then both measures asymptotically approach the rule accuracy,
f+/n. Going back to the previous example, the Laplace measure for
ry is 51/57 = 89.47%, which is quite close to its accuracy. Conversely,
the Laplace measure for r2 (75%) is significantly lower than its accuracy
because 72 has a much lower coverage.

3. An evaluation metric that takes into account the support count of the
rule can be used. One such metric is the FOIL’s information gain.
The support count of a rule corresponds to the number of positive exam-
ples covered by the rule. Suppose the rule 7 : A — + covers pg positive
examples and ng negative examples. After adding a new conjunct B, the
extended rule ' : AA B — + covers p; positive examples and n; neg-
ative examples. Given this information, the FOIL’s information gain of
the extended rule is defined as follows:

. . . Y4 Dbo
FOIL’s information gain = p; x | lo, -lo . (5.6
g » ( B2y 1082 +no) (5.6)

Since the measure is proportional to p; and py/(p1 +n1), it prefers rules
that have high support count and accuracy. The FOIL’s information
gains for rules r; and ro given in the preceding example are 43.12 and 2,
respectively. Therefore, ry is a better rule than ro.

Rule Pruning The rules generated by the Learn-One-Rule function can be
pruned to improve their generalization errors. To determine whether pruning
is necessary, we may apply the methods described in Section 4.4 on page
172 to estimate the generalization error of a rule. For example, if the error
on validation set decreases after pruning, we should keep the simplified rule.
Another approach is to compare the pessimistic error of the rule before and
after pruning (see Section 4.4.4 on page 179). The simplified rule is retained
in place of the original rule if the pessimistic error improves after pruning.
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Rationale for Sequential Covering

After a rule is extracted, the sequential covering algorithm must eliminate
all the positive and negative examples covered by the rule. The rationale for
doing this is given in the next example.

R3 R2
_____________ =
| | |

Rl | ++1+ 1 + |
+ ++ | + | l !
+ o+ |+ |+ !
class = + I L+ !
+ + + |+ !
Ty g I 1 :
+ H + | [ i
~ I | 1 - |
i - | e I |
| w | | -
: [ __-_1
class=- | -~ - -

Figure 5.4. Elimination of training records by the sequential covering algorithm. R1, R2, and R3
represent regions covered by three different rules.

Figure 5.4 shows three possible rules, R1, R2, and R3, extracted from a
data set that contains 29 positive examples and 21 negative examples. The
accuracies of R1, R2, and R3 are 12/15 (80%), 7/10 (70%), and 8/12 (66.7%),
respectively. R1 is generated first because it has the highest accuracy. After
generating R1, it is clear that the positive examples covered by the rule must be
removed so that the next rule generated by the algorithm is different than R1.
Next, suppose the algorithm is given the choice of generating either R2 or R3.
Even though R2 has higher accuracy than R3, R1 and R3 together cover 18
positive examples and 5 negative examples (resulting in an overall accuracy of
78.3%), whereas R1 and R2 together cover 19 positive examples and 6 negative
examples (resulting in an overall accuracy of 76%). The incremental impact of
R2 or R3 on accuracy is more evident when the positive and negative examples
covered by R1 are removed before computing their accuracies. In particular, if
positive examples covered by R1 are not removed, then we may overestimate
the effective accuracy of R3, and if negative examples are not removed, then
we may underestimate the accuracy of R3. In the latter case, we might end up
preferring R2 over R3 even though half of the false positive errors committed
by R3 have already been accounted for by the preceding rule, R1.
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RIPPER Algorithm

To illustrate the direct method, we consider a widely used rule induction algo-
rithm called RIPPER. This algorithm scales almost linearly with the number
of training examples and is particularly suited for building models from data
sets with imbalanced class distributions. RIPPER also works well with noisy
data sets because it uses a validation set to prevent model overfitting.

For two-class problems, RIPPER chooses the majority class as its default
class and learns the rules for detecting the minority class. For multiclass prob-
lems, the classes are ordered according to their frequencies. Let (y1,92,. .-, Yc)
be the ordered classes, where y; is the least frequent class and y, is the most
frequent class. During the first iteration, instances that belong to y; are la-
beled as positive examples, while those that belong to other classes are labeled
as negative examples. The sequential covering method is used to generate rules
that discriminate between the positive and negative examples. Next, RIPPER
extracts rules that distinguish y2 from other remaining classes. This process
is repeated until we are left with y., which is designated as the default class.

Rule Growing RIPPER employs a general-to-specific strategy to grow a
rule and the FOIL’s information gain measure to choose the best conjunct
to be added into the rule antecedent. It stops adding conjuncts when the
rule starts covering negative examples. The new rule is then pruned based
on its performance on the validation set. The following metric is computed to
determine whether pruning is needed: (p—n)/(p+n), where p (n) is the number
of positive (negative) examples in the validation set covered by the rule. This
metric is monotonically related to the rule’s accuracy on the validation set. If
the metric improves after pruning, then the conjunct is removed. Pruning is
done starting from the last conjunct added to the rule. For example, given a
rule ABCD — y, RIPPER checks whether D should be pruned first, followed
by CD, BCD, etc. While the original rule covers only positive examples, the
pruned rule may cover some of the negative examples in the training set.

Building the Rule Set After generating a rule, all the positive and negative
examples covered by the rule are eliminated. The rule is then added into the
rule set as long as it does not violate the stopping condition, which is based
on the minimum description length principle. If the new rule increases the
total description length of the rule set by at least d bits, then RIPPER stops
adding rules into its rule set (by default, d is chosen to be 64 bits). Another
stopping condition used by RIPPER is that the error rate of the rule on the
validation set must not exceed 50%.
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RIPPER also performs additional optimization steps to determine whether
some of the existing rules in the rule set can be replaced by better alternative
rules. Readers who are interested in the details of the optimization method
may refer to the reference cited at the end of this chapter.

5.1.5 Indirect Methods for Rule Extraction

This section presents a method for generating a rule set from a decision tree.
In principle, every path from the root node to the leaf node of a decision tree
can be expressed as a classification rule. The test conditions encountered along
the path form the conjuncts of the rule antecedent, while the class label at the
leaf node is assigned to the rule consequent. Figure 5.5 shows an example of a
rule set generated from a decision tree. Notice that the rule set is exhaustive
and contains mutually exclusive rules. However, some of the rules can be
simplified as shown in the next example.

Rule Set

r1: (P=No,Q=No) ==> -

r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,Q=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

Figure 5.5. Converting a decision tree into classification rules.

Example 5.2. Consider the following three rules from Figure 5.5:

r2: (P =No) A (Q = Yes) — +

7'3: (P=Yes) /\(R:NO) — -

r5: (P = Yes) A (R = Yes) A (Q = Yes) — +
Observe that the rule set always predicts a positive class when the value of @
is Yes. Therefore, we may simplify the rules as follows:

r2": (Q = Yes) — +
r3: (P = Yes) A (R = No) — +.
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Rule-Based Classifier:

(Gives Birth=No, Aerial Creature=Yes) => Birds
(Gives Birth=No, Aquatic Creature=Yes) => Fishes
(Gives Birth=Yes) => Mammals

Yes
(Gives Birth=No, Aerial Creature=No, Aquatic Creature=No)

=> Reptiles
() => Amphibians

Aerial
Creature
S N

Reptiles

No

Amphibians

Ye

Le]

Figure 5.6. Classification rules extracted from a decision tree for the vertebrate classification problem.

r3 is retained to cover the remaining instances of the positive class. Although
the rules obtained after simplification are no longer mutually exclusive, they
are less complex and are easier to interpret. [

In the following, we describe an approach used by the C4.5rules algorithm
to generate a rule set from a decision tree. Figure 5.6 shows the decision tree
and resulting classification rules obtained for the data set given in Table 5.2.

Rule Generation Classification rules are extracted for every path from the
root to one of the leaf nodes in the decision tree. Given a classification rule
r: A — y, we consider a simplified rule, ' : A’ — y, where A’ is obtained
by removing one of the conjuncts in A. The simplified rule with the lowest
pessimistic error rate is retained provided its error rate is less than that of the
original rule. The rule-pruning step is repeated until the pessimistic error of
the rule cannot be improved further. Because some of the rules may become
identical after pruning, the duplicate rules must be discarded.

Rule Ordering After generating the rule set, C4.5rules uses the class-based
ordering scheme to order the extracted rules. Rules that predict the same class
are grouped together into the same subset. The total description length for
each subset is computed, and the classes are arranged in increasing order of
their total description length. The class that has the smallest description
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length is given the highest priority because it is expected to contain the best
set of rules. The total description length for a class is given by Lexception + g X
Linodel, Where Lexception 18 the number of bits needed to encode the misclassified
examples, Lpoqel is the number of bits needed to encode the model, and g is a
tuning parameter whose default value is 0.5. The tuning parameter depends
on the number of redundant attributes present in the model. The value of the
tuning parameter is small if the model contains many redundant attributes.

5.1.6 Characteristics of Rule-Based Classifiers
A rule-based classifier has the following characteristics:

e The expressiveness of a rule set is almost equivalent to that of a decision
tree because a decision tree can be represented by a set of mutually ex-
clusive and exhaustive rules. Both rule-based and decision tree classifiers
create rectilinear partitions of the attribute space and assign a class to
each partition. Nevertheless, if the rule-based classifier allows multiple
rules to be triggered for a given record, then a more complex decision
boundary can be constructed.

e Rule-based classifiers are generally used to produce descriptive models
that are easier to interpret, but gives comparable performance to the
decision tree classifier.

e The class-based ordering approach adopted by many rule-based classi-
fiers (such as RIPPER) is well suited for handling data sets with imbal-
anced class distributions.

5.2 Nearest-Neighbor classifiers

The classification framework shown in Figure 4.3 involves a two-step process:
(1) an inductive step for constructing a classification model from data, and
(2) a deductive step for applying the model to test examples. Decision tree
and rule-based classifiers are examples of eager learners because they are
designed to learn a model that maps the input attributes to the class label as
soon as the training data becomes available. An opposite strategy would be to
delay the process of modeling the training data until it is needed to classify the
test examples. Techniques that employ this strategy are known as lazy learn-
ers. An example of a lazy learner is the Rote classifier, which memorizes the
entire training data and performs classification only if the attributes of a test
instance match one of the training examples exactly. An obvious drawback of
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Figure 5.7. The 1-, 2-, and 3-nearest neighbors of an instance.

this approach is that some test records may not be classified because they do
not match any training example.

One way to make this approach more flexible is to find all the training
examples that are relatively similar to the attributes of the test example.
These examples, which are known as nearest neighbors, can be used to
determine the class label of the test example. The justification for using nearest
neighbors is best exemplified by the following saying: “If it walks like a duck,
quacks like a duck, and looks like a duck, then it’s probably a duck.” A nearest-
neighbor classifier represents each example as a data point in a d-dimensional
space, where d is the number of attributes. Given a test example, we compute
its proximity to the rest of the data points in the training set, using one of
the proximity measures described in Section 2.4 on page 65. The k-nearest
neighbors of a given example z refer to the k points that are closest to z.

Figure 5.7 illustrates the 1-, 2-, and 3-nearest neighbors of a data point
located at the center of each circle. The data point is classified based on
the class labels of its neighbors. In the case where the neighbors have more
than one label, the data point is assigned to the majority class of its nearest
neighbors. In Figure 5.7(a), the l-nearest neighbor of the data point is a
negative example. Therefore the data point is assigned to the negative class.
If the number of nearest neighbors is three, as shown in Figure 5.7(c), then
the neighborhood contains two positive examples and one negative example.
Using the majority voting scheme, the data point is assigned to the positive
class. In the case where there is a tie between the classes (see Figure 5.7(b)),
we may randomly choose one of them to classify the data point.

The preceding discussion underscores the importance of choosing the right
value for k. If k is too small, then the nearest-neighbor classifier may be
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Figure 5.8. k-nearest neighbor classification with large .

susceptible to overfitting because of noise in the training data. On the other
hand, if & is too large, the nearest-neighbor classifier may misclassify the test
instance because its list of nearest neighbors may include data points that are
located far away from its neighborhood (see Figure 5.8).

5.2.1 Algorithm

A high-level summary of the nearest-neighbor classification method is given in
Algorithm 5.2. The algorithm computes the distance (or similarity) between
each test example 2 = (x/,y/) and all the training examples (x,y) € D to
determine its nearest-neighbor list, D,. Such computation can be costly if the
number of training examples is large. However, efficient indexing techniques
are available to reduce the amount of computations needed to find the nearest
neighbors of a test example.

Algorithm 5.2 The k-nearest neighbor classification algorithm.
: Let k be the number of nearest neighbors and D be the set of training examples.
: for each test example z = (x',y/) do
Compute d(x’,x), the distance between z and every example, (x,y) € D.
Select D, C D, the set of k closest training examples to 2.
y' = argmax 3. y)ep, (v =1vi)
end for :

SN S o e
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Once the nearest-neighbor list is obtained, the test example is classified
based on the majority class of its nearest neighbors:

Majority Voting: 3 = argmax E I(v =), (5.7)
v
(x‘lnyz)EDZ

where v is a class label, y; is the class label for one of the nearest neighbors,
and I(-) is an indicator function that returns the value 1 if its argument is
true and 0 otherwise.

In the majority voting approach, every neighbor has the same impact on the
classification. This makes the algorithm sensitive to the choice of k, as shown
in Figure 5.7. One way to reduce the impact of k is to weight the influence
of each nearest neighbor x; according to its distance: w; = 1/d(x/,x;)?. As
a result, training examples that are located far away from z have a weaker
impact on the classification compared to those that are located close to z.
Using the distance-weighted voting scheme, the class label can be determined
as follows:

Distance-Weighted Voting: 3y’ = argmax Z wy x I(v=1y;). (5.8)
Y (xiwi)ED:

5.2.2 Characteristics of Nearest-Neighbor Classifiers
The characteristics of the nearest-neighbor classifier are summarized below:

e Nearest-neighbor classification is part of a more general technique known
as instance-based learning, which uses specific training instances to make
predictions without having to maintain an abstraction (or model) de-
rived from data. Instance-based learning algorithms require a proximity
measure to determine the similarity or distance between instances and a
classification function that returns the predicted class of a test instance
based on its proximity to other instances.

e Lazy learners such as nearest-neighbor classifiers do not require model
building. However, classifying a test example can be quite expensive
because we need to compute the proximity values individually between
the test and training examples. In contrast, eager learners often spend
the bulk of their computing resources for model building. Once a model
has been built, classifying a test example is extremely fast.

e Nearest-neighbor classifiers make their predictions based on local infor-
mation, whereas decision tree and rule-based classifiers attempt to find
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a global model that fits the entire input space. Because the classification
decisions are made locally, nearest-neighbor classifiers (with small values
of k) are quite susceptible to noise.

e Nearest-neighbor classifiers can produce arbitrarily shaped decision bound-
aries. Such boundaries provide a more flexible model representation
compared to decision tree and rule-based classifiers that are often con-
strained to rectilinear decision boundaries. The decision boundaries of
nearest-neighbor classifiers also have high variability because they de-
pend on the composition of training examples. Increasing the number of
nearest neighbors may reduce such variability.

e Nearest-neighbor classifiers can produce wrong predictions unless the
appropriate proximity measure and data preprocessing steps are taken.
For example, suppose we want to classify a group of people based on
attributes such as height (measured in meters) and weight (measured in
pounds). The height attribute has a low variability, ranging from 1.5 m
to 1.85 m, whereas the weight attribute may vary from 90 lb. to 250
Ib. If the scale of the attributes are not taken into consideration, the
proximity measure may be dominated by differences in the weights of a
person.

5.3 Bayesian Classifiers

In many applications the relationship between the attribute set and the class
variable is non-deterministic. In other words, the class label of a test record
cannot be predicted with certainty even though its attribute set is identical
to some of the training examples. This situation may arise because of noisy
data or the presence of certain confounding factors that affect classification
but are not included in the analysis. For example, consider the task of pre-
dicting whether a person is at risk for heart disease based on the person’s diet
and workout frequency. Although most people who eat healthily and exercise
regularly have less chance of developing heart disease, they may still do so be-
cause of other factors such as heredity, excessive smoking, and alcohol abuse.
Determining whether a person’s diet is healthy or the workout frequency is
sufficient is also subject to interpretation, which in furn may introduce uncer-
tainties into the learning problem.

This section presents an approach for modeling probabilistic relationships
between the attribute set and the class variable. The section begins with an
introduction to the Bayes theorem, a statistical principle for combining prior




228 Chapter 5 Classification: Alternative Techniques

knowledge of the classes with new evidence gathered from data. The use of the
Bayes theorem for solving classification problems will be explained, followed
by a description of two implementations of Bayesian classifiers: naive Bayes
and the Bayesian belief network.

5.3.1 Bayes Theorem

Consider a football game between two rival teams: Team 0 and Team 1.
Suppose Team 0 wins 65% of the time and Team 1 wins the remaining
matches. Among the games won by Team 0, only 30% of them come
from playing on Team 1’s football field. On the other hand, 75% of the
victories for Team 1 are obtained while playing at home. If Team 1 is to
host the next match between the two teams, which team will most likely
emerge as the winner?

This question can be answered by using the well-known Bayes theorem. For
completeness, we begin with some basic definitions from probability theory.
Readers who are unfamiliar with concepts in probability may refer to Appendix
C for a brief review of this topic.

Let X and Y be a pair of random variables. Their joint probability, P(X =
z,Y = y), refers to the probability that variable X will take on the value
z and variable Y will take on the value y. A conditional probability is the
probability that a random variable will take on a particular value given that the
outcome for another random variable is known. For example, the conditional
probability P(Y = y|X = ) refers to the probability that the variable Y will
take on the value y, given that the variable X is observed to have the value z.
The joint and conditional probabilities for X and Y are related in the following
way:

P(X,Y)=P(Y|X)x P(X)=P(X|Y) x P(Y). (5.9)

Rearranging the last two expressions in Equation 5.9 leads to the following
formula, known as the Bayes theorem:

PX]Y)P(Y)

PIYIY) = =555

(5.10)

The Bayes theorem can be used to solve the prediction problem stated
at the beginning of this section. For notational convenience, let X be the
random variable that represents the team hosting the match and Y be the
random variable that represents the winner of the match. Both X and Y can
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take on values from the set {0,1}. We can summarize the information given
in the problem as follows:

Probability Team 0 wins is P(Y = 0) = 0.65.

Probability Team 1 wins is P(Y =1) =1 — P(Y = 0) = 0.35.

Probability Team 1 hosted the match it won is P(X =1|Y =1) = 0.75.
Probability Team 1 hosted the match won by Team 0 is P(X = 1|Y = 0) =0.3.

Our objective is to compute P(Y = 1|X = 1), which is the conditional
probability that Team 1 wins the next match it will be hosting, and compares
it against P(Y = 0|X = 1). Using the Bayes theorem, we obtain

P(X =1y =1) x P(Y =1)
P(X=1)
P(X=1Y =1)x P(Y =1)
PX=1Y=1)+P(X=1Y =0)
P(X=1Y=1)x P(Y =1)
PX=1Y=1)PY =1)+P(X =1]Y = 0)P(Y =0)
0.75 x 0.35
0.75 x 0.35 4 0.3 x 0.65
= 0.5738,

PY=1X=1) =

where the law of total probability (see Equation C.5 on page 722) was applied
in the second line. Furthermore, P(Y =0|X =1)=1-PY =1X =1) =
0.4262. Since P(Y = 1|X = 1) > P(Y = 0|X = 1), Team 1 has a better
chance than Team 0 of winning the next match.

5.3.2 Using the Bayes Theorem for Classification

Before describing how the Bayes theorem can be used for classification, let
us formalize the classification problem from a statistical perspective. Let X
denote the attribute set and Y denote the class variable. If the class variable
has a non-deterministic relationship with the attributes, then we can treat
X and Y as random variables and capture their relationship probabilistically
using P(Y|X). This conditional probability is also known as the posterior
probability for Y, as opposed to its prior probability, P(Y).

During the training phase, we need to learn the posterior probabilities
P(Y|X) for every combination of X and Y based on information gathered
from the training data. By knowing these probabilities, a test record X’ can
be classified by finding the class Y’ that maximizes the posterior probability,
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P(Y'|X’). To illustrate this approach, consider the task of predicting whether
a loan borrower will default on their payments. Figure 5.9 shows a training
set with the following attributes: Home Owner, Marital Status, and Annual
Income. Loan borrowers who defaulted on their payments are classified as
Yes, while those who repaid their loans are classified as No.

Tid Home Marital Annual Defaulted

Owner Status Income Borrower
Yes i :
No
No

No
No

185K |Yes
75K No

No
No
No

Figure 5.9. Training set for predicting the loan default problem.

Suppose we are given a test record with the following attribute set: X =
(Home Owner = No, Marital Status = Married, Annual Income = $120K). To
classify the record, we need to compute the posterior probabilities P(Yes|X)
and P(No|X) based on information available in the training data. If P(Yes|X) >
P(No|X), then the record is classified as Yes; otherwise, it is classified as No.

Estimating the posterior probabilities accurately for every possible combi-
nation of class label and attribute value is a difficult problem because it re-
quires a very large training set, even for a moderate number of attributes. The
Bayes theorem is useful because it allows us to express the posterior probabil-
ity in terms of the prior probability P(Y), the class-conditional probability
P(X]Y), and the evidence, P(X):

P(X|Y) x P(Y)

P(Y[X) = 55

(5.11)

When comparing the posterior probabilities for different values of Y, the de-
nominator term, P(X), is always constant, and thus, can be ignored. The
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prior probability P(Y') can be easily estimated from the training set by com-
puting the fraction of training records that belong to each class. To estimate
the class-conditional probabilities P(X|Y’), we present two implementations of
Bayesian classification methods: the naive Bayes classifier and the Bayesian
belief network. These implementations are described in Sections 5.3.3 and
5.3.5, respectively.

5.3.3 Naive Bayes Classifier

A naive Bayes classifier estimates the class-conditional probability by assuming
that the attributes are conditionally independent, given the class label y. The
conditional independence assumption can be formally stated as follows:

d
PX|y =y) = [[ P(XilY =), (5.12)
i=1

where each attribute set X = {X1, Xo,..., X4} consists of d attributes.

Conditional Independence

Before delving into the details of how a naive Bayes classifier works, let us
examine the notion of conditional independence. Let X, Y, and Z denote
three sets of random variables. The variables in X are said to be conditionally
independent of Y, given Z, if the following condition holds:

P(X|Y,Z) = P(X|Z). (5.13)

An example of conditional independence is the relationship between a person’s
arm length and his or her reading skills. One might observe that people with
longer arms tend to have higher levels of reading skills. This relationship can
be explained by the presence of a confounding factor, which is age. A young
child tends to have short arms and lacks the reading skills of an adult. If the
age of a person is fixed, then the observed relationship between arm length
and reading skills disappears. Thus, we can conclude that arm length and
reading skills are conditionally independent when the age variable is fixed.
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The conditional independence between X and Y can also be written into
a form that looks similar to Equation 5.12:

rxviz) - PELD
P(X,Y,Z) P(Y,Z)
P(Y,Z) P(Z)
= P(X|Y,Z) x P(Y|Z)
= P(X|Z) x P(Y|Z), (5.14)

where Equation 5.13 was used to obtain the last line of Equation 5.14.

How a Naive Bayes Classifier Works

With the conditional independence assumption, instead of computing the
class-conditional probability for every combination of X, we only have to esti-
mate the conditional probability of each X, given Y. The latter approach is
more practical because it does not require a very large training set to obtain
a good estimate of the probability.

To classify a test record, the naive Bayes classifier computes the posterior
probability for each class Y

P(Y)[IL, P(Xi|Y)
P(X)

P(Y|X) = (5.15)

Since P(X) is fixed for every Y, it is sufficient to choose the class that maxi-
mizes the numerator term, P(Y) H?:l P(X;]Y). In the next two subsections,
we describe several approaches for estimating the conditional probabilities
P(X;|Y) for categorical and continuous attributes.

Estimating Conditional Probabilities for Categorical Attributes

For a categorical attribute X;, the conditional probability P(X; = z;|Y = y)
is estimated according to the fraction of training instances in class y that take
on a particular attribute value z;. For example, in the training set given in
Figure 5.9, three out of the seven people who repaid their loans also own a
home. As a result, the conditional probability for P(Home Owner=Yes|No) is
equal to 3/7. Similarly, the conditional probability for defaulted borrowers
who are single is given by P(Marital Status = Single|Yes) = 2/3.
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Estimating Conditional Probabilities for Continuous Attributes

There are two ways to estimate the class-conditional probabilities for contin-
uous attributes in naive Bayes classifiers:

1. We can discretize each continuous attribute and then replace the con-
tinuous attribute value with its corresponding discrete interval. This
approach transforms the continuous attributes into ordinal attributes.
The conditional probability P(X;|Y = y) is estimated by computing
the fraction of training records belonging to class y that falls within the
corresponding interval for X;. The estimation error depends on the dis-
cretization strategy (as described in Section 2.3.6 on page 57), as well as
the number of discrete intervals. If the number of intervals is too large,
there are too few training records in each interval to provide a reliable
estimate for P(X;|Y). On the other hand, if the number of intervals
is too small, then some intervals may aggregate records from different
classes and we may miss the correct decision boundary.

2. We can assume a certain form of probability distribution for the contin-
uous variable and estimate the parameters of the distribution using the
training data. A Gaussian distribution is usually chosen to represent the
class-conditional probability for continuous attributes. The distribution
is characterized by two parameters, its mean, y, and variance, o%. For
each class y;, the class-conditional probability for attribute X; is

(@i—pip)®
1 - g,
P(X.L = fL‘z‘Y = yJ) = \/%0-“ exp 2 7 . (516)
%]

The parameter p;; can be estimated based on the sample mean of X;
(%) for all training records that belong to the class y;. Similarly, agj can
be estimated from the sample variance (s?) of such training records. For
example, consider the annual income attribute shown in Figure 5.9. The
sample mean and variance for this attribute with respect to the class No
are

5 5

7(6)
s = /2975 = 54.54.
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Given a test record with taxable income equal to $120K, we can compute
its class-conditional probability as follows:

_ (120-110)?

P(Income=120|No) = exp 2x29% = (.0072.

1
V2 (54.54)

Note that the preceding interpretation of class-conditional probability
is somewhat misleading. The right-hand side of Equation 5.16 corre-
sponds to a probability density function, f(Xj;uij,045). Since the
function is continuous, the probability that the random variable X; takes
a particular value is zero. Instead, we should compute the conditional
probability that X; lies within some interval, z; and z; + ¢, where € is a
small constant:

Z;+€
Pla; < X; <zi+elY =y;) = / F( X5 15, 045)d X
T

~ f(l'i;,uijaaij) X €. (517)

Since e appears as a constant multiplicative factor for each class, it
cancels out when we normalize the posterior probability for P(Y|X).
Therefore, we can still apply Equation 5.16 to approximate the class-
conditional probability P(X;|Y).

Example of the Naive Bayes Classifier

Consider the data set shown in Figure 5.10(a). We can compute the class-
conditional probability for each categorical attribute, along with the sample
mean and variance for the continuous attribute using the methodology de-
scribed in the previous subsections. These probabilities are summarized in
Figure 5.10(b).

To predict the class label of a test record X = (Home Owner=No, Marital
Status = Married, Income = $120K), we need to compute the posterior prob-
abilities P(No|X) and P(Yes|X). Recall from our earlier discussion that these
posterior probabilities can be estimated by computing the product between
the prior probability P(Y’) and the class-conditional probabilities [], P(X;]Y),
which corresponds to the numerator of the right-hand side term in Equation
5.15.

The prior probabilities of each class can be estimated by calculating the
fraction of training records that belong to each class. Since there are three
records that belong to the class Yes and seven records that belong to the class
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P(Home Owner=YesINo) = 3/7
P(Home Owner=NolINo) = 4/7
Home Marital Annual Defaulted P(Home Owner=YeslYes) =0
Owner Status Income Borrower P(Home Owner=NolYes) = 1

: P(Marital Status=SingleiNo) = 2/7
P(Marital Status=DivorcedINo) = 1/7
P(Marital Status=MarriedINo) = 4/7
P(Marital Status=SinglelYes) = 2/3
P(Marital Status=DivorcedlYes) = 1/3
P(Marital Status=MarriedlYes) = 0

For Annual Income:

If class=No: sample mean=110
sample variance=2975

If class=Yes: sample mean=90
sample variance=25

(@) (b)

Figure 5.10. The naive Bayes classifier for the loan classification problem.

No, P(Yes) = 0.3 and P(No) = 0.7. Using the information provided in Figure
5.10(b), the class-conditional probabilities can be computed as follows:

P(X|No) = P(Home Owner = No|No) x P(Status = Married|No)
x P(Annual Income = $120K|No)
= 4/7 x4/7 x 0.0072 = 0.0024.

P(X|Yes) = P(Home Owner = No|Yes) x P(Status = Married|Yes)
X P(Annual Income = $120K]|Yes)
= 1x0x12x107?=0.

Putting them together, the posterior probability for class No is P(No|X) =
a X 7/10 x 0.0024 = 0.0016c;, where a = 1/P(X) is a constant term. Using
a similar approach, we can show that the posterior probability for class Yes
is zero because its class-conditional probability is zero. Since P(No|X) >
P(Yes|X), the record is classified as No.
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M-estimate of Conditional Probability

The preceding example illustrates a potential problem with estimating poste-
rior probabilities from training data. If the class-conditional probability for
one of the attributes is zero, then the overall posterior probability for the class
vanishes. This approach of estimating class-conditional probabilities using
simple fractions may seem too brittle, especially when there are few training
examples available and the number of attributes is large.

In a more extreme case, if the training examples do not cover many of
the attribute values, we may not be able to classify some of the test records.
For example, if P(Marital Status = Divorced|No) is zero instead of 1/7,
then a record with attribute set X = (Home Owner = Yes, Marital Status =
Divorced, Income = $120K) has the following class-conditional probabilities:

P(X|No) = 3/7 x 0 x 0.0072 = 0.
P(X|Yes) =0x1/3x12x107% =0.

The naive Bayes classifier will not be able to classify the record. This prob-
lem can be addressed by using the m-estimate approach for estimating the
conditional probabilities:

Ne+mp

P(z;ly;) = e

, (5.18)

where n is the total number of instances from class y;, n. is the number of
training examples from class y; that take on the value z;, m is a parameter
known as the equivalent sample size, and p is a user-specified parameter. If
there is no training set available (i.e., n = 0), then P(z;|y;) = p. Therefore
p can be regarded as the prior probability of observing the attribute value
z; among records with class y;. The equivalent sample size determines the
tradeoff between the prior probability p and the observed probability n./n.

In the example given in the previous section, the conditional probability
P(Status = Married|Yes) = 0 because none of the training records for the
class has the particular attribute value. Using the m-estimate approach with
m = 3 and p = 1/3, the conditional probability is no longer zero:

P(Marital Status = Married|Yes) = (0+3x1/3)/(3+3)=1/6.




5.3 Bayesian Classifiers 237

If we assume p = 1/3 for all attributes of class Yes and p = 2/3 for all
attributes of class No, then

P(X|No) = P(Home Owner = No[No) x P(Status = Married|No)
X P(Annual Income = $120K|No)
= 6/10 x 6/10 x 0.0072 = 0.0026.

P(X|Yes) = P(Home Owner = No|Yes) x P(Status = Married|Yes)
X P(Annual Income = $120K|Yes)
= 4/6x1/6x1.2x107°=13x10"10.

The posterior probability for class No is P(No|X) = a x 7/10 x 0.0026 =
0.0018¢;, while the posterior probability for class Yes is P(Yes|X) = a x
3/10 x 1.3 x 10710 = 4.0 x 10~ . Although the classification decision has
not changed, the m-estimate approach generally provides a more robust way
for estimating probabilities when the number of training examples is small.

Characteristics of Naive Bayes Classifiers
Naive Bayes classifiers generally have the following characteristics:

e They are robust to isolated noise points because such points are averaged
out when estimating conditional probabilities from data. Naive Bayes
classifiers can also handle missing values by ignoring the example during
model building and classification.

e They are robust to irrelevant attributes. I X; is an irrelevant at-
tribute, then P(X;]Y) becomes almost uniformly distributed. The class-
conditional probability for X; has no impact on the overall computation
of the posterior probability.

e Correlated attributes can degrade the performance of naive Bayes clas-
sifiers because the conditional independence assumption no longer holds
for such attributes. For example, consider the following probabilities:

P(A=0]Y =0) =04, P(A=1]Y =0)=0.6,
P(A=0]Y =1)=06, P(A=1]Y =1)=04,

where A is a binary attribute and Y is a binary class variable. Suppose
there is another binary attribute B that is perfectly correlated with A
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when Y = 0, but is independent of A when Y = 1. For simplicity,
assume that the class-conditional probabilities for B are the same as for
A. Given a record with attributes A = 0, B = 0, we can compute its
posterior probabilities as follows:

P(A=0[Y =0)P(B =0[Y =0)P(Y =0)

P(Y =0[A=0,B=0) =

P(A=0,B=0)
016 x P(Y =0)
~ P(A=0,B=0)

P(A=0]Y =1)P(B=0|Y = 1)P(Y = 1)

P(Y=14=0,B=0) =

P(A=0,B=0)
036 x P(Y =1)
~ P(A=0,B=0)

If P(Y = 0) = P(Y = 1), then the naive Bayes classifier would assign
the record to class 1. However, the truth is,

P(A=0,B=0]Y =0) = P(A=0]Y = 0) = 0.4,

because A and B are perfectly correlated when Y = 0. As a result, the
posterior probability for Y = 0 is

P(A=0,B=0Y =0)P(Y =0)

P(A=0,B=0)
0.4 x P(Y =0)
P(A=0,B=0)’

which is larger than that for Y = 1. The record should have been
classified as class 0.

5.3.4 Bayes Error Rate

Suppose we know the true probability distribution that governs P(X|Y’). The
Bayesian classification method allows us to determine the ideal decision bound-
ary for the classification task, as illustrated in the following example.

Example 5.3. Consider the task of identifying alligators and crocodiles based
on their respective lengths. The average length of an adult crocodile is about 15
feet, while the average length of an adult alligator is about 12 feet. Assuming
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Figure 5.11. Comparing the likelihood functions of a crocodile and an alligator.

that their length z follows a Gaussian distribution with a standard deviation
equal to 2 feet, we can express their class-conditional probabilities as follows:

2

P(X|Crocodile) = \/2_71; 5 exp [— —;—(X 5 15> ] (5.19)
2

P(X|Alligator) = —\/—2:71:(..—2exp [— %(X 5 12) } (5.20)

Figure 5.11 shows a comparison between the class-conditional probabilities
for a crocodile and an alligator. Assuming that their prior probabilities are
the same, the ideal decision boundary is located at some length & such that

P(X = Z|Crocodile) = P(X = #|Alligator).
Using Equations 5.19 and 5.20, we obtain
&-15\> _ [(#-12)\°
2 B 2 ’

which can be solved to yield £ = 13.5. The decision boundary for this example
is located halfway between the two means. [
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(@) (b) ©

Figure 5.12. Representing probabilistic relationships using directed acyclic graphs.

When the prior probabilities are different, the decision boundary shifts
toward the class with lower prior probability (see Exercise 10 on page 319).
Furthermore, the minimum error rate attainable by any classifier on the given
data can also be computed. The ideal decision boundary in the preceding
example classifies all creatures whose lengths are less than % as alligators and
those whose lengths are greater than # as crocodiles. The error rate of the
classifier is given by the sum of the area under the posterior probability curve
for crocodiles (from length 0 to ) and the area under the posterior probability
curve for alligators (from Z to oo):

Error=/ P(Crocodile\X)dX+/ P(Alligator|X)dX.
: )

T

The total error rate is known as the Bayes error rate.

5.3.5 Bayesian Belief Networks

The conditional independence assumption made by naive Bayes classifiers may
seem too rigid, especially for classification problems in which the attributes
are somewhat correlated. This section presents a more flexible approach for
modeling the class-conditional probabilities P(X|Y'). Instead of requiring all
the attributes to be conditionally independent given the class, this approach
allows us to specify which pair of attributes are conditionally independent.
We begin with a discussion on how to represent and build such a probabilistic
model, followed by an example of how to make inferences from the model.
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Model Representation

A Bayesian belief network (BBN), or simply, Bayesian network, provides a
graphical representation of the probabilistic relationships among a set of ran-
dom variables. There are two key elements of a Bayesian network:

1. A directed acyclic graph (dag) encoding the dependence relationships
among a set of variables.

2. A probability table associating each node to its immediate parent nodes.

Consider three random variables, A, B, and C, in which A and B are
independent variables and each has a direct influence on a third variable, C.
The relationships among the variables can be summarized into the directed
acyclic graph shown in Figure 5.12(a). Each node in the graph represents a
variable, and each arc asserts the dependence relationship between the pair
of variables. If there is a directed arc from X to Y, then X is the parent of
Y and Y is the child of X. Furthermore, if there is a directed path in the
network from X to Z, then X is an ancestor of Z, while Z is a descendant
of X. For example, in the diagram shown in Figure 5.12(b), A is a descendant
of D and D is an ancestor of B. Both B and D are also non-descendants of
A. An important property of the Bayesian network can be stated as follows:

Property 1 (Conditional Independence). A node in a Bayesian network
is conditionally independent of its non-descendants, if its parents are known.

In the diagram shown in Figure 5.12(b), A is conditionally independent of
both B and D given C because the nodes for B and D are non-descendants
of node A. The conditional independence assumption made by a naive Bayes
classifier can also be represented using a Bayesian network, as shown in Figure
5.12(c), where y is the target class and {Xj, Xo,..., Xq} is the attribute set.

Besides the conditional independence conditions imposed by the network
topology, each node is also associated with a probability table.

1. If a node X does not have any parents, then the table contains only the
prior probability P(X).

2. If a node X has only one parent, Y, then the table contains the condi-
tional probability P(X|Y).

3. Ifanode X has multiple parents, {Y1, Y2, ..., Y}, then the table contains
the conditional probability P(X|Y7,Ya,...,Ys).
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Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

Figure 5.13 shows an example of a Bayesian network for modeling patients
with heart disease or heartburn problems. Each variable in the diagram is
assumed to be binary-valued. The parent nodes for heart disease (HD) cor-
respond to risk factors that may affect the disease, such as exercise (E) and
diet (D). The child nodes for heart disease correspond to symptoms of the
disease, such as chest pain (CP) and high blood pressure (BP). For example,
the diagram shows that heartburn (Hb) may result from an unhealthy diet
and may lead to chest pain.

The nodes associated with the risk factors contain only the prior proba-
bilities, whereas the nodes for heart disease, heartburn, and their correspond-
ing symptoms contain the conditional probabilities. To save space, some of
the probabilities have been omitted from the diagram. The omitted prob-
abilities can be recovered by noting that P(X =) = 1 — P(X = z) and
P(X =7|Y) =1— P(X = 2z|Y), where T denotes the opposite outcome of z.
For example, the conditional probability

P(Heart Disease = No|Exercise = No,Diet = Healthy)
= 1— P(Heart Disease = Yes|Exercise = No,Diet = Healthy)
= 1-0.55=0.45.
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Model Building

Model building in Bayesian networks involves two steps: (1) creating the struc-
ture of the network, and (2) estimating the probability values in the tables
associated with each node. The network topology can be obtained by encod-
ing the subjective knowledge of domain experts. Algorithm 5.3 presents a
systematic procedure for inducing the topology of a Bayesian network.

Algorithm 5.3 Algorithm for generating the topology of a Bayesian network.

1: Let T'= (X1, Xq,...,X4) denote a total order of the variables.

2: for j=1toddo

3:  Let Xp(;) denote the j'* highest order variable in T.

4. Let m(Xpg)) = {Xr1), X1(2), - - X1(j—1)} denote the set of variables preced-
ing XT(]-).

5. Remove the variables from 7(Xr(;)) that do not affect X; (using prior knowl-
edge).

6:  Create an arc between Xp(;) and the remaining variables in m(Xp(;).

7: end for

Example 5.4. Consider the variables shown in Figure 5.13. After performing
Step 1, let us assume that the variables are ordered in the following way:
(E,D,HD,Hb,CP,BP). From Steps 2 to 7, starting with variable D, we
obtain the following conditional probabilities:

e P(D|E) is simplified to P(D).

P(HD|E, D) cannot be simplified.

P(Hb|HD, E, D) is simplified to P(Hb|D).

P(CP|Hb, HD, E, D) is simplified to P(CP|Hb, HD).

P(BP|CP,Hb,HD, E, D) is simplified to P(BP|HD).

Based on these conditional probabilities, we can create arcs between the nodes
(E, HD), (D, HD), (D, Hb), (HD, CP), (Hb, CP), and (HD, BP). These
arcs result in the network structure shown in Figure 5.13. (]

Algorithm 5.3 guarantees a topology that does not contain any cycles. The
proof for this is quite straightforward. If a cycle exists, then there must be at
least one arc connecting the lower-ordered nodes to the higher-ordered nodes,
and at least another arc connecting the higher-ordered nodes to the lower-
ordered nodes. Since Algorithm 5.3 prevents any arc from connecting the
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lower-ordered nodes to the higher-ordered nodes, there cannot be any cycles
in the topology.

Nevertheless, the network topology may change if we apply a different or-
dering scheme to the variables. Some topology may be inferior because it
produces many arcs connecting between different pairs of nodes. In principle,
we may have to examine all d! possible orderings to determine the most appro-
priate topology, a task that can be computationally expensive. An alternative
approach is to divide the variables into causal and effect variables, and then
draw the arcs from each causal variable to its corresponding effect variables.
This approach eases the task of building the Bayesian network structure.

Once the right topology has been found, the probability table associated
with each node is determined. Estimating such probabilities is fairly straight-
forward and is similar to the approach used by naive Bayes classifiers.

Example of Inferencing Using BBN

Suppose we are interested in using the BBN shown in Figure 5.13 to diagnose
whether a person has heart disease. The following cases illustrate how the
diagnosis can be made under different scenarios.

Case 1: No Prior Information

Without any prior information, we can determine whether the person is likely
to have heart disease by computing the prior probabilities P(HD = Yes) and
P(HD = No). To simplify the notation, let a € {Yes,No} denote the binary
values of Exercise and 3 € {Healthy,Unhealthy} denote the binary values
of Diet.

P(HD = Yes) = ZZPHD:Yes|E—aD P)P(E = a,D =p)

- ZZPHD—Yes|E—aD B)P(E = a)P(D = f)

= 0.25 x 0.7 x 0.25 +0.45 x 0.7 x 0.75 4+ 0.55 x 0.3 x 0.25
+ 0.75 x 0.3 x 0.75
= 0.49.

Since P(HD = no) = 1 — P(HD = yes) = 0.51, the person has a slightly higher
chance of not getting the disease.
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Case 2: High Blood Pressure

If the person has high blood pressure, we can make a diagnosis about heart
disease by comparing the posterior probabilities, P(HD = Yes[BP = High)
against P(HD = No|BP = High). To do this, we must compute P(BP = High):

P(BP = High) = Y P(BP = High|HD = ~)P(HD = 7)
Y
= 0.85 x 0.49 + 0.2 x 0.51 = 0.5185.

where v € {Yes,No}. Therefore, the posterior probability the person has heart
disease is

P(BP = High|HD = Yes)P(HD = Yes)
P(BP = High)
0.85 x 0.49

= ——— = 0.8033.
0.5185 0803

P(HD = Yes|BP = High) =

Similarly, P(HD = No|BP = High) = 1 — 0.8033 = 0.1967. Therefore, when a
person has high blood pressure, it increases the risk of heart disease.
Case 3: High Blood Pressure, Healthy Diet, and Regular Exercise

Suppose we are told that the person exercises regularly and eats a healthy diet.
How does the new information affect our diagnosis? With the new information,
the posterior probability that the person has heart disease is

P(HD = Yes|BP = High, D = Healthy, E = Yes)

P(BP = High|HD = Yes, D = Healthy, E = Yes)
P(BP = High|D = Healthy, F = Yes)

x P(HD = Yes|D = Healthy, £ = Yes)

P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, F = Yes)
>, P(BP = High|HD = ) P(HD = y|D = Healthy, E = Yes)

0.85 x 0.25
0.85 x 0.25 + 0.2 x 0.75

= 0.5862,

while the probability that the person does not have heart disease is

P(HD = No|BP = High, D = Healthy, F = Yes) = 1 — 0.5862 = 0.4138.
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The model therefore suggests that eating healthily and exercising regularly
may reduce a person’s risk of getting heart disease.

Characteristics of BBN

Following are some of the general characteristics of the BBN method:

1. BBN provides an approach for capturing the prior knowledge of a par-
ticular domain using a graphical model. The network can also be used
to encode causal dependencies among variables.

2. Constructing the network can be time consuming and requires a large
amount of effort. However, once the structure of the network has been
determined, adding a new variable is quite straightforward.

3. Bayesian networks are well suited to dealing with incomplete data. In-
stances with missing attributes can be handled by summing or integrat-
ing the probabilities over all possible values of the attribute.

4. Because the data is combined probabilistically with prior knowledge, the
method is quite robust to model overfitting.

5.4 Artificial Neural Network (ANN)

The study of artificial neural networks (ANN) was inspired by attempts to
simulate biological neural systems. The human brain consists primarily of
nerve cells called neurons, linked together with other neurons via strands
of fiber called axons. Axons are used to transmit nerve impulses from one
neuron to another whenever the neurons are stimulated. A neuron is connected
to the axons of other neurons via dendrites, which are extensions from the
cell body of the neuron. The contact point between a dendrite and an axon is
called a synapse. Neurologists have discovered that the human brain learns
by changing the strength of the synaptic connection between neurons upon
repeated stimulation by the same impulse.

Analogous to human brain structure, an ANN is composed of an inter-
connected assembly of nodes and directed links. In this section, we will exam-
ine a family of ANN models, starting with the simplest model called percep-
tron, and show how the models can be trained to solve classification problems.
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CHAPTER 5
Optimization

This chapter will look at how to solve collaboration problems using a set of tech-
niques called stochastic optimization. Optimization techniques are typically used in
problems that have many possible solutions across many variables, and that have
outcomes that can change greatly depending on the combinations of these variables.
These optimization techniques have a wide variety of applications: we use them in
physics to study molecular dynamics, in biology to predict protein structures, and
in computer science to determine the worst possible running time of an algorithm.
NASA even uses optimization techniques to design antennas that have the right oper-
ating characteristics, which look unlike anything a human designer would create.

Optimization finds the best solution to a problem by trying many different solutions
and scoring them to determine their quality. Optimization is typically used in cases
where there are too many possible solutions to try them all. The simplest but least
effective method of searching for solutions is just trying a few thousand random
guesses and seeing which one is best. More effective methods, which will be dis-
cussed in this chapter, involve intelligently modifying the solutions in a way that is
likely to improve them.

The first example in this chapter concerns group travel planning. Anyone who has
planned a trip for a group of people, or perhaps even for an individual, realizes that
there are a lot of different inputs required, such as what everyone’s flight schedule
should be, how many cars should be rented, and which airport is easiest. Many out-
puts must also be considered, such as total cost, time spent waiting at airports, and
time taken off work. Because the inputs can’t be mapped to the outputs with a sim-
ple formula, the problem of finding the best solution lends itself to optimization.

The other examples in the chapter show the flexibility of optimization by considering
two completely different problems: how to allocate limited resources based on peo-
ple’s preferences, and how to visualize a social network with minimal crossed lines.
By the end of the chapter, you’ll be able to spot other types of problems that can be
solved using optimization.

86



Group Travel

Planning a trip for a group of people (the Glass family in this example) from different
locations all arriving at the same place is always a challenge, and it makes for an
interesting optimization problem. To begin, create a new file called optimization.py
and insert the following code:

import time

import random

import math

people = [('Seymour','B0S"),
('Franny','DAL"),
('Zooey', 'CAK"),
('Walt', 'MIA'),
('Buddy','ORD"),
("Les',"OMA")]

# LaGuardia airport in New York

destination="LGA"

The family members are from all over the country and wish to meet up in New York.
They will all arrive on the same day and leave on the same day, and they would like
to share transportation to and from the airport. There are dozens of flights per day to
New York from any of the family members’ locations, all leaving at different times.
The flights also vary in price and in duration.

You can download a sample file of flight data from hittp://kiwitobes.com/optimize/
schedule.txt.

This file contains origin, destination, departure time, arrival time, and price for a set
of flights in a comma-separated format:

LGA,MIA,20:27,23:42,169
MIA,LGA,19:53,22:21,173
LGA,B0S,6:39,8:09,86
BOS,LGA,6:17,8:26,89
LGA, BOS, 8:23,10:28,149

Load this data into a dictionary with the origin and destination (dest) as the keys
and a list of potential flight details as the values. Add this code to load the data into
optimization.py:

flights=({}

#

for line in file('schedule.txt'):

origin,dest,depart,arrive,price=line.strip().split(',")
flights.setdefault((origin,dest),[])

# Add details to the list of possible flights
flights[(origin,dest)].append((depart,arrive,int(price)))
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It’s also useful at this point to define a utility function, getminutes, which calculates
how many minutes into the day a given time is. This makes it easy to calculate flight
times and waiting times. Add this function to optimization.py:
def getminutes(t):

x=time.strptime(t, '%H:%M")

return x[3]*60+x[4]
The challenge now is to decide which flight each person in the family should take. Of
course, keeping total price down is a goal, but there are many other possible factors
that the optimal solution will take into account and try to minimize, such as total
waiting time at the airport or total flight time. These other factors will be discussed
in more detail shortly.

Representing Solutions

When approaching a problem like this, it’s necessary to determine how a potential
solution will be represented. The optimization functions you’ll see later are generic
enough to work on many different types of problems, so it’s important to choose a
simple representation that’s not specific to the group travel problem. A very common
representation is a list of numbers. In this case, each number can represent which
flight a person chooses to take, where 0 is the first flight of the day, 1 is the second,
and so on. Since each person needs an outbound flight and a return flight, the length
of this list is twice the number of people.

For example, the list:
[1’4)3)2’7)3)6’3)2)4’5)3]

Represents a solution in which Seymour takes the second flight of the day from Bos-
ton to New York, and the fifth flight back to Boston on the day he returns. Franny
takes the fourth flight from Dallas to New York, and the third flight back.

Because it will be difficult to interpret solutions from this list of numbers, you’ll need
a routine that prints all the flights that people decide to take in a nice table. Add this
function to optimization.py:

def printschedule(r):
for d in range(len(r)/2):

name=people[d][0]

origin=people[d][1]

out=Fflights[(origin,destination)][r[d]]

ret=flights[ (destination,origin)][r[d+1]]

print '%10s%10s %5s-%5s $%3s %5s-%5s $%3s' % (name,origin,
out[o],out[1],out[2],
ret[0],ret[1],ret[2])
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This will print a line containing each person’s name and origin, as well as the depar-
ture time, arrival time, and price for the outgoing and return flights. Try this function
in your Python session:
>>> import optimization
>>> s=[1,4,3,2,7,3,6,3,2,4,5,3]
>>> optimization.printschedule(s)
Seymour Boston 12:34-15:02 $109 12:08-14:05 $142
Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
Walt Miami 15:34-18:11 $326 14:08-16:09 $232
Buddy Chicago 14:22-16:32 $126 15:04-17:23 $189
Les Omaha 15:03-16:42 $135 6:19- 8:13 $239
Even disregarding price, this schedule has some problems. In particular, since the
family members are traveling to and from the airport together, everyone has to arrive
at the airport at 6 a.m. for Les’s return flight, even though some of them don’t leave
until nearly 4 p.m. To determine the best combination, the program needs a way of
weighting the various properties of different schedules and deciding which is the
best.

The Cost Function

The cost function is the key to solving any problem using optimization, and it’s usu-
ally the most difficult thing to determine. The goal of any optimization algorithm is
to find a set of inputs—flights, in this case—that minimizes the cost function, so the
cost function has to return a value that represents how bad a solution is. There is no
particular scale for badness; the only requirement is that the function returns larger
values for worse solutions.

Often it is difficult to determine what makes a solution good or bad across many vari-
ables. Consider a few of the things that can be measured in the group travel example:

Price
The total price of all the plane tickets, or possibly a weighted average that takes
financial situations into account.

Travel time
The total time that everyone has to spend on a plane.
Waiting time
Time spent at the airport waiting for the other members of the party to arrive.
Departure time
Flights that leave too early in the morning may impose an additional cost by
requiring travelers to miss out on sleep.

Car rental period

If the party rents a car, they must return it earlier in the day than when they
rented it, or be forced to pay for a whole extra day.
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It’s not too hard to think of even more aspects of a particular schedule that could
make the experience more or less pleasant. Any time you’re faced with finding the
best solution to a complicated problem, you’ll need to decide what the important
factors are. Although this can be difficult, the big advantage is that once it’s done,
you can use the optimization algorithms in this chapter on almost any problem with
minimal modification.

After choosing some variables that impose costs, you’ll need to determine how to
combine them into a single number. In this example, it’s necessary to decide, for
instance, how much money that time on the plane or time waiting in the airport is
worth. You might decide that it’s worth spending $1 for every minute saved on air
travel (this translates into spending an extra $90 for a direct flight that saves an hour
and a half), and $0.50 for every minute saved waiting in the airport. You could also
add the cost of an extra day of car rental if everyone returns to the airport at a later
time of the day than when they first rented the car.

There are a huge number of possibilities for the getcost function defined here. This
function takes into account the total cost of the trip and the total time spent waiting
at airports for the various members of the family. It also adds a penalty of $50 if the
car is returned at a later time of the day than when it was rented. Add this function
to optimization.py, and feel free to add additional costs or to tweak the relative
importance of money and time:

def schedulecost(sol):
totalprice=0
latestarrival=0
earliestdep=24*60

for d in range(len(sol)/2):
# Get the inbound and outbound flights
origin=people[d][1]
outbound=flights[(origin,destination)][int(sol[d])]
returnf=flights[ (destination,origin)][int(sol[d+1])]

# Total price is the price of all outbound and return flights
totalprice+=outbound[2]
totalprice+=returnf[2]

# Track the latest arrival and earliest departure
if latestarrival<getminutes(outbound[1]): latestarrival=getminutes(outbound[1])
if earliestdep>getminutes(returnf[0]): earliestdep=getminutes(returnf[0])

# Every person must wait at the airport until the latest person arrives.
# They also must arrive at the same time and wait for their flights.
totalwait=0
for d in range(len(sol)/2):
origin=people[d][1]
outbound=flights[ (origin,destination)][int(sol[d]
returnf=flights[ (destination,origin)][int(sol[d+1
totalwait+=latestarrival-getminutes(outbound[1])
totalwait+=getminutes(returnf[0])-earliestdep

)]
D]
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# Does this solution require an extra day of car rental? That'll be $50!
if latestarrival>earliestdep: totalprice+=50

return totalprice+totalwait

The logic in this function is quite simplistic, but it illustrates the point. It can be
enhanced in several ways—right now, the total wait time assumes that all the family
members will leave the airport together when the last person arrives, and will all go
to the airport for the earliest departure. This can be modified so that anyone facing a
two-hour or longer wait rents his own car instead, and the prices and waiting time
can be adjusted accordingly.

You can try this function in your Python session:

>>> reload(optimization)

>>> optimization.schedulecost(s)

5285
Now that the cost function has been created, it should be clear that the goal is to
minimize cost by choosing the correct set of numbers. In theory, you could try every
possible combination, but in this example there are 16 flights, all with 9 possibilities,
giving a total of 9'¢ (around 300 billion) combinations. Testing every combination
would guarantee you’d get the best answer, but it would take a very long time on
most computers.

Random Searching

Random searching isn’t a very good optimization method, but it makes it easy to
understand exactly what all the algorithms are trying to do, and it also serves as a
baseline so you can see if the other algorithms are doing a good job.

The function takes a couple of parameters. Domain is a list of 2-tuples that specify the
minimum and maximum values for each variable. The length of the solution is the
same as the length of this list. In the current example, there are nine outbound flights
and nine inbound flights for every person, so the domain in the list is (0,8) repeated
twice for each person.

The second parameter, costf, is the cost function, which in this example will be
schedulecost. This is passed as a parameter so that the function can be reused for
other optimization problems. This function randomly generates 1,000 guesses and
calls costf on them. It keeps track of the best guess (the one with the lowest cost)
and returns it. Add it to optimization.py:

def randomoptimize(domain,costf):
best=999999999
bestr=None
for i in range(1000):
# Create a random solution
r=[random.randint(domain[i][0],domain[i][1])
for i in range(len(domain))]
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# Get the cost
cost=costf(r)

# Compare it to the best one so far
if cost<best:
best=cost
bestr=r
return r

Of course, 1,000 guesses is a very small fraction of the total number of possibilities.
However, this example has many possibilities that are good (if not the best), so with
a thousand tries, the function will likely come across a solution that isn’t awful. Try
it in your Python session:
>>> reload(optimization)
>>> domain=[(0,8)]*(len(optimization.people)*2)
>>> s=optimization.randomoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
3328
>>> optimization.printschedule(s)
Seymour  Boston 12:34-15:02 $109 12:08-14:05 $142
Franny Dallas 12:19-15:25 $342 9:49-13:51 $229
Zooey Akron 9:15-12:14 $247 15:50-18:45 $243
Walt Miami 15:34-18:11 $326 14:08-16:09 $232
Buddy  Chicago 14:22-16:32 $126 15:04-17:23 $189
Les Omaha 15:03-16:42 $135 6:19- 8:13 $239
Due to the random element, your results will be different from the results here. The
results shown are not great, as they have Zooey waiting at the airport for six hours
until Walt arrives, but they could definitely be worse. Try running this function
several times to see if the cost changes very much, or try increasing the loop size to
10,000 to see if you find better results that way.

Hill Climbing

Randomly trying different solutions is very inefficient because it does not take advan-
tage of the good solutions that have already been discovered. In our example, a
schedule with a low overall cost is probably similar to other schedules that have a
low cost. Because random optimization jumps around, it won’t automatically look at
similar schedules to locate the good ones that have already been found.

An alternate method of random searching is called hill climbing. Hill climbing starts
with a random solution and looks at the set of neighboring solutions for those that
are better (have a lower cost function). This is analogous to going down a hill, as
shown in Figure 5-1.

Imagine you are the person shown in the figure, having been randomly dropped into
this landscape. You want to reach the lowest point to find water. To do this, you
might look in each direction and walk toward wherever the land slopes downward
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Lower cost ) / Higher cost

Figure 5-1. Seeking the lowest cost on a hill

most steeply. You would continue to walk in the most steeply sloping direction until
you reached a point where the terrain was flat or began sloping uphill.

You can apply this hill climbing approach to the task of finding the best travel
schedule for the Glass family. Start with a random schedule and find all the neigh-
boring schedules. In this case, that means finding all the schedules that have one per-
son on a slightly earlier or slightly later flight. The cost is calculated for each of the
neighboring schedules, and the one with the lowest cost becomes the new solution.
This process is repeated until none of the neighboring schedules improves the cost.

To implement this, add hillclimb to optimization.py:

def hillclimb(domain,costf):
# Create a random solution
sol=[random.randint(domain[i][0],domain[i][1])
for i in range(len(domain))]
# Main loop
while 1:

# Create list of neighboring solutions
neighbors=[]

for j in range(len(domain)):

# One away in each direction

if sol[j]>domain[j][0]:
neighbors.append(sol[0:j]+[sol[j]+1]+s0l[j+1:])

if sol[j]<domain[j][1]:
neighbors.append(sol[0:j]+[sol[j]-1]+sol[j+1:])

# See what the best solution amongst the neighbors is
current=costf(sol)
best=current
for j in range(len(neighbors)):
cost=costf(neighbors[j])
if cost<best:
best=cost
sol=neighbors[j]
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# If there's no improvement, then we've reached the top
if best==current:
break

return sol

This function generates a random list of numbers within the given domain to create
the initial solution. It finds all the neighbors for the current solution by looping over
every element in the list and then creating two new lists with that element increased
by one and decreased by one. The best of these neighbors becomes the new solution.

Try this function in your Python session to see how it compares to randomly
searching for a solution:

>>> s=optimization.hillclimb(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)

3063

>>> optimization.printschedule(s)
Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
Franny DAL 10:30-14:57 $290 10:51-14:16 $256
Zooey CAK 10:53-13:36 $189 10:32-13:16 $139
Walt MIA 11:28-14:40 $248 12:37-15:05 $170
Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
Les OMA 11:08-13:07 $175 18:25-20:34 $205

This function runs quickly and usually finds a better solution than randomly search-
ing. There is, however, one major drawback to hill climbing. Look at Figure 5-2.

(ost

Figure 5-2. Stuck in a local minimum

From this figure it’s clear that simply moving down the slope will not necessarily lead
to the best solution overall. The final solution will be a local minimum, a solution
better than those around it but not the best overall. The best overall is called the
global minimum, which is what optimization algorithms are ultimately supposed to
find. One approach to this dilemma is called random-restart hill climbing, where the
hill climbing algorithm is run several times with random starting points in the hope
that one of them will be close to the global minimum. The next two sections, “Simu-
lated Annealing” and “Genetic Algorithms,” show other ways to avoid getting stuck
in a local minimum.
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Simulated Annealing

Simulated annealing is an optimization method inspired by physics. Annealing is the
process of heating up an alloy and then cooling it down slowly. Because the atoms
are first made to jump around a lot and then gradually settle into a low energy state,
the atoms can find a low energy configuration.

The algorithm version of annealing begins with a random solution to the problem. It
uses a variable representing the temperature, which starts very high and gradually
gets lower. In each iteration, one of the numbers in the solution is randomly chosen
and changed in a certain direction. In our example, Seymour’s return flight might be
moved from the second of the day to the third. The cost is calculated before and after
the change, and the costs are compared.

Here’s the important part: if the new cost is lower, the new solution becomes the
current solution, which is very much like the hill-climbing method. However, if the
cost is higher, the new solution can still become the current solution with a certain
probability. This is an attempt to avoid the local minimum problem shown in
Figure 5-2.

In some cases, it’s necessary to move to a worse solution before you can get to a bet-
ter one. Simulated annealing works because it will always accept a move for the
better, and because it is willing to accept a worse solution near the beginning of the
process. As the process goes on, the algorithm becomes less and less likely to accept
a worse solution, until at the end it will only accept a better solution. The probabil-
ity of a higher-cost solution being accepted is given by this formula:

p:e((~highcost—lowcost)/ temperature)

Since the temperature (the willingness to accept a worse solution) starts very high,
the exponent will always be close to 0, so the probability will almost be 1. As the
temperature decreases, the difference between the high cost and the low cost
becomes more important—a bigger difference leads to a lower probability, so the
algorithm will favor only slightly worse solutions over much worse ones.

Create a new function in optimization.py called annealingoptimize, which implements
this algorithm:

def annealingoptimize(domain,costf,T=10000.0,c001=0.95,step=1):
# Initialize the values randomly
vec=[float(random.randint(domain[i][0],domain[i][1]))
for i in range(len(domain))]

while T>0.1:
# Choose one of the indices
i=random.randint(0,len(domain)-1)

# Choose a direction to change it
dir=random.randint(-step,step)
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# Create a new list with one of the values changed

vecb=vec|[:]

vecb[i]+=dir

if vecb[i]<domain[i][0]: vecb[i]=domain[i]
i]

: [
elif vecb[i]>domain[i][1]: vecb[i]=domain[i

0]
I[1]

# Calculate the current cost and the new cost
ea=costf(vec)

eb=costf(vecb)

p=pow(math.e, (-eb-ea)/T)

# Is it better, or does it make the probability
# cutoff?
if (eb<ea or random.random( )<p):

vec=vecb

# Decrease the temperature
T=T*cool
return vec

To do annealing, this function first creates a random solution of the right length with
all the values in the range specified by the domain parameter. The temperature and
the cooling rate are optional parameters. In each iteration, 1 is set to a random index
of the solution, and dir is set to a random number between —step and step. It calcu-
lates the current function cost and the cost if it were to change the value at i by dir.

The line of code in bold shows the probability calculation, which gets lower as T gets
lower. If a random float between 0 and 1 is less than this value, or if the new solu-
tion is better, the function accepts the new solution. The function loops until the
temperature has almost reached 0, each time multiplying it by the cooling rate.

Now you can try to optimize with simulated annealing in your Python session:

>>> reload(optimization)
>>> s=optimization.annealingoptimize(domain,optimization.schedulecost)
>>> optimization.schedulecost(s)
2278
>>> optimization.printschedule(s)
Seymour Boston 12:34-15:02 $109 10:33-12:03 $ 74
Franny Dallas 10:30-14:57 $290 10:51-14:16 $256
Zooey Akron 10:53-13:36 $189 10:32-13:16 $139
Walt Miami 11:28-14:40 $248 12:37-15:05 $170
Buddy Chicago 12:44-14:17 $134 10:33-13:11 $132
Les Omaha 11:08-13:07 $175 15:07-17:21 $129

This optimization did a good job of reducing the overall wait times while keeping the
costs down. Obviously, your results will be different, and there is a chance that they
will be worse. For any given problem, it’s a good idea to experiment with different
parameters for the initial temperature and the cooling rate. You can also vary the
possible step size for the random movements.
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Genetic Algorithms

Another set of techniques for optimization, also inspired by nature, is called genetic
algorithms. These work by initially creating a set of random solutions known as the
population. At each step of the optimization, the cost function for the entire popula-
tion is calculated to get a ranked list of solutions. An example is shown in Table 5-1.

Table 5-1. Ranked list of solutions and costs

Solution Cost
[7,5,2,3,1,6,1,6,7,1,0,3] 4394
[7,2,2,2,3,3,2,3,5,2,0,8] 4661
[0,4,0,3,8,8,4,4,8,56,1] 7845
[58,0,2,8,838271,66,8] 8088

After the solutions are ranked, a new population—known as the next generation—is
created. First, the top solutions in the current population are added to the new
population as they are. This process is called elitism. The rest of the new population
consists of completely new solutions that are created by modifying the best
solutions.

There are two ways that solutions can be modified. The simpler of these is called
mutation, which is usually a small, simple, random change to an existing solution. In
this case, a mutation can be done simply by picking one of the numbers in the
solution and increasing or decreasing it. A couple of examples are shown in
Figure 5-3.

(7,5, 2,3, 1, 6, 1L,(§) 7, 1, 0, 3]s >[7,5 2, 31,6 ,G)7 1, 0, 3]

[7, 2,2, 2, 3, 3, 2, 3, 5, 2,(0) 8] e >[7,2,2,2,3, 3,2, 3,5 218

Figure 5-3. Examples of mutating a solution

The other way to modify solutions is called crossover or breeding. This method
involves taking two of the best solutions and combining them in some way. In this
case, a simple way to do crossover is to take a random number of elements from one
solution and the rest of the elements from another solution, as illustrated in
Figure 5-4.

A new population, usually the same size as the old one, is created by randomly
mutating and breeding the best solutions. Then the process repeats—the new popula-
tion is ranked and another population is created. This continues either for a fixed
number of iterations or until there has been no improvement over several generations.
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[7) 51 21 3) 1) 6) 1) 6)57) 1) 0) 3] 3
; (7, 5, 2,3, 1, 6, 1, 6,5, 2, 0, 8]
[7,2,2,2,3,3, 2, 3,5, 2,0, 8] P oA

Figure 5-4. Example of crossover

Add geneticoptimize to optimization.py:

def geneticoptimize(domain,costf,popsize=50,step=1,
mutprod=0.2,elite=0.2,maxiter=100):
# Mutation Operation
def mutate(vec):
i=random.randint(0,len(domain)-1)
if random.random( )<0.5 and vec[i]>domain[i][0]:
return vec[0:i]+[vec[i]-step]+vec[i+1:]
elif vec[i]<domain[i][1]:
return vec[0:i]+[vec[i]+step]+vec[i+1:]

# Crossover Operation

def crossover(ri,r2):
i=random.randint(1,len(domain)-2)
return ra[o:i]+r2[i:]

# Build the initial population
pop=[]
for i in range(popsize):
vec=[random.randint(domain[i][0],domain[i][1])
for i in range(len(domain))]
pop.append(vec)

# How many winners from each generation?
topelite=int(elite*popsize)

# Main loop

for i in range(maxiter):
scores=[ (costf(v),v) for v in pop]
scores.sort()
ranked=[v for (s,v) in scores]

# Start with the pure winners
pop=ranked[0:topelite]

# Add mutated and bred forms of the winners
while len(pop)<popsize:
if random.random( )<mutprob:
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# Mutation

c=random.randint(0,topelite)

pop.append(mutate(ranked[c]))
else:

# Crossover

cl=random.randint(0,topelite)
c2=random.randint(0,topelite)
pop.append(crossover(ranked[c1],ranked[c2]))

# Print current best score
print scores[0][0]
return scores[0][1]
This function takes several optional parameters:
popsize
The size of the population

mutprob
The probability that a new member of the population will be a mutation rather
than a crossover

elite
The fraction of the population that are considered good solutions and are
allowed to pass into the next generation

maxiter
The number of generations to run

Try optimizing the travel plans using the genetic algorithm in your Python session:

>>> s=optimization.geneticoptimize(domain,optimization.schedulecost)

3532
3503
2591
2591
2591
>>> optimization.printschedule(s)

Seymour BOS 12:34-15:02 $109 10:33-12:03 $ 74
Franny DAL 10:30-14:57 $290 10:51-14:16 $256
Zooey CAK 10:53-13:36 $189 10:32-13:16 $139

Walt MIA 11:28-14:40 $248 12:37-15:05 $170
Buddy ORD 12:44-14:17 $134 10:33-13:11 $132
Les OMA 11:08-13:07 $175 11:07-13:24 $171

In Chapter 11, you’ll see an extension of genetic algorithms called genetic program-
ming, where similar ideas are used to create entirely new programs.

Genetic Algorithms | 99



N
The computer scientist John Holland is widely considered to be the
father of genetic algorithms because of his 1975 book, Adaptation in
tke: Natural and Artificial Systems (University of Michigan Press). Yet the
" work goes back to biologists in the 1950s who were attempting to
model evolution on computers. Since then, genetic algorithms and
other optimization methods have been used for a huge variety of
problems, including:

qs
[

.

* Finding which concert hall shape gives the best acoustics
* Designing an optimal wing for a supersonic aircraft

* Suggesting the best library of chemicals to research as potential
drugs
e Automatically designing a chip for voice recognition
Potential solutions to these problems can be turned into lists of num-

bers. This makes it easy to apply genetic algorithms or simulated
annealing.

Whether a particular optimization method will work depends very much on the
problem. Simulated annealing, genetic optimization, and most other optimization
methods rely on the fact that, in most problems, the best solution is close to other
good solutions. To see a case where optimization might not work, look at Figure 5-5.

~—/1"

Figure 5-5. Poor problem for optimization

The cost is actually lowest at a very steep point on the far right of the figure. Any
solution that is close by would probably be dismissed from consideration because of
its high cost, and you would never find your way to the global minimum. Most
algorithms would settle in one of the local minima on the left side of the figure.

The flight scheduling example works because moving a person from the second to
the third flight of the day would probably change the overall cost by a smaller
amount than moving that person to the eighth flight of the day would. If the flights
were in random order, the optimization methods would work no better than a
random search—in fact, there’s no optimization method that will consistently work
better than a random search in that case.
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Real Flight Searches

Now that everything is working with the sample data, it’s time to try getting real
flight data to see if the same optimizations can be used. You’ll be downloading data
from Kayak, which provides an API for doing flight searches. The main difference
between real flight data and the sample you’ve been working with is that in the real
flight data, there are many more than nine flights per day between most major cities.

The Kayak API

Kayak, shown in Figure 5-6, is a popular vertical search engine for travel. Although
there are lots of travel sites online, Kayak is useful for this example because it has a
nice XML API that can be used to perform real travel searches from within a Python
program. To use the API, you’ll need to sign up for a developer key by going to
http://www.kayak.com/labs/api/search.

o Flights | Hotels | Cars Ceals Buzz Forums 15,056 kayakers online

K AYA K Life's a trip.” Boston, MA to New York, NY Tue 12 Dec 2006 — Fri 15 Dec 2006 / roun

Start search over Prica* . Airports Airline Depart Arrive Stops (Duration)

390 of 514 results shown show all ) Use the controls to the left to show and hide flights.

Stops $121 BOS=LGA W united 6:00a T11a 0 (1h 11m)
nonstop  [F]istop  [F]2+stops ~ | GA>BOS Me 600a  652a 0 (0h 52m)
o united: $121 cheaptickets: $124 ; ;

Airlines bitz- $125 details  email

selectall | dear nonstop 1+ OTONz. #1s9
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Figure 5-6. Screenshot of the Kayak travel search interface

The developer key is a long string of numbers and letters that you’ll use to do flight
searches in Kayak (it can also be used for hotel searches, but that won’t be covered
here). At the time of writing, there is not a specific Python API for Kayak like there is
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for del.icio.us, but the XML interface is very well explained. This chapter will show
you how to create searches using the Python packages urllib2 and xml.dom.minidom,
both of which are included with the standard Python distribution.

The minidom Package

The minidom package is part of the standard Python distribution. It is a lightweight
implementation of the Document Object Model (DOM) interface, a standard way of
treating an XML document as a tree of objects. The package takes strings or open
files containing XML and returns an object that you can use to easily extract infor-
mation. For example, enter the following in a Python session:

>>> import xml.dom.minidom

>>> dom=xml.dom.minidom.parseString('<data><rec>Hello!</rec></data>")

>>> dom

<xml.dom.minidom.Document instance at 0x00980C38>

>>> r=dom.getElementsByTagName('rec")

5> T

[<DOM Element: rec at 0xa42350>]

>>> r[o].firstChild

<DOM Text node "Hello!">

>>> r[o].firstChild.data

u'Hello!"
Because many web sites now offer a way to access information through an XML
interface, learning how to use the Python XML packages is very useful for collective
intelligence programming. Here are the important methods of DOM objects that
you’ll be using for the Kayak API:

getElementsByTagName(name)
Returns a list of all DOM nodes by searching throughout the whole document
for elements whose tag matches name.

firstChild
Returns the first child node of this object. In the above example, the first child of
r is the node representing the text “Hello.”

data
Returns the data associated with this object, which in most cases is a Unicode
string of the text that the node contains.

Flight Searches
Begin by creating a new file called kayak.py and adding the following statements:
import time

import urllib2
import xml.dom.minidom

kayakkey="YOURKEYHERE '
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The first thing you’ll need is code to get a new Kayak session using your developer
key. The function to do this sends a request to apisession with the token parameter
set to your developer key. The XML returned by this URL will contain a tag sid, with
a session ID inside it:

<sid>1-hX41IT_wS$8b06a07kHj</sid>

The function just has to parse the XML to extract the contents of the sid tag. Add
this function to kayak.py:
def getkayaksession():

# Construct the URL to start a session
url="http://www.kayak.com/k/ident/apisession?token=%s&version=1"' % kayakkey

# Parse the resulting XML
doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

# Find <sid>xxxxxxxx</sid>

sid=doc.getElementsByTagName('sid')[0].firstChild.data

return sid
The next step is to create a function to start the flight search. The URL for this search
is very long because it contains all the parameters for the flight search. The impor-
tant parameters for this search are sid (the session ID returned by getkayaksession),
destination, and depart_date.

The resulting XML has a tag called searchid, which the function will extract in the
same manner as getkayaksession. Since the search may take a long time, this call
doesn’t actually return any results—it just begins the search and returns an ID that
can be used to poll for the results.

Add this function to kayak.py:
def flightsearch(sid,origin,destination,depart date):

# Construct search URL
url="http://www.kayak.com/s/apisearch?basicmode=truedoneway=y&origin=%s"' % origin
url+="8&destination=%s8depart date=%s' % (destination,depart date)

url+="8return date=noneddepart time=adreturn time=a’
url+="&travelers=1&cabin=e&action=doFlights&apimode=1"

url+="8& sid =%s&version=1' % (sid)

# Get the XML
doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

# Extract the search ID
searchid=doc.getElementsByTagName('searchid')[0].firstChild.data

return searchid
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Finally, you’ll need a function that requests the results until there are no more.
Kayak provides another URL, flight, which gives these results. In the returned
XML, there is a tag called morepending, which contains the word “true” until the
search is complete. The function has to request the page until morepending is no
longer true, and then the functions gets the complete results.

Add this function to kayak.py:

def flightsearchresults(sid,searchid):

# Removes leading $, commas and converts number to a float
def parseprice(p):
return float(p[1:].replace(',"',"'"))

# Polling loop
while 1:
time.sleep(2)

# Construct URL for polling
url="http://www.kayak.com/s/basic/flight?"
url+="searchid=%s8c=58apimode=18&_sid_=%s8version=1' % (searchid,sid)
doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

# Look for morepending tag, and wait until it is no longer true
morepending=doc.getElementsByTagName( ‘morepending’)[0].firstChild
if morepending==None or morepending.data=='false': break

# Now download the complete list
url="http://www.kayak.com/s/basic/flight?"
url+="searchid=%s8c=9998apimode=18&_sid_=%s8version=1' % (searchid,sid)
doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())

# Get the various elements as lists
prices=doc.getElementsByTagName('price")
departures=doc.getElementsByTagName('depart")
arrivals=doc.getElementsByTagName('arrive')

# Zip them together
return zip([p.firstChild.data.split(" ')[1] for p in departures],
[p.firstChild.data.split(" ")[1] for p in arrivals],
[parseprice(p.firstChild.data) for p in prices])
Notice that at the end the function just gets all the price, depart, and arrive tags.
There will be an equal number of them—one for each flight—so the zip function can
be used to join them all together into tuples in a big list. The departure and arrival
information is given as date and time separated by a space, so the function splits the
string to get only the time. The function also converts the price to a float by passing
it to parseprice.
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You can try a real flight search in your Python session to make sure everything is
working (remember to change the date to some time in the future):

>>> import kayak

>>> sid=kayak.getkayaksession()

>>> searchid=kayak.flightsearch(sid, 'B0S','LGA',"'11/17/2006")
>>> f=kayak.flightsearchresults(sid,searchid)

>>> f[0:3]

[(u'07:00', u'08:25', 60.3),

(u'08:30", u'09:49', 60.3),

(u'06:35", u'07:54", 65.0)]

Flights are conveniently returned in order of price, and for flights that are the same
price, in order of time. This works out well since, like before, it means that similar
solutions are close together. The only requirement to integrate this with the rest of
the code is to create a full schedule for all the different people in the Glass family
with the same structure that was originally loaded in from the file. This is just a mat-
ter of looping over the people in the list and performing the flight search for their
outbound and return flights. Add the createschedule function to kayak.py:

def createschedule(people,dest,dep,ret):
# Get a session id for these searches
sid=getkayaksession( )
flights={}

for p in people:
name,origin=p
# Outbound flight
searchid=flightsearch(sid,origin,dest,dep)
flights[ (origin,dest)]=flightsearchresults(sid,searchid)

# Return flight
searchid=flightsearch(sid,dest,origin,ret)
flights[(dest,origin)]=flightsearchresults(sid,searchid)

return flights

Now you can try to optimize the flights for the family using actual flight data. The
Kayak searches can take a while, so limit the search to just the first two family mem-
bers to start with. Enter this in your Python session:

>>> reload(kayak)

>>> f=kayak.createschedule(optimization.people[0:2], 'LGA’,

... '11/17/2006','11/19/2006")

>>> optimization.flights=f

>>> domain=[(0,30)]*len(f)

>>> optimization.geneticoptimize(domain,optimization.schedulecost)
770.0

703.0

>>> optimization.printschedule(s)
Seymour BOS 16:00-17:20 $85.0 19:00-20:28 $65.0
Franny DAL 08:00-17:25 $205.0 18:55-00:15 $133.0
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Congratulations! You’ve just run an optimization on real live flight data. The search
space is much bigger, so it’s a good idea to experiment with the maximum velocity
and learning rate.

There are many ways this can be expanded. You might combine it with a weather
search to optimize for combinations of prices and warm temperatures at potential
destinations, or with a hotel search to find destinations with a reasonable combina-
tion of flight and hotel prices. There are thousands of sites on the Internet that
provide travel destination data that can be used as part of an optimization.

The Kayak API has a limit on searches per day, but it does return links to purchase
any flight or hotel directly, which means you can easily incorporate the API into any
application.

Optimizing for Preferences

You’ve seen one example of a problem that optimization can be used to solve, but
there are many seemingly unrelated problems that can be attacked using the same
methods. Remember, the primary requirements for solving with optimization are
that the problem has a defined cost function and that similar solutions tend to yield
similar results. Not every problem with these properties will be solvable with optimi-
zation, but there’s a good chance that optimization will return some interesting
results that you hadn’t considered.

This section will consider a different problem, one that clearly lends itself to optimi-
zation. The general problem is how to allocate limited resources to people who have
expressed preferences and make them all as happy as possible (or, depending on
their dispositions, annoy them as little as possible).

Student Dorm Optimization

The example problem in this section is that of assigning students to dorms depend-
ing on their first and second choices. Although this is a very specific example, it’s
easy to generalize this case to other problems—the exact same code can be used to
assign tables to players in an online card game, assign bugs to developers in a large
coding project, or even to assign housework to household members. Once again, the
purpose is to take information from individuals and combine it to produce the opti-
mal result.

There are five dorms in our example, each with two spaces available and ten stu-
dents vying for spots. Each student has first and second choices. Create a new file
called dorm.py and add the list of dorms and the list of people, along with their top
two choices:
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import random
import math

# The dorms, each of which has two available spaces
dorms=['Zeus"', 'Athena', 'Hercules', 'Bacchus', 'Pluto']

# People, along with their first and second choices

prefs=[('Toby', ('Bacchus', 'Hercules')),
('Steve', ('Zeus', 'Pluto')),
('Andrea’, ('Athena', 'Zeus')),
('Sarah', ('Zeus', 'Pluto')),
('Dave', ('Athena', 'Bacchus')),
('Jeff', ('Hercules', 'Pluto')),
('"Fred', ('Pluto', 'Athena')),
('Suzie', ('Bacchus', 'Hercules')),
('Laura', ('Bacchus', 'Hercules')),
('Neil", ('Hercules', 'Athena'))]

You can see immediately that every person can’t have his top choice, since there are
only two spots in Bacchus and three people want them. Putting any of these people

in their second choice would mean there wouldn’t be enough space in Hercules for
the people who chose it.

This problem is deliberately small so it’s easy to follow, but in real life, this problem
might include hundreds or thousands of students competing for many more spots in
a larger selection of dorms. Since this example only has about 100,000 possible
solutions, it’s possible to try them all and see which one is the best. But the number
quickly grows to trillions of possibilities when there are four slots in each dorm.

The representation for solutions is a bit trickier for this problem than for the flight
problem. You could, in theory, create a list of numbers, one for each student, where
each number represents the dorm in which you’ve put the student. The problem is
that this representation doesn’t constrain the solution to only two students in each
dorm. A list of all zeros would indicate that everyone had been placed in Zeus, which
isn’t a real solution at all.

One way to resolve this is to make the cost function return a very high value for
invalid solutions, but this makes it very difficult for the optimization algorithm to
find better solutions because it has no way to determine if it’s close to other good or
even valid solutions. In general, it’s better not to waste processor cycles searching
among invalid solutions.

A better way to approach the issue is to find a way to represent solutions so that
every one is valid. A valid solution is not necessarily a good solution; it just means
that there are exactly two students assigned to each dorm. One way to do this is to
think of every dorm as having two slots, so that in the example there are ten slots in
total. Each student, in order, is assigned to one of the open slots—the first person
can be placed in any one of the ten, the second person can be placed in any of the
nine remaining slots, and so on.
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The domain for searching has to capture this restriction. Add this line to dorm.py:

# [(0,9),(0,8),(0,7),(0,6),...,(0,0)]
domain=[ (0, (1len(dorms)*2)-i-1) for i in range(0,len(dorms)*2)]

The code to print the solution illustrates how the slots work. This function first
creates a list of slots, two for each dorm. It then loops over every number in the solu-
tion and finds the dorm number at that location in the slots list, which is the dorm
that a student is assigned to. It prints the student and the dorm, and then it removes
that slot from the list so no other student will be given that slot. After the final itera-
tion, the slots list is empty and every student and dorm assignment has been printed.
Add this function to dorm.py:

def printsolution(vec):
slots=[]
# Create two slots for each dorm
for i in range(len(dorms): slots+=[i,i]

# Loop over each students assignment
for i in range(len(vec)):
x=int(vec[i])

# Choose the slot from the remaining ones
dorm=dorms[slots[x]]

# Show the student and assigned dorm
print prefs[i][0],dorm

# Remove this slot

del slots[x]

In your Python session, you can import this and try printing a solution:

>>> import doxm
>>> dorm.printsolution([o,o,0,0,0,0,0,0,0,0])
Toby Zeus

Steve Zeus
Andrea Athena
Sarah Athena
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Pluto
Neil Pluto

If you change the numbers around to view different solutions, remember that each
number must stay in the appropriate range. The first item in the list can be between
0 and 9, the second between 0 and 8, etc. If you set one of the numbers outside the
appropriate range, the function will throw an exception. Since the optimization func-
tions will keep the numbers in the ranges specified in the domain parameter, this
won’t be a problem when optimizing.
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The Cost Function

The cost function works in a way that is similar to the print function. A list of slots is
constructed and slots are removed as they are used up. The cost is calculated by
comparing a student’s current dorm assignment to his top two choices. The total
cost will increase by 0 if the student is currently assigned to his top choice, by 1 if he
is assigned to his second choice, and by 3 if he is not assigned to either of his choices:
def dormcost(vec):
cost=0

# Create list a of slots
SlOtS=[0,0,1,1,2,2,3,3,4,4]

# Loop over each student
for i in range(len(vec)):
x=int(vec[i])
dorm=dorms[slots[x]]
pref=prefs[i][1]
# First choice costs 0, second choice costs 1
if pref[0]==dorm: cost+=0
elif pref[1]==dorm: cost+=1
else: cost+=3
# Not on the list costs 3

# Remove selected slot
del slots[x]

return cost

A useful rule when creating a cost function is, if possible, to make the perfect solu-
tion (which in this example is everyone being assigned to their top choice) have a
cost of zero. In this case, you've already determined that the perfect solution is
impossible, but knowing that its cost is zero gives you an idea of how close you are
to it. The other advantage of this rule is that you can tell an optimization algorithm
to stop searching for better solutions if it ever finds a perfect solution.

Running the Optimization

With a solution representation, a cost function, and a function to print the results,
you have enough to run the optimization functions that you defined earlier. Enter the
following in your Python session:

>>> reload(doxm)

>>> s=optimization.randomoptimize(dorm.domain,dorm.dormcost)
>>> dorm.dormcost(s)

18

>>> optimization.geneticoptimize(dorm.domain,dorm.dormcost)
13

10

4
>>> dorm.printsolution(s)
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Toby Athena
Steve Pluto
Andrea Zeus
Sarah Pluto
Dave Hercules
Jeff Hercules
Fred Bacchus
Suzie Bacchus
Laura Athena
Neil Zeus

Again, you can tweak the parameters to see if you can make the genetic optimization
find a good solution more quickly.

Network Visualization

The final example in this chapter shows another way in which optimization can be
used on problems that are completely unrelated to one another. In this case, the
problem is the visualization of networks. A network in this case is any set of things
that are connected together. A good example in online applications is a social net-
work like MySpace, Facebook, or LinkedIn, where people are connected because
they are friends or have a professional relationship. Each member of the site chooses
to whom they are connected, and collectively this creates a network of people. It is
interesting to visualize such networks to determine their structure, perhaps in order
to find the people who are connectors (those who know a lot of people or who serve
as a link between otherwise self-contained cliques).

The Layout Problem

When drawing a network to visualize a big group of people and the links between
them, one problem is deciding where each name (or icon) should be placed in the
picture. For example, consider the network in Figure 5-7.

—

Charlie

Miranda

Joe

willy

Augustus

Violet

Mike

Figure 5-7. A confusing network layout
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In this figure, you can see that Augustus is friends with Willy, Violet, and Miranda.
But the layout of the network is a bit messy, and adding more people would make it
very confusing. A much cleaner layout is shown in Figure 5-8.

Miranda — -,

Willy

™~

Augustus
Mike

Violet
oke Charlie

Figure 5-8. A clean network layout

This section will look at how optimization can be used to create better, less confus-
ing visuals. To begin, create a new file called socialnetwork.py and add some facts
about a subsection of the social network:

import math
people=['Charlie', 'Augustus’, 'Veruca','Violet', 'Mike','Joe",'Willy', 'Miranda"]

links=[('Augustus', 'Willy'),

("Mike', 'Joe'),

('Miranda', 'Mike'),

('violet', 'Augustus'),

('Miranda', 'Willy'),

('Charlie', 'Mike'),

('Veruca', 'Joe'),

('Miranda', 'Augustus'),

('Willy', 'Augustus'),

('Joe', 'Charlie"),

('Veruca', 'Augustus'),

("Miranda', 'Joe')]
The goal here is to create a program that can take a list of facts about who is friends
with whom and generate an easy-to-interpret network diagram. This is usually done
with a mass-and-spring algorithm. This type of algorithm is modeled on physics
because the different nodes exert a push on each other and try to move apart, while
the links try to pull connected nodes closer together. Thus, the network slowly
assumes a layout where unconnected nodes are pushed apart and connected nodes

are pulled close together—but not too close together.

Unfortunately, the mass-and-spring algorithm doesn’t stop lines from crossing. In a
network with a great number of links, this makes it difficult to see which nodes are
connected because visually tracking the lines as they cross can be tricky. However,
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when you use optimization to create the layout, all you need to do is decide on a cost
function and then try to minimize it. In this case, one interesting cost function to try
is the number of lines that cross each other.

Counting Crossed Lines

In order to use the same optimizing functions that were defined earlier, it’s neces-
sary to represent a solution as a list of numbers. Fortunately, this particular problem
is represented as a list of numbers very easily—every node has an x and y coordi-
nate, so the coordinates for all the nodes can be put into a long list:

s01=[120,200,250,125 ...
In this solution, Charlie is placed at (120,200), Augustus at (250,125), and so on.

Right now, the new cost function will simply count the number of lines that cross
each other. The derivation of the formula for two lines crossing is a bit beyond the
scope of this chapter, but the basic idea is to calculate the fraction of the line where
each line is crossed. If this fraction is between 0 (one end of the line) and 1 (the other
end), for both lines, then they cross each other. If the fraction is not between 0 and 1,
then the lines do not cross.

This function loops through every pair of links and uses the current coordinates of
their endpoints to determine whether they cross. If they do, the function adds 1 to
the total score. Add crosscount to socialnetwork.py:

def crosscount(v):
# Convert the number list into a dictionary of person:(x,y)
loc=dict([ (people[i], (v[i*2],v[i*2+1])) for i in range(0,len(people))])
total=0

# Loop through every pair of links
for i in range(len(links)):
for j in range(i+1,len(links)):

# Get the locations
(x1,y1),(x2,y2)=loc[links[i][0]],Loc[links[i][1]]
(x3,y3), (x4,y4)=loc[1inks[j][0]], loc[Llinks[j][1]]

den=(y4-y3)*(x2-x1)- (x4-x3)*(y2-y1)

# den==0 if the lines are parallel
if den==0: continue

# Otherwise ua and ub are the fraction of the
# line where they cross

ua=((x4-x3)*(y1-y3)- (y4-y3)*(x1-x3))/den
ub=((x2-x1)*(y1-y3)-(y2-y1)*(x1-x3))/den
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# If the fraction is between 0 and 1 for both lines
# then they cross each other
if ua>0 and ua<1 and ub>0 and ub<1:
total+=1
return total

The domain for this search is the range for each coordinate. For this example, you can
assume that the network will be laid out in a 400 %400 image, so the domain will be
a little less than that to allow for a slight margin. Add this line to the end of
socialnetwork.py:

domain=[(10,370)]*(len(people)*2)

Now you can try actually running some of the optimizations to find a solution where
very few lines cross. Import socialnetwork.py to your Python session and try a couple
of the optimization algorithms:

>>> import socialnetwork

>>> import optimization

>>> sol=optimization.randomoptimize(socialnetwork.domain,socialnetwork.crosscount)

>>> socialnetwork.crosscount(sol)

12

>>> sol=optimization.annealingoptimize(socialnetwork.domain,

socialnetwork.crosscount,step=50,c001=0.99)

>>> socialnetwork.crosscount(sol)

1

>>> sol

[324, 190, 241, 329, 298, 237, 117, 181, 88, 106, 56, 10, 296, 370, 11, 312]
Simulated annealing is likely to find a solution where very few of the lines cross, but
the list of coordinates is difficult to interpret. The next section will show you how to
automatically draw the network.

Drawing the Network

You’ll need the Python Imaging Library that was used in Chapter 3. If you haven’t
installed it yet, please consult Appendix A for instructions on getting the latest ver-
sion and installing it with your Python instance.

The code for drawing the network is quite straightforward. All the code has to do is
create an image, draw the links between the different people, and then draw the
nodes for the people. The people’s names are drawn afterward so that the lines don’t
cover them. Add this function to socialnetwork.py:
def drawnetwork(sol):
# Create the image

img=Image.new('RGB", (400,400), (255,255,255))
draw=ImageDraw.Draw(img)

# Create the position dict
pos=dict([(people[i], (sol[i*2],s0l[i*2+1])) for i in range(0,len(people))])
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# Draw Links
for (a,b) in links:
draw.line((pos[a],pos[b]),fill=(255,0,0))

# Draw people

for n,p in pos.items():
draw.text(p,n,(0,0,0))

img. show( )

To run this function in your Python session, just reload the module and call this
function on your solution:

>>> reload(socialnetwork)
>>> drawnetwork(sol)

Figure 5-9 shows one possible outcome of the optimization.

Veruca
Willy
Miranda
Augustus
Violet
Joe
Charlie Mike

Figure 5-9. Layout resulting from a no-crossed-lines optimization

Of course, your solution will look different from this. Sometimes the solution will
look pretty wacky—since the objective is just to minimize the number of crossed
lines, the cost function never penalizes the layout for things like very tight angles
between the lines or two nodes being very close together. In this respect,
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optimization is like a genie who grants your wishes very literally, so it’s always
important to be clear about what you want. There is often a solution that fits the
original criteria of “best” but looks nothing like what you had in mind.

A simple way to penalize a solution that has put two nodes too close together is to cal-
culate the distance between the nodes and divide by a desired minimum distance. You
can add this code to the end of crosscount (before the return statement) to provide an
additional penalty.
for i in range(len(people)):
for j in range(i+1,len(people)):
# Get the locations of the two nodes
(x1,y1), (x2,y2)=1loc[people[i]],loc[people[j]]

# Find the distance between them

dist=math.sqrt(math.pow(x1-x2,2)+math.pow(y1-y2,2))

# Penalize any nodes closer than 50 pixels

if dist<s50:

total+=(1.0-(dist/50.0))

This creates a higher cost for every pair of nodes that is less than 50 pixels apart, in
proportion to how close together they are. If they are in exactly the same place, the
penalty is 1. Run the optimization again to see if this results in a more spread-out
layout.

Other Possibilities

This chapter has shown three completely different applications for optimization
algorithms, but that’s only a small fraction of what is possible. As stated throughout
the chapter, the important steps are deciding on a representation and a cost func-
tion. If you can do these things, there’s a good chance you can use optimization to
find solutions to your problem.

An interesting activity might be to take a large group of people and divide them into
teams in which the skills of the members are evenly divided. In a trivia contest, it
might be desirable to create teams from a set of people so that each team has ade-
quate knowledge of sports, history, literature, and television. Another possibility is to
assign tasks in group projects by taking a combination of people’s skills into account.
Optimization can determine the best way to divide the tasks so that the task list is
completed in the shortest possible time.

Given a long list of web sites tagged with keywords, it might be interesting to find an
optimal group of web sites for a user-supplied set of keywords. The optimal group
would contain a set of web sites that don’t have many keywords in common with
each other but represent as many of the user-supplied keywords as possible.
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Exercises

1.

Group travel cost function. Add total flight time as a cost equal to $0.50 per
minute on the plane. Next try adding a penalty of $20 for making anyone get to
the airport before 8 a.m.

. Annealing starting points. The outcome of simulated annealing depends heavily

on the starting point. Build a new optimization function that does simulated
annealing from multiple starting solutions and returns the best one.

. Genetic optimization stopping criteria. A function in this chapter runs the genetic

optimizer for a fixed number of iterations. Change it so that it stops when there
has been no improvement in any of the best solutions for 10 iterations.

. Round-trip pricing. The function for getting flight data from Kayak right now only

looks for one-way flights. Prices are probably cheaper when buying round-trip
tickets. Modify the code to get round-trip prices, and modify the cost function to
use a price lookup for a particular pair of flights instead of just summing their
one-way prices.

. Pairing students. Imagine if instead of listing dorm preferences, students had to

express their preferences for a roommate. How would you represent solutions to
pairing students? What would the cost function look like?

. Line angle penalization. Add an additional cost to the network layout algorithm

cost function when the angle between two lines attached to the same person is
very small. (Hint: you can use the vector cross-product.)
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CHAPTER 11
Evolving Intelligence

Throughout this book you’ve seen a number of different problems, and in each case
you used an algorithm that was suited to solve that particular problem. In some of
the examples, you had to tweak the parameters or use optimization to search for a
good set of parameters. This chapter will look at a different way to approach
problems. Instead of choosing an algorithm to apply to a problem, you’ll make a
program that attempts to automatically build the best program to solve a problem.
Essentially, you’ll be creating an algorithm that creates algorithms.

To do this, you will use a technique called genetic programming. Since this is the last
chapter in which you’ll learn a completely new type of algorithm, I've picked a topic
that is new, exciting, and being actively researched. This chapter is a little different
from the others because it doesn’t use any open APIs or public datasets, and because
programs that can modify themselves based on their interactions with many people
are an interesting and different kind of collective intelligence. Genetic programming
is a very large topic about which many books have been written, so you’ll only get an
introduction here, but I hope it’s enough to get you excited about the possibilities
and perhaps to research and experiment on your own.

The two problems in this chapter are recreating a mathematical function given a
dataset, and automatically creating an Al (artificial intelligence) player for a simple
board game. This is just a very small sampling of the possibilities of genetic
programming—computational power is really the only constraint on the types of
problems it can be used to solve.

What Is Genetic Programming?

Genetic programming is a machine-learning technique inspired by the theory of bio-
logical evolution. It generally works by starting with a large set of programs (referred
to as the population), which are either randomly generated or hand-designed and are
known to be somewhat good solutions. The programs are then made to compete in
some user-defined task. This may be a game in which the programs compete against
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each other directly, or it may be an individual test to see which program performs
better. After the competition, a ranked list of the programs from best to worst can be
determined.

Next—and here’s where evolution comes in—the best programs are replicated and
modified in two different ways. The simpler way is mutation, in which certain parts
of the program are altered very slightly in a random manner in the hope that this will
make a good solution even better. The other way to modify a program is through
crossover (sometimes referred to as breeding), which involves taking a portion of one
of the best programs and replacing it with a portion of one of the other best pro-
grams. This replication and modification procedure creates many new programs that
are based on, but different from, the best programs.

At each stage, the quality of the programs is calculated using a fitness function. Since
the size of the population is kept constant, many of the worst programs are elimi-
nated from the population to make room for the new programs. The new popula-
tion is referred to as “the next generation,” and the whole procedure is then
repeated. Because the best programs are being kept and modified, it is expected that
with each generation they will get better and better, in much the same way that teen-
agers can be smarter than their parents.

New generations are created until a termination condition is reached, which,
depending on the problem, can be that:

* The perfect solution has been found.

* A good enough solution has been found.

* The solution has not improved for several generations.

* The number of generations has reached a specified limit.
For some problems, such as determining a mathematical function that correctly
maps a set of inputs to an output, a perfect solution is possible. For others, such as a

board game, there may not be a perfect solution, since the quality of a solution
depends on the strategy of the program’s adversary.

An overview of the genetic programming process is shown as a flowchart in
Figure 11-1.

Genetic Programming Versus Genetic Algorithms

Chapter 5 introduced a related set of algorithms known as genetic algorithms.
Genetic algorithms are an optimization technique that use the idea of evolutionary
pressure to choose the best result. With any form of optimization, you have already
selected an algorithm or metric and you’re simply trying to find the best parameters
for it.
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Figure 11-1. Genetic programming overview

Successes of Genetic Programming

Genetic programming has been around since the 1980s, but it is very computationally
intensive, and with the computing power that was available at the time, it couldn’t be
used for anything more than simple problems. As computers have gotten faster, how-
ever, people have been able to apply genetic programming to sophisticated problems.
Many previously patented inventions have been rediscovered or improved using
genetic programming, and recently several new patentable inventions have been
designed by computers.

The genetic programming technique has been applied in designing antennas for NASA,
and in photonic crystals, optics, quantum computing systems, and other scientific
inventions. It has also been used to develop programs for playing many games, such as
chess and backgammon. In 1998, researchers from Carnegie Mellon University entered
arobot team that was programmed entirely using genetic programming into the Robo-
Cup soccer contest, and placed in the middle of the pack.

Like optimization, genetic programming requires a way to measure how good a solu-
tion is; but unlike optimization, the solutions are not just a set of parameters being
applied to a given algorithm. Instead, the algorithm itself and all its parameters are
designed automatically by means of evolutionary pressure.
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Programs As Trees

In order to create programs that can be tested, mutated, and bred, you’ll need a way
to represent and run them from within your Python code. The representation has to
lend itself to easy modification and, more importantly, has to be guaranteed to be an
actual program—which means generating random strings and trying to treat them as
Python code won’t work. Researchers have come up with a few different ways to
represent programs for genetic programming, and the most commonly used is a tree
representation.

Most programming languages, when compiled or interpreted, are first turned into a
parse tree, which is very similar to what you’ll be working with here. (The program-
ming language Lisp and its variants are essentially ways of entering a parse tree
directly.) An example of a parse tree is shown in Figure 11-2.

Figure 11-2. Example program tree

Each node represents either an operation on its child nodes or an endpoint, such as a
parameter with a constant value. For example, the circular node is a sum operation
on its two branches, in this case, the values Y and 5. Once this point is evaluated, it
is given to the node above it, which in turn applies its own operation to its branches.
You’ll also notice that one of the nodes has the operation “if,” which specifies that if
its leftmost branch evaluates to true, return its center branch; if it doesn’t, return its
rightmost branch.

Traversing the complete tree, you can see that it corresponds to the Python function:

def func(x,y)
if x>3:
return y + 5
else:
return y - 2

At first, it might appear that these trees can only be used to build very simple
functions. There are two things to consider here—first, the nodes that compose the
tree can potentially be very complex functions, such as distance measures or
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Gaussians. The second thing is that trees can be made recursive by referring to nodes
higher up in the tree. Creating trees like this allows for loops and other more compli-
cated control structures.

Representing Trees in Python

You’re now ready to construct tree programs in Python. The trees are made up of
nodes, which, depending on the functions associated with them, have some number
of child nodes. Some of the nodes will return parameters passed to the program, oth-
ers will return constants, and the most interesting ones will return operations on

their child nodes.

Create a new file called gp.py and create four new classes called fwrapper, node,
paramnode, and constnode:

from random import random,randint,choice
from copy import deepcopy
from math import log

class fwrapper:
def init (self,function,childcount,name):
self.function=function
self.childcount=childcount
self.name=name

class node:
def init (self,fw,children):
self.function=fw.function
self.name=fw.name
self.children=children

def evaluate(self,inp):
results=[n.evaluate(inp) for n in self.children]
return self.function(results)

class paramnode:
def init (self,idx):
self.idx=1idx

def evaluate(self,inp):
return inp[self.idx]

class constnode:
def _init__(self,v):
self.v=v
def evaluate(self,inp):
return self.v
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The classes here are:

fwrapper
A wrapper for the functions that will be used on function nodes. Its member
variables are the name of the function, the function itself, and the number of
parameters it takes.

node
The class for function nodes (nodes with children). This is initialized with an
fwrapper. When evaluate is called, it evaluates the child nodes and then applies
the function to their results.

paramnode
The class for nodes that only return one of the parameters passed to the program.
Its evaluate method returns the parameter specified by idx.

constnode
Nodes that return a constant value. The evaluate method simply returns the
value with which it was initialized.

You’ll also want some functions for the nodes to apply. To do this, you have to cre-
ate functions and then give them names and parameter counts using fwrapper. Add
this list of functions to gp.py:

addw=fwrapper(lambda 1:1[0]+1[1],2,"add")

subw=fwrapper(lambda 1:1[0]-1[1],2, 'subtract")
mulw=fwrapper(lambda 1:1[0]*1[1],2, 'multiply")

def iffunc(l):
if 1[0]>0: return 1[1]
else: return 1[2]
ifw=fwrapper(iffunc,3,"if")

def isgreater(l):

if 1[0]>1[1]: return 1

else: return 0
gtw=fwrapper(isgreater,2, 'isgreater")

flist=[addw,mulw,ifw,gtw,subw]

Some of the simpler functions such as add and subtract can be defined inline using
lambda, while others require you to define the function in a separate block. In each
case, they have been wrapped in an fwrapper with their names and the number of
parameters required. The last line creates a list of all the functions so that later they
can easily be chosen at random.

Building and Evaluating Trees

You can now construct the program tree shown in Figure 11-2 using the node class
you just created. Add the exampletree function to gp.py to create the tree:
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def exampletree():
return node(ifw, [
node(gtw, [paramnode(0), constnode(3)]),
node(addw, [ paramnode(1),constnode(5)]),
node(subw, [paramnode(1),constnode(2)]),
]
)

Start up a Python session to test your program:

>>> import gp

>>> exampletree=gp.exampletree( )

>>> exampletree.evaluate([2,3])

1

>>> exampletree.evaluate([5,3])

8
The program successfully performs the same function as the equivalent code block,
so you’ve managed to build a mini tree-based language and interpreter within
Python. This language can be easily extended with more node types, and it will serve
as the basis for understanding genetic programming in this chapter. Try building a
few other simple program trees to make sure you understand how they work.

Displaying the Program

Because you’ll be creating program trees automatically and won’t know what their
structure looks like, it’s important to have a way to display them so that you can eas-
ily interpret them. Fortunately the design of the node class means every node has a
string representing the name of its function, so a display function simply has to
return that string and the display strings of the child nodes. To make it easier to read,
the display should also indent the child nodes so you can visually identify the parent-
child relationships in the tree.

Create a new method in the node class called display, which shows a string represen-
tation of the tree:
def display(self,indent=0):
print (' '*indent)+self.name
for c in self.children:
c.display(indent+1)

You’ll also need to create a display method for the paramnode class, which simply
prints the index of the parameter it returns:

def display(self,indent=0):
print "%sp%d' % (' '*indent,self.idx)

And finally, one for the constnode class:

def display(self,indent=0):
print '%s%d' % (' '*indent,self.v)
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Use these methods to print out the tree:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> exampletree=gp.exampletree( )
>>> exampletree.display()
if

isgreater

po

3
add

p1

5

subtract

p1
2

If you’ve read Chapter 7, you’ll notice that this is similar to the way in which deci-

sion trees were displayed in that chapter. Chapter 7 also shows how to display those

trees graphically for a cleaner, easier-to-read output. If you feel so inclined, you can

use the same idea to build a graphical display of your tree programs.

Creating the Initial Population

Although it’s possible to hand-create programs for genetic programming, most of the
time the initial population consists of a set of random programs. This makes the
process easier to start, since it’s not necessary to design several programs that almost
solve a problem. It also creates much more diversity in the initial population—a set
of programs designed by a single programmer to solve a problem are likely to be very
similar, and although they may give answers that are almost correct, the ideal solu-
tion make look quite different. You’ll learn more about the importance of diversity
shortly.

Creating a random program consists of creating a root node with a random associ-
ated function and then creating as many random child nodes as necessary, which in
turn may have their own associated random child nodes. Like most functions that
work with trees, this is most easily defined recursively. Add a new function,
makerandomtree, to gp.py:

def makerandomtree(pc,maxdepth=4,fpr=0.5,ppr=0.6):
if random( )<fpr and maxdepth>0:
f=choice(flist)
children=[makerandomtree(pc,maxdepth-1,fpr,ppr)
for i in range(f.childcount)]
return node(f,children)
elif random( )<ppr:
return paramnode(randint(0,pc-1))
else:
return constnode(randint(0,10))
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This function creates a node with a random function and then looks to see how
many child nodes this function requires. For every child node required, the function
calls itself to create a new node. In this way an entire tree is constructed, with
branches ending only if the function requires no more child nodes (that is, if the
function returns a constant or an input variable). The parameter pc, used throughout
this chapter, is the number of parameters that the tree will take as input. The param-
eter fpr gives the probability that the new node created will be a function node, and
ppr gives that probability that it will be a paramnode if it is not a function node.

Try out this function in your Python session to build a few programs, and see what
sort of results you get with different variables:

>>> randomi=gp.makerandomtree(2)
>>> randomi.evaluate([7,1])

7

>>> randomi.evaluate([2,4])

2

>>> random2=gp.makerandomtree(2)
>>> random2.evaluate([5,3])

1

>>> random2.evaluate([5,20])

0

If all of a program’s terminating nodes are constants, the program will not actually
reference the input parameters at all, so the result will be the same no matter what
input you pass to it. You can use the function defined in the previous section to
display the randomly generated trees:

>>> randomi.display( )
po
>>> random2.display( )
subtract
7
multiply
isgreater
po
p1
if
multiply
p1
p1
poO
2

You’ll see that some of the trees get quite deep, since each branch will keep growing
until it hits a zero-child node. This is why it’s important that you include a

maximum depth constraint; otherwise, the trees can get very large and potentially
overflow the stack.
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Testing a Solution

You would now have everything you’d need to build programs automatically, if you
could just generate random programs until one is correct. Obviously, this would be
ridiculously impractical because there are infinite possible programs and it’s highly
unlikely that you would stumble across a correct one in any reasonable time frame.
However, at this point it is worth looking at ways to test a solution to see if it’s
correct, and if it’s not, to determine how close it is.

A Simple Mathematical Test

One of the easiest tests for genetic programming is to reconstruct a simple mathe-
matical function. Imagine you were given a table of inputs and an output that looked
like Table 11-1.

Table 11-1. Data and result for an unknown function

X Y Result
26 35 829
8 24 141
20 1 467
33 N 1215
37 16 1517

There is some function that maps X and Y to the result, but you’re not told what it
is. A statistician might see this and try to do a regression analysis, but that requires
guessing the structure of the formula first. Another option is to build a predictive
model using k-nearest neighbors as you did in Chapter 8, but that requires keeping
all the data. In some cases, you just need a formula, perhaps to codify in another
much simpler program or to describe to other people what’s going on.

I’'m sure you’re in suspense, so I'll tell you what the function is. Add hiddenfunction
to gp.py:

def hiddenfunction(x,y):
return x*¥2+2*y+3*x+5

You’re going to use this function to build a dataset against which you can test your
generated programs. Add a new function, buildhiddenset, which creates the dataset:

def buildhiddenset():
rows=[ ]
for i in range(200):
x=randint(0,40)
y=randint(0,40)
rows .append([x,y,hiddenfunction(x,y)])
return rows
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And use this to create a dataset in your Python session:

>>> reload(gp)

<module 'gp' from 'gp.py'>

>>> hiddenset=gp.buildhiddenset()
Of course, you know what the function used to generate the dataset looks like, but
the real test is whether genetic programming can reproduce it without being told.

Measuring Success

As with optimization, it’s necessary to come up with a way to measure how good a
solution is. In this case, you’re testing a program against a numerical outcome, so an
easy way to test a program is to see how close it gets to the correct answers for the
dataset. Add scorefunction to gp.py:
def scorefunction(tree,s):
dif=0
for data in s:
v=tree.evaluate([data[0],data[1]])
dif+=abs(v-data[2])
return dif
This function checks every row in the dataset, calculating the output from the func-
tion and comparing it to the real result. It adds up all the differences, giving lower
values for better programs—a return value of 0 indicates that the program got every
result correct. You can now test some of your generated programs in your Python
session to see how they stack up:
>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.scorefunction(random2,hiddenset)
137646
>>> gp.scorefunction(randomi,hiddenset)
125489
Since you only generated a few programs and they were generated completely ran-
domly, the chance that one of them is actually the correct function is vanishingly
small. (If one of your programs is the correct function, I suggest that you put the
book down and go buy yourself a lottery ticket.) However, you now have a way to
test how well a program performs on predicting a mathematical function, which is
important for deciding which programs make it to the next generation.

Mutating Programs

After the best programs are chosen, they are replicated and modified for the next
generation. As mentioned earlier, mutation takes a single program and alters it
slightly. The tree programs can be altered in a number of ways—by changing the
function on a node or by altering its branches. A function that changes the number
of required child nodes either deletes or adds new branches, as shown in Figure 11-3.
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Figure 11-3. Mutation by changing node functions

The other way to mutate is by replacing a subtree with an entirely new one, as shown
in Figure 11-4.

Mutation is not something that should be done too much. You would not, for
instance, mutate the majority of nodes in a tree. Instead, you can assign a relatively
small probability that any node will be modified. Beginning at the top of the tree, if a
random number is lower than that probability, the node is mutated in one of the
ways described above; otherwise, the test is performed again on its child nodes.

To keep things simple, the code given here only performs the second kind of muta-
tion. Create a new function called mutate to perform this operation:

def mutate(t,pc,probchange=0.1):

if random( )<probchange:
return makerandomtree(pc)

else:
result=deepcopy(t)
if isinstance(t,node):

result.children=[mutate(c,pc,probchange) for c in t.children]

return result
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Figure 11-4. Mutation by replacing subtrees

This function begins at the top of the tree and decides whether the node should be
altered. If not, it calls mutate on the child nodes of the tree. It’s possible that the
entire tree will be mutated, and it’s also possible to traverse the entire tree without

changing it.

Try running mutate a few times on the randomly generated programs you built

earlier, and see how it modifies the trees:

>>> random2.display( )
subtract
7
multiply
isgreater
pO
p1
if
multiply
p1
p1
pO
2
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>>> muttree=gp.mutate(randomz,2)
>>> muttree.display( )
subtract
7
multiply
isgreater
po
p1
if
multiply
p1
p1
po
p1
See if the result of scorefunction has changed significantly, for better or worse, after
the tree has been mutated:

>>> gp.scorefunction(random2,hiddenset)
125489
>>> gp.scorefunction(muttree,hiddenset)
125479

Remember that the mutations are random, and they aren’t necessarily directed
toward improving the solution. The hope is simply that some will improve the result.
These changes will be used to continue, and over several generations the best solu-
tion will eventually be found.

Crossover

The other type of program modification is crossover or breeding. This involves tak-
ing two successful programs and combining them to create a new program, usually
by replacing a branch from one with a branch from another. Figure 11-5 shows an
example of how this works.

The function for performing a crossover takes two trees as inputs and traverses down
both of them. If a randomly selected threshold is reached, the function returns a
copy of the first tree with one of its branches replaced by a branch in the second tree.
By traversing both trees at once, the crossover happens at approximately the same
level on each tree. Add the crossover function to gp.py:

def crossover(t1,t2,probswap=0.7,top=1):

if random( )<probswap and not top:
return deepcopy(t2)

else:
result=deepcopy(t1)
if isinstance(t1,node) and isinstance(t2,node):

result.children=[crossover(c,choice(t2.children),probswap,0)
for ¢ in t1.children]

return result
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Try crossover on a few of the randomly generated programs. See what they look like
after the crossover, and see if crossing over two of the best programs occasionally
leads to a better program:

>>> randomi=gp.makerandomtree(2)
>>> randomi.display( )
multiply
subtract
po
8
isgreater
po
isgreater
p1
5
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>>> random2=gp.makerandomtree(2)
>>> random2.display( )
if

8

p1

2
>>> cross=gp.crossover(randomi,random2)
>>> cross.display()
multiply

subtract

po

8

2

You’ll probably notice that swapping out branches can radically change what the
program does. You may also notice that programs may be close to being correct for
completely different reasons, so merging them produces a result that’s very different
from either of its predecessors. Again, the hope is that some crossovers will improve
the solution and be kept around for the next generation.

Building the Environment

Armed with a measure of success and two methods of modifying the best programs,
you’re now ready to set up a competitive environment in which programs can evolve.
The steps are shown in the flowchart in Figure 11-1. Essentially, you create a set of
random programs and select the best ones for replication and modification, repeat-
ing this process until some stopping criteria is reached.

Create a new function called evolve to carry out this procedure:

def evolve(pc,popsize,rankfunction,maxgen=500,
mutationrate=0.1,breedingrate=0.4,pexp=0.7,pnew=0.05):
# Returns a random number, tending towards lower numbers. The lower pexp
# is, more lower numbers you will get
def selectindex():
return int(log(random())/log(pexp))

# Create a random initial population
population=[makerandomtree(pc) for i in range(popsize)]
for i in range(maxgen):

scores=rankfunction(population)

print scores[0][0]

if scores[0][0]==0: break

# The two best always make it
newpop=[scores[0][1],scores[1][1]]
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# Build the next generation
while len(newpop)<popsize:
if random()>pnew:
newpop . append(mutate(
crossover(scores[selectindex()][1],
scores[selectindex()][1],
probswap=breedingrate),
pc,probchange=mutationrate))
else:
# Add a random node to mix things up
newpop . append (makerandomtree(pc))

population=newpop

scores[0][1].display()

return scores[0][1]
This function creates an initial random population. It then loops up to maxgen times,
each time calling rankfunction to rank the programs from best to worst. The best
program is automatically passed through to the next generation unaltered, which is
sometimes referred to as elitism. The rest of the next generation is constructed by
randomly choosing programs that are near the top of the ranking, and then breeding
and mutating them. This process repeats until either a program has a perfect score of
0 or maxgen is reached.

The function has several parameters, which are used to control various aspects of the
environment. They are:

rankfunction
The function used on the list of programs to rank them from best to worst.

mutationrate
The probability of a mutation, passed on to mutate.

breedingrate
The probability of crossover, passed on to crossover.

popsize
The size of the initial population.

probexp
The rate of decline in the probability of selecting lower-ranked programs. A
higher value makes the selection process more stringent, choosing only programs
with the best ranks to replicate.

probnew
The probability when building the new population that a completely new, ran-
dom program is introduced. probexp and probnew will be discussed further in the
upcoming section “The Importance of Diversity.”
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The final thing you’ll need before beginning the evolution of your programs is a way
to rank programs based on the result of scorefunction. In gp.py, create a new
function called getrankfunction, which returns a ranking function for a given
dataset:

def getrankfunction(dataset):
def rankfunction(population):
scores=[ (scorefunction(t,dataset),t) for t in population]
scores.sort()
return scores
return rankfunction

You’re ready to automatically create a program that represents the formula for your
mathematical dataset. Try this in your Python session:

>>> reload(gp)
>>> rf=gp.getrankfunction(gp.buildhiddenset())
>>> gp.evolve(2,500,rf,mutationrate=0.2,breedingrate=0.1,pexp=0.7,pnew=0.1)
16749
10674
5429
3090
491
151
151
0
add
multiply
po
add
2
po
add
add
po
4
add
p1
add
p1
isgreater
10
5

The numbers change slowly, but they should decrease until they finally reach 0.

Interestingly, the solution shown here gets everything correct, but it’s quite a bit

more complicated than the function used to create the dataset. (It’s very likely that

the solution you generated will also seem more complicated than it has to be.) How-

ever, a little algebra shows us that these functions are actually the same—remember

that po is X and p1 is Y. The first line is the function represented by this tree:
(X*(24X) ) +X+4+Y+Y+(1055)

= 2RXHXHFXX+4+Y+Y+1
= X¥¥2 + 3¥X + 2¥Y + 5
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This demonstrates an important property of genetic programming: the solutions it
finds may well be correct or very good, but because of the way they are constructed,
they will often be far more complicated than anything a human programmer would
design. There will often be large sections of a program that don’t do anything or that
represent a complicated formula that returns the same value every time. Notice in the
above example that the node (10>5) is just an odd way of saying 1.

It is possible to force the programs to remain simple, but in many cases this will
make it more difficult to find a good solution. A better way to deal with this issue is
to allow the programs to evolve to a good solution and then remove and simplify
unnecessary portions of the tree. You can do this manually, and in some cases you
can do it automatically using a pruning algorithm.

The Importance of Diversity

Part of the evolve function ranks the programs from best to worst, so it’s tempting to
just take two or three of the programs at the top and replicate and modify them to
become the new population. After all, why would you bother allowing anything less
than the best to continue?

The problem is that choosing only a couple of the top solutions quickly makes the
population extremely homogeneous (or inbred, if you like), containing solutions that
are all pretty good but that won’t change much because crossover operations
between them lead to more of the same. This problem is called reaching a local
maxima, a state that is good but not quite good enough, and one in which small
changes don’t improve the result.

It turns out that having the very best solutions combined with a large number of
moderately good solutions tends to lead to better results. For this reason, the evolve
function has a couple of extra parameters that allow you to tune that amount of
diversity in the selection process. By lowering the probexp value, you allow weaker
solutions into the final result, turning the process from “survival of the fittest” to
“survival of the fittest and luckiest.” By increasing the probnew value, you allow com-
pletely new programs to be added to the mix occasionally. Both of these values
increase the amount of diversity in the evolution process but won’t disrupt it too
much, since the very worst programs will always be eliminated eventually.

A Simple Game

A more interesting problem for genetic programming is building an Al for a game.
You can force the programs to evolve by having them compete against each other
and against real people, and giving the ones that win the most a higher chance of
making it to the next generation. In this section, you’ll create a simulator for a very
simple game called Grid War, which is depicted in Figure 11-6.
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Figure 11-6. Grid War example

The game has two players who take turns moving around on a small grid. Each
player can move in one of four directions, and the board is limited so if a player
attempts to move off one side, he forfeits his turn. The object of the game is to
capture the other player by moving onto the same square as his on your turn. The
only additional constraint is that you automatically lose if you try to move in the
same direction twice in a row. This game is very basic but since it pits two players
against each other, it will let you explore more competitive aspects of evolution.

The first step is to create a function that uses two players and simulates a game
between them. The function passes the location of the player and the opponent to
each program in turn, along with the last move made by the player, and takes the
return value as the move.

The move should be a number from 0 to 3, indicating one of four possible directions,
but since these are random programs that can return any integer, the function has to
handle values outside this range. To do this, it uses modulo 4 on the result. Random
programs are also liable to do things like create a player that moves in a circle, so the
number of moves is limited to 50 before a tie is declared.

Add gridgame to gp.py:

def gridgame(p):
# Board size
max=(3,3)

# Remember the last move for each player
lastmove=[-1,-1]

# Remember the player's locations
location=[[randint(0,max[0]),randint(0,max[1])]]

# Put the second player a sufficient distance from the first
location.append([(location[0][0]+2)%4, (location[0][1]+2)%4])
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# Maximum of 50 moves before a tie
for o in range(50):

# For each player

for i in range(2):
locs=location[i][:]+location[1-i][:]
locs.append(lastmove[i])
move=p[i].evaluate(locs)%4

# You lose if you move the same direction twice in a row
if lastmove[i]==move: return 1-i
lastmove[i]=move
if move==0:
location[i][0]-=1
# Board limits
if location[i][0]<0: location[i][0]=0
if move==1:
location[i][0]+=1
if location[i][0]>max[0]: location[i][0]=max[0]
if move==2:
location[i][1]-=
if location[i][1
if move==3:
location[i][1]+=
if location[i][1

1
]<0: location[i][1]=0
1
I>max[1]: location[i][1]=max[1]

# If you have captured the other player, you win
if location[i]==location[1-1]: return i
return -1
The program will return 0 if player 1 is the winner, 1 if player 2 is the winner, and —1
in the event of a tie. You can try building a couple of random programs and having
them compete:
>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> p1=gp.makerandomtree(5)
>>> p2=gp.makerandomtree(5)
>>> gp.gridgame([p1,p2])
1
These programs are totally unevolved, so they probably lose by moving in the same
direction twice in a row. Ideally, an evolved program will learn not to do this.

A Round-Robin Tournament

In keeping with collective intelligence, you would want the programs to test their fit-
ness by playing against real people, and force their evolution that way. This would be
a great way to capture the behavior of thousands of people and use it to develop a
more intelligent program. However, with a large population and many generations,
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this could quickly add up to tens of thousands of games, and most of them would be
against very poor opponents. That’s impractical for our purposes, so you can first
have the programs evolve by competing against each other in a tournament.

The tournament function takes a list of players as its input and pits each one against
every other one, tracking how many times each program loses its game. Programs get
two points if they lose and one point if they tie. Add tournament to gp.py:

def tournament(pl):
# Count losses
losses=[0 for p in pl]

# Every player plays every other player
for i in range(len(pl)):
for j in range(len(pl)):
if i==j: continue

# Who is the winner?
winner=gridgame([pl[i],pl[]]])

# Two points for a loss, one point for a tie
if winner==0:
losses[j]+=2
elif winner==1:
losses[i]+=2
elif winner==-1:
losses[i]+=1
losses[i]+=1
pass

# Sort and return the results
z=zip(losses,pl)

z.sort()

return z

At the end of the function, the results are sorted and returned with the programs that
have the fewest losses at the top. This is the return type needed by evolve to evaluate
programs, which means that tournament can be used as an argument to evolve and
that you’re now ready to evolve a program to play the game. Try it in your Python
session (this may take some time):

>>> reload(gp)

<module 'gp' from 'gp.py'>

>>> winner=gp.evolve(5,100,gp.tournament,maxgen=50)
As the programs evolve, notice that the loss numbers don’t strictly decrease like they
did with the mathematical function. Take a minute to think about why this is—after
all, the best player is always allowed into the next generation, right? As it turns out,
since the next generation consists entirely of newly evolved programs, the best
program in one generation might fare a lot worse in the next.
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Playing Against Real People

Once you've evolved a program that performs well against its robotic competitors,
it’s time to battle against it yourself. To do this, you can create another class that also
has an evaluate method that displays the board to the user and asks what move they
want to make. Add the humanplayer class to gp.py:

class humanplayer:
def evaluate(self,board):

# Get my location and the location of other players
me=tuple(board[0:2])
others=[tuple(board[x:x+2]) for x in range(2,len(board)-1,2)]

# Display the board
for i in range(4):
for j in range(4):
if (1,3)==me:
print '0',
elif (i,j) in others:
print 'X',
else:
print '.",
print

# Show moves, for reference
print 'Your last move was %d' % board[len(board)-1]

print ' o'
print '2 3'
print ' 1'

print 'Enter move: ',

# Return whatever the user enters
move=int(raw_input())
return move

In your Python session, you can take on your creation:

>>> reload(gp)

<module 'gp' from 'gp.py'>

>>> gp.gridgame([winner,gp.humanplayer()])
.0

. X
Your last move was -1
0
23
1
Enter move:
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Depending on how well your program evolved, you may find it easy or difficult to
beat. Your program will almost certainly have learned that it can’t make the same
move twice in a row, since that leads to instant death, but the extent to which it has
mastered other strategies will vary with each run of evolve.

Further Possibilities

This chapter is just an introduction to genetic programming, which is a huge and
rapidly advancing field. You’ve used it so far to approach simple problems in which
programs are built in minutes rather than days, but the principles can be extended to
much more complex problems. The number of programs in the populations here
have been very small compared to those used in more complex problems—a
population of thousands or tens of thousands is more typical. You are encouraged to
come up with more difficult problems and try larger population sizes, but you may
have to wait hours or days while the programs run.

The following section outlines a few ways in which the simple genetic programming
model can be extended for different applications.

More Numerical Functions

We have used a very small set of functions to construct the programs so far. This
limits the scope of what a simple program can do—for more complicated problems,
it’s necessary to greatly increase the number of functions available to build a tree.
Here are some possible functions to add:

* Trigonometric functions like sine, cosine, and tangent

* Other mathematical functions like power, square root, and absolute value
e Statistical distributions, such as a Gaussian

 Distance metrics, like Euclidean and Tanimoto distances

* A three-parameter function that returns 1 if the first parameter is between the
second and third

* A three-parameter function that returns 1 if the difference between the first two
parameters is less than the third

These can get as complicated as you like, and they are often tailored to specific
problems. Trigonometric functions may be a necessity when working in a field like
signal processing, but they are not much use in a game like the one you built in this
chapter.
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Memory

The programs in this chapter are almost entirely reactive; they give a result based
solely on their inputs. This is the right approach for solving mathematical functions,
but it doesn’t allow the programs to work from a longer-term strategy. The chasing
game passes the programs the last move they made—mostly so the programs learn
they can’t make the same move twice in a row—but this is simply the output of the
program, not something they set themselves.

For a program to develop a longer-term strategy, it needs a way to store information
for use in the next round. One simple way to do this is to create new kinds of nodes
that can store and retrieve values from predefined slots. A store node has a single
child and an index of a memory slot; it gets the result from its child and stores it in
the memory slot and then passes this along to its parent. A recall node has no chil-
dren and simply returns the value in the appropriate slot. If a store node is at the top
of the tree, the final result is available to any part of the tree that has the appropriate
recall node.

In addition to individual memory, it’s also possible to set up shared memory that can
be read and written to by all the different programs. This is similar to individual
memory, except that there are a set of slots that all the programs can read from and
write to, creating the potential for higher levels of cooperation and competition.

Different Datatypes

The framework described in this chapter is for programs that take integer parameters
and return integers as results. It can easily be altered to work with float values, since
the operations are the same. To do this, simply alter makerandomtree to create the
constant nodes with a random float value instead of a random integer.

Building programs that handle other kinds of data will require more extensive modi-
fication, mostly changing the functions on the nodes. The basic framework can be
altered to handle types such as:

Strings

These would have operations like concatenate, split, indexing, and substrings.
Lists

These would have operations similar to strings.
Dictionaries

These would include operations like replacement and addition.

Objects
Any custom object could be used as an input to a tree, with the functions on the
nodes being method calls to the object.
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An important point that arises from these examples is that, in many cases, you’ll
require the nodes in the tree to process more than one type of return value. A sub-
string operation, for example, requires a string and two integers, which means that
one of its children would have to return a string and the other two would have to
return integers.

The naive approach to this would be to randomly generate, mutate, and breed trees,
simply discarding the ones in which there is a mismatch in datatypes. However, this
would be computationally wasteful, and you’ve already seen how you can put a con-
straint on the way trees are constructed—every function in the integer trees knows
how many children it needs, and this can be easily extended to constrain the types of
children and their return types. For example, you might redefine the fwrapper class
like the following, where params is a list of strings specifying datatypes that can be
used for each parameter:
class fwrapper:
def __init__(self,function,params,name):

self.function=function

self.childcount=param

self.name=name
You’d also probably want to set up flist as a dictionary with return types. For
example:

flist={"str':[substringw,concatw], 'int":[indexw,addw, subw]}
Then you could change the start of makerandomtree to something like:

def makerandomtree(pc,datatype,maxdepth=4,fpr=0.5,ppr=0.5):
if random( )<fpr and maxdepth>0:
f=choice(flist[datatype])
# Call makerandomtree with all the parameter types for f
children=[makerandomtree(pc,type,maxdepth-1,fpr,ppr)
for type in f.params]
return node(f,children)
etc...

The crossover function would also have to be altered to ensure that swapped nodes
have the same return type.

Ideally, this section has given you some ideas about how genetic programming can
be extended from the simple model described here, and has inspired you to improve
it and to try automatically generating programs for more complex problems.
Although they may take a very long time to generate, once you find a good program,
you can use it again and again.
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Exercises

1.

More function types. We started with a very short list of functions. What other
functions can you think of? Implement a Euclidean distance node with four
parameters.

. Replacement mutation. Implement a mutation procedure that chooses a random

node on the tree and changes it. Make sure it deals with function, constant, and
parameter nodes. How is evolution affected by using this function instead of the
branch replacement?

. Random crossover. The current crossover function chooses branches from two

trees at the same level. Write a different crossover function that crosses any two
random branches. How does this affect evolution?

. Stopping evolution. Add an additional criteria to evolve that stops the process

and returns the best result if the best score hasn’t improved within X generations.

. Hidden functions. Try creating other mathematical functions for the programs to

guess. What sort of functions can be found easily, and which are more difficult?

. Grid War player. Try to hand-design your own tree program that does well at

Grid War. If you find this easy, try to write another completely different one.
Instead of having a completely random initial population, make it mostly
random, with your hand-designed programs included. How do they compare to
random programs, and can they be improved with evolution?

. Tic-tac-toe. Build a tic-tac-toe simulator for your programs to play. Set up a

tournament similar to the Grid War tournament. How well do the programs do?
Can they ever learn to play perfectly?

. Nodes with datatypes. Some ideas were provided in this chapter about

implementing nodes with mixed datatypes. Implement this and see if you can
evolve a program that learns to return the second, third, sixth, and seventh
characters of a string (e.g., “genetic” becomes “enic”).
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Step 1: Predict

This chapter is about "Prediction”

In the previous chapter, we learned about the paradigm: "Predict, Compare, Learn". In this
chapter, we will dive deep into the first step, "Predict”. You may remember that the predict
step looks a lot like this.

Data Machine Prediction

Location: AWAY

lOpponent: Yankees 9 8 o /
# of Toes: 250 —_— —_ 0
# of Players: 25 Q Q

# of Fans: 25,000
In this chapter, we're going to learn more about what these 3 different parts of a
neural network prediction really look like under the hood. Let's start with the first one, the
Data. In our first neural network, we're going to predict one datapoint at a time, like so.

# toes Machine Prediction
O

8.5 — | | —> 98 0/ 0
LoD

Nt/ s

Later on, we will find that the "number of datapoints at a time" that we want
to process will have a significant impact on what our network looks like. You might be
wondering, "how do I choose how many datapoints to propagate at a time?" The answer to
this question is based on whether or not you think the neural network can be accurate with
the data you give it. For example, if I'm trying to predict whether or not there'sa catin a
photo, I definitely need to show my network all the pixels of an image at once. Why? Well, if
I only sent you one pixel of an image, could you classify whether the image contained a cat?
Me neither! (That's a general rule of thumb by the way. Always present enough information
to the network, where "enough information" is defined loosely as how much a human might
need to make the same prediction).
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Let's skip over the network for now. As it turns out, we can only create our network
once we understand the shape of our input and output datasets (For now, shape means
"number of columns" or "number of datapoints we're processing at once"). For now, we're
going to stick with the "single-prediction” of "likelihood that the baseball team will win".

# toes Machine Win Probability
DD
8.5 — | | 98 0/ (0]
D0

Ok, so now that we know that we want to take one input datapoint and output one
prediction, we can create our neural network. Since we only have one input datapoint and
one output datapoint, we're going to build a network with a single knob mapping from the
input point to the output. Abstractly these "knob"s are actually called "weight"s, and we
will refer to them as such from here on out. So, without further ado, here's our first neural
network with a single weight mapping from our input "#toes" to output "win?"

(:) An Empty Network

input data predictions
enters here come out here

\J

As you can see, with one weight, this network takes in one datapoint at a time
(average number of toes on the baseball team) and outputs a single prediction (whether or
not it thinks the team will win).
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A Simple Neural Network Making a Prediction

Let's start with the simplest neural network possible.

(:) An Empty Network
weight = 0.1

input data predictions
enters here come out here

\ <:::Z> j prediction = input * weight

@ @ @ return prediction

(:) Inserting One Input Datapoint

def neural network (input, weight):

input data number of toes = [8.5, 9.5, 10, 9]

t \
t#roes) input = number of toes[0]

pred = neural network (input,weight)

print (pred)

(:) Multiplying Input By Weight

(8.5 * 0.1 = 0.85)

oV

(:) Depositing Prediction

—»prediction = input * weight

prediction

A

pred = neural network (input,weight)




What is a Neural Network?

What is a Neural Network?

This is a neural network.

25

Open up a Jupyter Notebook and run the following:

the network

weight = 0.1
def neural network (input, weight):
prediction = input * weight

return prediction

how we use the network to
predict something

v

number of toes = [8.5, 9.5, 10, 9]
input = number of toes[0]

pred = neural network (input,weight)
print (pred)

You just made your first neural network and used it to predict! Congratulations! The last line
prints the prediction (pred) . It should be 0.85. So what is a neural network? For now, it's one or
more weights which we can multiply by our input data to make a prediction.

What is input data?

It's a number that we recorded in the real world somewhere. It's usually some-
thing that is easily knowable, like today's temperature, a baseball player's batting

average, or yesterday's stock price.

Whatis aprediction?

A prediction is what the neural network tells us given our input data such as
"given the temperature, it is 0% likely that people will wear sweatsuits today" or
"given a baseball player's batting average, he is 30% likely to hit a home run" or
"given yesterday's stock price, today's stock price will be 101.52".

Is this prediction always right?

No. Sometimes our neural network will make mistakes, but it can learn from
them. For example, if it predicts too high, it will adjust it's weight to predict low-

er next time and vice versa.

How does the network learn?

Trial and error! First, it tries to make a prediction. Then, it sees whether it was
too high or too low. Finally, it changes the weight (up or down) to predict more
accurately the next time it sees the same input.
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What does this Neural Network do?

It multiplies the input by a weight. It "scales" the input by a certain amount.

On the previous page, we made our first prediction with a neural network. A neural
network, in it's simplest form, uses the power of multiplication. It takes our input datapoint (in
this case, 8.5) and multiplies it by our weight. If the weight is 2, then it would double our input.
If the weight is 0.01, then it would divide the input by 100. As you can see, some weight values
make the input bigger and other values make it smaller.

(:) An Empty Network
weight = 0.1

input data predictions : ;
enters here come out here def neural network (input, weight) :

prediction = input * weight

. ! return prediction

The interface for our neural network is really quite simple. It accepts an input variable
as information, and a weight variable as knowledge and outputs a prediction. Every neural
network you will ever see works this way. It uses the knowledge in the weights to interpret the
information in the input data. Later neural networks will accept larger, more complicated input
and weight values, but this same underlying premise will always ring true.

(:) Inserting One Input Datapoint

input data number of toes = [8.5, 9.5, 10, 9]
(#toes)

\ <:::12> input = number of toes[0]

N pred = neural network (input,weight)
= ‘\ / Q

In this case, the "information” is the average number of toes on a baseball team before
a game. Notice several things. The neural network does NOT have access to any information
except one instance. If, after this prediction, we were to feed in number_of_toes[1], it would not
remember the prediction it made in the last timestep. A neural network only knows what you
feed it as input. It forgets everything else. Later, we will learn how to give neural networks "short
term memories" by feeding in multiple inputs at once.
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@ Multiplying Input By Weight

(8.5 * 0.1 = 0.85)

—»prediction = input * weight
+ weight

Q / (volume knob)
Another way to think about a neural network's weight is as a measure of sensitivity be-
tween the input of the network and its prediction. If the weight is very high, then even the tiniest
input can create a really large prediction! If the weight is very small, then even large inputs will

make small predictions. This sensitivity is very akin to volume. "Turning up the weight" amplifies
our prediction relative to our input. weight is a volume knob!

@ Depositing Prediction

prediction

S N
: : ( /‘ pred = neural network (input,weight)

So in this case, what our neural network is really doing is applying a volume knob to
our number of toes variable. In theory, this volume knob is able to tell us the likelihood that
the team will win based on the average number of toes per player on our team. And this may or
may not work. Truthfully, if the team had 0 toes, they would probably play terribly. However,
baseball is much more complex than this. On the next page, we will present multiple pieces of
information at the same time, so that the neural network can make more informed decisions.

Before we go, neural networks don't just predict positive numbers either, they can also
predict negative numbers, and even take negative numbers as input. Perhaps you want to predict
the "probability that people will wear coats today", if the temperature was -10 degrees Celsius,
then a negative weight would predict a high probability that people would wear coats today.

Temperature Probability
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Making a Prediction with Multiple Inputs

Neural Networks can combine intelligence from multiple datapoints.

Our last neural network was able to take one datapoint as input and make one
prediction based on that datapoint. Perhaps you've been wondering, "is average # of toes
really a very good predictor?... all by itself?" If so, you're onto something. What if we were
able to give our network more information (at one time) than just the "average number of
toes". It should, in theory, be able to make more accurate predictions, yes? Well, as it turns
out, our network can accept multiple input datapoints at a time. See the prediction below!

(:) An Empty Network With Multiple Inputs

[

/

input data 5
(gngirz E?;Z -> - @ weights = [0.1, 0.2, 0]
.0 *

)
\\( def neural network (input, weights) :

predictions pred = w_sum(input,weights)

come out here

return pred

/* This dataset is the current

(:) Inserting One Input Datapoint status at the beginning of
each game for the first 4 games
in a season.

(first game)

N

# input corresponds to every entry
# for the first game of the season

toes = current number of toes
wlrec = current games won (percent)
/}( nfans = fan count (in millions) */
one row H toes = [8.5, 9.5, 9.9, 9.0]
of data _, ‘ wlrec = [0.65, 0.8, 0.8, 0.9]
/ nfans = [1.2, 1.3, 0.5, 1.0]

input = [toes[0],wlrec[0],nfans([0]]

pred = neural network (input,weight)
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(:) Perform a Weighted Sum of Inputs

C)\i
.85
Qﬁ> \
.13 ->—|——>
.0
.V
local
inputs weights predictions
( 8.50 =* 0.1 ) = 0.85
(0.65 * 0.2 ) = 0.13
(1.20 =* 0.0 ) = 0.00

w_sum(input,weights)

def w_sum(a,b):
assert (len(a) == len(b))
output = 0

for 1 in range(a) :
output += (al[i] * bl[il])

return output

toes prediction
wlrec prediction
fans prediction

toes prediction + wlrec prediction + fans prediction = final prediction

0.85 + 0.13 + 0.00 = 0.98
(:) Deposit Prediction
0.98
pred

prediction
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Multiple Inputs - What does this Neural Network do?

It multiplies 3 inputs by 3 knob_weights and sums them. This is a "weighted sum".

At the end of the previous section, we came to realize the limiting factor of our sim-
ple neural network, it is only a volume knob on one datapoint. In our example, that datapoint
was the average number of toes on a baseball team. We realized that in order to make accurate
predictions, we need to build neural networks that can combine multiple inputs at the same time.
Fortunately, neural networks are perfectly capable of doing so.

@ An Empty Network With Multiple Inputs

@ weights = [0.1, 0.2, 0]
.1

def neural network (input, weights):

/

input data pred = w_sum(input,weights)
enters here -2
(3 at a time) return pred

.0 *

predictions
come out here

In this new neural network, we can accept multiple inputs at a time per prediction. This allows
our network to combine various forms of information to make more well informed decisions.
However, the fundamental mechanism for using our weights has not changed. We still take each
input and run it through its own volume knob. In other words, we take each input and multiply
it by its own weight. The new property here is that, since we have mutliple inputs, we have to
sum their respective predictions. Thus, we take each input, multiply it by its respective weight,
and then sum all the local predictions together. This is called a "weighted sum of the input" or a
"weighted sum" for short. Some also refer to this "weighted sum" as a "dot product” as we'll see.

A Relevant Reminder

The interface for our neural network is quite simple. It accepts an input variable
as information, and a weight variable as knowledge and outputs a prediction.
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/* This dataset is the current

(:) Inserting One Input Datapoint status at the beginning of
each game for the first 4 games
in a season.

toes = current number of toes
wlrec = current games won (percent)

nfans fan count (in millions) */

one row toes = [8.5, 9.5, 9.9, 9.0]
of data -» wlrec = [0.65, 0.8, 0.8, 0.9]
(first game) nfans = [1.2, 1.3, 0.5, 1.0]
\\\ # input corresponds to every entry
# for the first game of the season
<:::> input = [toes[0],wlrec[0],nfans[0]]

pred = neural network (input,weight)

This new need to process multiple inputs at a time justifies the use of a new tool. This
tool is called a vector and if you've been following along in your iPython notebook, you've
already been using it. A vector is nothing other than a list of numbers. input is a vector and
weights is a vector. Can you spot any more vectors in the code above (there are 3 more)?

As it turns out, vectors are incredibly useful whenever you want to perform operations
involving groups of numbers. In this case, we're performing a weighted sum between two vectors
(dot product). We're taking two vectors of equal length (input and weights), multiplying each
number based on its position (the first position in input is multiplied by the first position in
weights, etc.), and then summing the resulting output.

It turns out that whenever we perform a mathematical operation between two vectors of
equal length where we "pair up" values according to their position in the vector (again... position
0 with 0, 1, with 1, and so on), we call this an elementwise operation. Thus "elementwise addi-
tion" sums two vectors. "elementwise multiplication” multiplies two vectors.

Challenge: Vector Math

Being able to manipulate vectors is a cornerstone technique for Deep Learning.
See if you can write functions that perform the following operations:

def elementwise_multiplication(vec_a, vec_b) def vector_sum(vec_a)
def elementwise_addition(vec_a, vec_b) def vector_average(vec_a)

Then, see if you can use two of these methods to perform a dot product!
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(:) Perform a Weighted Sum of Inputs
O\I«
.85
.2 \\\‘
©—>.13 —>—|——>Q

.0
4
local
inputs weights predictions
(8.50 * 0.1) = 0.85 =
(0.65 * 0.2 ) = 0.13 =
(1.20 * 0.0) = 0.00 =

toes prediction

0.85 + 0.13

+ wlrec prediction + fans prediction =

w_sum (input,weights)

def w_sum(a,b):
assert (len(a) == len(b))
output = 0

for i in range(a):

output += (ali] * b[il)

return output

toes prediction
wlrec prediction
fans prediction

final prediction

+ 0.00 = 0.98

The intuition behind how and why a dot product (weighted sum) works is easily one of
the most important parts of truly understanding how neural networks make predictions. Loosely
stated, a dot product gives us a notion of similarity between two vectors. Consider the examples:

a= 1[0, 1, 0, 11
b=1[1, 0, 1, 0]
c=1[0, 1, 1, 0]
d=1[.5 0,.5, 0]
e = [0, 1,-1, 0]

NP RO

o -

The highest weighted sum (w_sum(c,c)) is between vectors that are exactly identical. In contrast,
since a and b have no overlapping weight, their dot product is zero. Perhaps the most interesting
weighted sum is between ¢ and e, since e has a negative weight. This negative weight cancelled
out the positive similarity between them. However, a dot product between e and itself would
yield the number 2, despite the negative weight (double negative turns positive). Let's become

familiar with these properties.
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Some have equated the properties of the "dot product” to a "logical AND". Consider a and b.

a
b

If you asked whether both a[0] AND b[0] had value, the answer would be no. If you
asked whether both a[1] AND b[1] had value, the answer would again be no. Since this is AL-
WAYS true for all 4 values, the final score equals 0. Each value failed the logical AND.

(o, 1, 0, 1]
(1, 0o, 1, 0]

, 0, 1, 0]
.1, 1, 0]

b and ¢, however, have one column that shares value. It passes the logical AND since
b[2] AND c[2] have weight. This column (and only this column) causes the score to rise to 1.

C
d
Fortunately, neural networks are also able to model partial ANDing. In this case, c and

d share the same column as b and ¢, but since d only has 0.5 weight there, the final score is only
0.5. We exploit this property when modeling probabilities in neural networks.

d [.5, 0,.5, 0]
e [-1, 1, 0, 0]

In this analogy, negative weights tend to imply a logcal NOT operator, given that any
positive weight paired with a negative weight will cause the score to go down. Furthermore, if
both vectors have negative weights (such as w_sum(e,e)), then it will perform a double negative
and add weight instead. Additionally, some will say that it's an OR after the AND, since if any of
the rows show weight, the score is affected. Thus, for w_sum(a,b), if (a[0] AND b[0]) OR (a[1]
AND b[1)...etc.. then have a positive score. Furthermore, if one is negative, then that column
gets a NOT. Amusingly, this actually gives us a kind of crude language to "read our weights".
Let's "read" a few examples, shall we? These assume you're performing w_sum(input,weights)
and the "then" to these "if statements" is just an abstract "then give high score".

weights = [ 1, 0, 1] => if input[0] OR input[2]

weights = [ 0, 0, 1] => if input[2]

weights = [ 1, 0, -1] => if input[0] OR NOT input [2]

weights = [ -1, 0, -1] => if NOT input[0] OR NOT input[2]

weights = [ 0.5, 0, 1] => if BIG input[0] or input[2]

Notice in the last row that a weight[0] = 0.5 means that the corresponding input [0]

would have to be larger to compensate for the smaller weighting. And as I mentioned, this is a
very very crude approximate language. However, I find it to be immensely useful when trying to

picture in my head what's going on under the hood. This will help us significantly in the future,
especially when putting networks together in increasingly complex ways.
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So, given these intuitions, what does this mean when our neural network makes a
prediction? Very rougly speaking, it means that our network gives a high score of our inputs
based on how similar they are to our weights. Notice below that "nfans" is completely ignored in
the prediction because the weight associated with it is a 0. The most sensitive predictor, in fact, is
"wlrec" because its weight is a 0.2. However, the dominant force in the high score is the number
of toes ("ntoes") not because the weight is the highest, but because the input combined with the
weight is by far the highest.

(:) Deposit Prediction

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

# input corresponds to every entry
# for the first game of the season

input = [toes[0],wlrec([0],nfans([0]]
0.98
pred = neural network (input,weight)

prediction

A few more points that we will note here for further reference. We cannot shuffle our
weights. They have specific positions they need to be in. Furthermore, both the value of the
weight AND the value of the input determine the overall impact on the final score. Finally, a
negative weight would cause some inputs to reduce the final prediction (and vise versa).
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Multiple Inputs - Complete Runnable Code

The code snippets from this example come together as follows.

We can create and execute our neural
network using the following code. For the
purposes of clarity, I have written everything
out using only basic properties of Python
(lists and numbers). However, there is a better
way that we will start using in the future.

There is a python library called
"numpy" which stands for "numerical py-
thon". It has very efficient code for creating
vectors and performing common functions
(such as a dot product). So, without further
ado, here's the same code in numpy.

Numpy Code

import numpy as np

weights = np.array([0.1, 0.2, 0])

def neural network (input, weights) :

pred = input.dot(weights)

return pred

toes =

wlrec np.array([0.65, 0.8, 0.8,

nfans = np.array([1.2, 1.3, 0.5, 1.

# input corresponds to every entry

# for the first game of the season

np.array([8.5, 9.5, 9.9, 9.

Previous Code

def w_sum(a,b):
assert (len(a) == len (b))
output = 0

for i in range(a) :

output += (al[il * bl[il])

return output

weights = [0.1, 0.2, 0]
def neural network (input, weights):
pred = w_sum(input,weights)

return pred

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65, 0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

# input corresponds to every entry
# for the first game of the season

input = [toes[0],wlrec([0],nfans[0]]
pred = neural network (input,weight)
print (pred)

Both networks should
simply print out:

0.98

input = np.array([toes[0],wlrec[0],nfans[0]])

pred = neural network (input,weight)

print (pred)

Notice that we didn't have to create a special "w_sum" function. Instead, numpy has a special
function called "dot" (short for "dot product") which we can call. Many of the functions we want
to use in the future will have numpy parallels, as we will see later.
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Making a Prediction with Multiple Outputs

Neural Networks can also make multiple predictions using only a single input.

Perhaps a simpler augmentation than multiple inputs is multiple outputs. Prediction occurs
in the same way as if there were 3 disconnected single-weight neural networks.

(:) An Empty Network With Multiple Outputs

input data
enters here

\
©

yo

predictions

A

come out here

/* instead of predicting just
whether the team won or lost,

now we're also predicting whether
they are happy/sad AND the percentage
of the team that is hurt. We are
making this prediction using only
the current win/loss record */

weights = [0.3, 0.2, 0.9]
def neural network (input, weights) :
pred = ele mul (input,weights)

return pred

The most important commentary in this setting is to notice that the 3 predictions really
are completely separate. Unlike neural networks with multiple inputs and a single output where
the prediction is undeniably connected this network truly behaves as 3 independent compo-
nents, each receiving the same input data. This makes the network quite trivial to implement.

(:) Inserting One Input Datapoint

R

wlrec

[0.65, 0.8, 0.8, 0.9]

input = wlrec[0]

= neural network (input,weight)
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(:) Perform an Elementwise Multiplication

/

.195
.3
-2 .13
.9
.585

v

ele mul (input,weights)

def ele mul (number,vector) :

output = [0,0,0]

assert (len (output) == len(vector))

for i in xrange(len(vector)) :
output [1] = number * vector[i]

return output

final
inputs weights predictions
(0.65 * 0.3 ) = 0.195 = hurt prediction
(0.65 * 0.2 ) = 0.13 = win prediction
(0.65 * 0.9 ) = 0.585 = sad prediction
(:) Deposit Predictions
predictions

\(
/

o

a vector of numbers)

pred
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Predicting with Multiple Inputs & Outputs

Neural networks can predict multiple outputs given multiple inputs.

Finally, the way in which we built a network with multiple inputs or outputs can be
combined together to build a network that has both multiple inputs AND multiple outputs. Just
like before, we simply have a weight connecting each input node to each output node and pre-

diction occurs in the usual way.

(:) An Empty Network With Multiple Inputs & Outputs

inputs

predictions

#toes %Swin #fans

weights = [ [0.1, 0.1, -0.3],#hurt?

[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1] ]#sad?

def neural network (input, weights) :

pred =vect mat mul (input,weights)

return pred

(:) Inserting One Input Datapoint

inputs

(s:5)—
o}
(22—

predictions

/* This dataset is the current
status at the beginning of
each game for the first 4 games
in a season.

toes = current number of toes
wlrec current games won (percent)

nfans fan count (in millions) */
toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

# input corresponds to every entry
# for the first game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural network (input,weight)
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@ For Each Output, Perform a Weighted Sum of Inputs

1 | @ vect mat mul (input,weights)

.85
\ def vect mat mul (vect,matrix) :

2 .13/—: —|— — @ assert (len(a) == len(b))

output = 0

-0 for i in range(a):

V output += (alil * b[i])
| @ return output

#toes Swin #fans
(8.5 * 0.1) + (0.65 * 0.1) + (1.2 * -0.3) = 0.555 = hurt prediction
(8.5 * 0.1) + (0.65 * 0.2) + (1.2 * 0.0) = 0.98 = win prediction
(8.5 * 0.0) + (0.65 * 1.3) + (1.2 * 0.1) 0.965 = sad prediction
(:) Deposit Predictions
inputs predictions
X ;\
@ pred
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Multiple Inputs & Outputs - How does it work?

It performs 3 independent weighted sums of the input to make 3 predictions.

I find that there are 2 perspectives one can take on this architecture. You can either
think of it as 3 weights coming out of each input node, or 3 weights going into each output node.
For now, I find the latter to be much more beneficial. For now, think about this neural network
as 3 independent dot products, 3 independent weighted sums of the input. Each output node
takes its own weighted sum of the input and makes a prediction.

(:) An Empty Network With Multiple Inputs & Outputs

inputs predictions

#toes %win #fans
weights = [ [0.1, 0.1, -0.3],#hurt?
[0.1, 0.2, 0.0], #win?
(0.0, 1.3, 0.1] l#sad?
def neural network (input, weights):
pred =vect mat mul (input,weights)

return pred

(:) Inserting One Input Datapoint /* This dataset is the current

inputs predictions

(D)
G
o

status at the beginning of
each game for the first 4 games
in a season.

toes = current number of toes
wlrec

nfans fan count (in millions)
toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
nfans = [1.2, 1.3, 0.5, 1.0]

current games won (percent)

*/

# input corresponds to every entry
# for the first game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural network (input,weight)
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@ For Each Output, Perform a Weighted Sum of Inputs

| @ vect mat mul (input,weights)

def vect mat mul (vect,matrix) :

2 \ assert (len(a) == len(b))
—» .13 > o
/ output = vector of zeros(len(vect))

for i in range(len(vect)):

0 output [i] =w_sum(vect,matrix[i])
.0
/ return output
—I__> @

#toes Swin #fans
(8.5 * 0.1) + (0.65 * 0.1) + (1.2 * -0.3) = 0.555 = hurt prediction
(8.5 * 0.1) + (0.65 * 0.2) + (1.2 * 0.0) = 0.98 = win prediction
(8.5 * 0.0) + (0.65 * 1.3) + (1.2 * 0.1) = 0.965 = sad prediction

As mentioned on the previous page, we are choosing to think about this network as a
series of weighted sums. Thus, in the code above, we created a new function called "vect_mat_
mul". This function iterates through each row of our weights (each row is a vector), and makes
a prediction using our w_sum function. It is literally performing 3 consecutive weighted sums
and then storing their predictions in a vector called "output". There's a lot more weights flying
around in this one, but isn't that much more advanced than networks we have previously seen.

I want to use this "list of vectors" and "series of weighted sums" logic to introduce you
to two new concepts. See the weights variable in step (1)? It's a list of vectors. A list of vectors is
simply called a matrix. It is as simple as it sounds. Furthermore, there are functions that we will
find ourselves commonly using that leverage matrices. One of these is called vector-matrix mul-
tiplication. Our "series of weighted sums" is exactly that. We take a vector, and perform a dot
product with every row in a matrix**. As we will find out on the next page, we even have special
numpy functions to help us out.

** Note: For those of you experienced with Linear Algebra, the more formal definition would store/process weights as column vec-
tors instead of row vectors. This will be rectified shortly.
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Predicting on Predictions

Neural networks can be stacked!

As the pictures below make clear, one can also take the output of one network and feed
it as input to another network. This results in two consecutive vector-matrix multiplications. It
may not yet be clear why you would predict in this way. However, some datasets (such as image
classification) contain patterns that are simply too complex for a single weight matrix. Later, we
will discuss the nature of these patterns. For now, it is sufficient that you know this is possible.

(:) An Empty Network With Multiple Inputs & Outputs

#toes %Swin #fans

inputs hiddens predictions ih wgt = [ [0.1, 0.2, -0.1],#hid[0]
[-0.1,0.1, 0.9]1, #hid[1]
[0.1, 0.4, 0.1] 1#hid[2]
# hid[0] hid[1] hid[2]
hp wgt = [ [0.3, 1.1, -0.3],#hurt?
[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1] l#sad?

weights = [ih_wgt, hp wgt)
def neural network (input, weights) :
hid = vect mat mul (input,weights[0])

pred = vect mat mul (hid,weights[1])
return pred

(:) Predicting the Hidden Layer

toes = [8.5, 9.5, 9.9, 9.0]
wlrec = [0.65,0.8, 0.8, 0.9]
inputs hiddens predictions nfans = [1.2, 1.3, 0.5, 1.0]

# input corresponds to every entry
# for the first game of the season

input = [toes[0],wlrec[0],nfans[0]]

pred = neural network (input,weight)

hid = vect _mat mul (input,weights[0])
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(:) Predicting the Output Layer (and depositing the prediction)

inputs hiddens predictions

pred

@ pred = vect mat mul (hid,weights[1])
return pred

Numpy Version

import numpy as np

#toes %win #fans
ih wgt = np.array ([

[0.1, 0.2, -0.1],#hid[0]
[-0.1,0.1, 0.9], #hid[1]
[0.1, 0.4, 0.1]1]).T #hid[2]

# hid[0] hid[1] hid[2]
hp wgt = np.array(l[

[0.3, 1.1, -0.3],#hurt?
[0.1, 0.2, 0.0], #win?
[0.0, 1.3, 0.1] ]).T#sad?

weights = [ih wgt, hp wgt]
def neural network (input, weights):
hid = input.dot (weights[0])

pred = hid.dot (weights[1])
return pred

toes = np.array([8.5, 9.5, 9.9, 9.0])
wlrec = np.array([0.65,0.8, 0.8, 0.9])
nfans = np.array([1.2, 1.3, 0.5, 1.0])
input = np.array([toes[0] ,wlrec[0],nfans[0]])

pred = neural network (input,weights)
print pred
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A Quick Primer on Numpy

Numpy is so easy to use that it does a few things for you. Let's reveal the magic.

So far in this chapter, we've discussed two new types of mathematical tools, vectors and
matrices. Furthermore, we have learned about different operations that occur on vectors and
matrices including dot products, elementwise multiplication and addition, as well as vector-ma-
trix multiplication. For these operations, we've written our own python functions that can oper-
ate on simple python "list" objects. In the short term, we will keep writing/using these functions
so that we make sure we fully understand what's going on inside them. However, now that we've
mentioned both "numpy" and several of the big operations, I'd like to give you a quick run-down
of basic "numpy" use so that you will be ready for our transition to "only numpy" a few chapters
from now. So, let's just start with the basics again, vectors and matrices.

import numpy as np Output
a = np.array([0,1,2,3]) # a vector
b = np.array([4,5,6,7]) # another vector
c = np.array([[0,1,2,3],# a matrix [0 1 2 3]
[4,5,6,711) [4 56 7]

[[0 1 2 3]
d = np.zeros((2,4))#(2x4 matrix of zeros) [4 56 711
e = np.random.rand(2,5) # random 2x5 [[ 0. 0. 0. 0.]
# matrix with all numbers between 0 and 1 [ 0. 0. 0. 0.1]

[[ 0.22717119 0.39712632
print a 0.0627734 0.08431724
print b 0.53469141]
print c [ 0.09675954 0.99012254
print d 0.45922775 0.3273326
print e 0.2861774211

We can create vectors and marices in multiple ways in numpy. Most of the common
ones for neural networks are listed above. Note that the processes for creating a vector and a
matrix are identical. If you create a matrix with only one row, you're creating a vector. Further-
more, as in mathematics in general, you create a matrix by listing (rows,columns). I say that only
so that you can remember the order. Rows comes first. Columns comes second. Let's see some
operations we can do on these vectors and matrices.

print a * 0.1 # multiplies every number in vector "a" by 0.1

print ¢ * 0.2 # multiplies every number in matrix "c" by 0.2

print a * b # multiplies elementwise between a and b (columns paired up)
print a * b * 0.2 # elementwise multiplication then multiplied by 0.2
print a * ¢ # since c¢ has the same number of columns as a, this performs
# elementwise multiplication on every row of the matrix "c"

print a * e # since a and e don't have the same number of columns, this
# throws a "Value Error: operands could not be broadcast together with.."
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Go ahead and run all of the code on the previous page. The first big of "at first confusing
but eventually heavenly" magic should be visible on that page. When you multiply two variables
with the ™" function, numpy automatically detects what kinds of variables you're working with
and "tries" to figure out the operation you're talking about. This can be mega-convenient but
sometimes makes numpy a bit hard to read. You have to make sure you keep up with what each
variable type is in your head as you go along.

The general rule of thumb for anything elementwise (+,-,%,/) is that the two variables
must either have the SAME number of columns, or one of the variables must only have 1 col-
umn.

For example, "print a * 0.1" takes a vector and multiplies it by a single number (a scalar).
Numpy goes "oh, I bet I'm supposed to do vector-scalar multiplication here" and then it takes the
scalar (0.1) and multiplies it by every value in the vector. This looks exactly the same as "print
c*0.2", except that numpy knows that ¢ is a matrix. Thus, it performs scalar-matrix multipli-
cation, multiplying every element in c by 0.2. Because the scalar has only one column, you can
multiply it by anything (or divide, add, or subtract for that matter)

Next up, "print a * b". Numpy first identifies that they're both vectors. Since neither vec-
tor has only 1 column, it checks to see if they have an identical number of columns. Since they
do, it knows to simply multiply each element by each element based on their positions in the
vectors. The same is true with addition, subtraction and division.

"print a * ¢" is perhaps the most elusive. "a" is a vector with 4 columns. "c" is a (2x4)
matrix. Neither have only one column, so numpy checks to see if they have the same number
of columns. Since they do, numpy multiplies the vector "a" by each row of "c" (as if it was doing
elementwise vector multiplication on each row).

Again, the most confusing part about this is that all of these operations look the same
if you don't know which variables are scalars, vectors, or matrices. When I'm "reading numpy”,
I'm really doing 2 things, reading the operations and keeping track of the "shape” (number of
rows and columns) of each operation. It'll take some practice, but eventually it becomes second
nature.

np.zeros((1,4)) # vector of length 4 Output
np.zeros((4,3)) # matrix with 4 rows & 3 columns (1,3)

a
b

c a.dot (b)
print c.shape

There is one golden rule when using the 'dot' function. If you put the (rows,cols) de-
scription of the two variables you're "dotting" next to each other, neighboring numbers should
always be the same. In this case, we're dot producting a (1,4) with a (4,3). Thus, it works fine,
and outputs a (1,3). In terms of variable shape, you can think of it this way. Regardless of wheth-
er you're "dotting" vectors or matrices. Their "shape"

(number of rows and columns) must line up. The col- (a,b) .dot (b,c) = (a,c)
umns on the "left" matrix must equal rows on the "right".
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a = np.zeros((2,4)) # matrix with 2 rows and 4 columns
b = np.zeros((4,3)) # matrix with 4 rows & 3 columns
c = a.dot (b)

print c.shape # outputs (2,3)

e
£

np.zeros((2,1)) # matrix with 2 rows and 1 columns
np.zeros((1,3)) # matrix with 1 row & 3 columns

g = e.dot (f)

print g.shape # outputs (2,3)
this ".T" "flips" the rows and
columns of a matrix

h
i

np.zeros((5,4)).T # matrix with 4 rows and 5 columns
np.zeros((5,6)) # matrix with 6 rows & 5 columns

j = h.dot (i)
print j.shape # outputs (4,6)

h = np.zeros((5,4)) # matrix with 5 rows and 4 columns
i = np.zeros((5,6)) # matrix with 5 rows & 6 columns

j = h.dot (i)

print j.shape # throws an error

Conclusion

To predict, neural networks perform repeated weighted sums of the input.

We have seen an increasingly complex variety of neural networks in this chapter. I hope
that it is clear that a relatively small number of simple rules are simply used repeatedly to create
larger, more advanced neural networks. Furthermore, the intelligence of the network really de-
pends on what weight values we give to our networks.

In the next chapter, we will be learning how to set our weights so that our neural
networks make accurate predictions. We will find that in the same way that prediction is actu-
ally based on several simple techniques that are simply repeated/stacked on top of each other,
"weight learning” is also a series of simple techniques that are simply combined many times
across an architecture. See you there!
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Gradient Descent

IN THIS CHAPTER cccccccceccccccctccccccsccccccoscccne
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Predict, Compare, and Learn

This chapter is about "Compare", and "Learn"

In Chapter 3, we learned about the paradigm: "Predict, Compare, Learn". In the
previous chapter, we dove deep into the first part of this process "Predict". In this process
we learned a myriad of things including the major parts of neural networks (nodes and
weights), how datasets fit into networks (matching the number of datapoints coming in
at one time), and finally how to use a neural network to make a prediction. Perhaps this
process begged the question, "How do we set our weight values so that our network predicts
accurately?". Answering this question will be the main focus of this chapter, covering the
second two steps of our paradigm, "Compare", and "Learn".

Compare

A measurement of how much our prediction "missed".

Once we've made a prediction, the next step to learn is to evaluate how well we
did. Perhaps this might seem like a rather simple concept, but we will eventually find that
coming up with a good way to measure error is one of the most important and complicated
subjects of Deep Learning.

In fact, there are many properties of "measuring error” that you have likely
been doing your whole life without realizing it. Perhaps you (or someone you know)
amplifies bigger errors while ignoring very small ones. In this chapter we will learn how to
mathematically teach our network to do this. Furthermore (and this might seem too simple
to be important), we will learn that error is always positive! We will consider the analogy of
an "archer” hitting a target. Whether he is too low by and inch or too high by an inch, the
error is still just 1 inch! In our neural network "Compare" step, we want to consider these
kinds of properties when measuring error.

As a heads up, in this chapter we will only evaluate one, very simple way of
measuring error called "Mean Squared Error". However, it is but one of many ways to
evaluate the accuracy of your neural network.

As a closing thought, this step will give us a sense for "how much we missed", but
this isn't enough to be able to learn. The output of our "compare” logic will simply be a "hot
or cold" type signal. Given some prediction, we'll calculate an error measure that will either
say "a lot" or "alittle". It won't tell us why we missed, what direction we missed, or what we
should do to fix it. It more or less just says "big miss", "little miss", or "perfect prediction”.
What we do about our error is captured in the next step, "Learn".
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Learn

"Learning" takes our error and tells each weight how it can change to reduce it.

Learning is all about "error attribution", or the art of figuring out how each weight
played its part in creating error. It's the "blame game" of Deep Learning. In this chapter, we
will spend a great number of pages learning the most popular version of the Deep Learning
"blame game" called Gradient Descent.

At the end of the day, it's going to result in computing a number for each of our
weights. That number will represent how that weight should be higher or lower in order to
reduce the error. Then we will move the weight according to that number, and we'll be done.
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Compare: Does our network make good predictions?

Let's measure the error and find out!
Execute this code in your Jupyter notebook. It should print "0.3025".

knob_weight = 0.5
input = 0.5
goal pred = 0.8

error
_"‘x\
) pred = input * knob_ weight

r/’ \\.
w
o

error = (pred - goal pred) ** 2

print (gfror)
The "error" is simply a way
of measuring "how much we

missed". There are multiple
ways to calculate error raw error
as we will learn later. This
one is "Mean Squared Error"

Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.

What is the goal pred variable?

Much like input, it's a number we recorded in the real world somewhere, but it's usu-
ally something that's hard to observe, like "the percentage of people who DID wear
sweatsuits" given the temperature or "whether the batter DID in fact hit a home run"
given his batting average.

Why is the error squared?

Think about an archer hitting a target. When he is 2 inches high, how much did he
miss by? When he is two inches low, how much did he miss by? Both times he only
missed by 2 inches. The primary reason why we square "how much we missed" is
that it forces the output to be positive. pred-goal pred could be negative in some
situations... unlike actual error.

Doesn't squaring make big errors (>1) bigger and small errors (<1) smaller?
Yeah...It is kindof a weird way of measuring error... but it turns out that amplifying
big errors and reducing small errors is actually ok. Later, we'll use this error to help
the network learn... and we'd rather it pay attention to the big errors and not worry
so much about the small ones. Good parents are like this too. They practically ignore
errors if they're small enough (i.e. breaking the lead on your pencil) but might go
nuclear for big errors (i.e. crashing the car). See why squaring is valuable?
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Why measure error?

Measuring error simplifies the problem.

The goal of training our neural network is to make correct predictions. That's what we want.
And in the most pragmatic world (as mentioned in the last chapter), we want the network to
take input that we can easily calculate (today's stock price), and predict things that are hard to
calculate (tomorrow's stock price). That's what makes a neural network useful.

It turns out that "changing knob_weight to make the network correctly predict the goal_predic-
tion" is slightly more complicated than "changing the knob_weight to make error == 0" There's
something more concise about looking at the problem this way. Ultimately, both of those state-
ments say the same thing, but trying to get the error to 0 just seems a bit more straightforward.

Different ways of measuring error prioritize error differently.

If this is a bit of a stretch right now, that's ok... but think back to what I said on the last page.

By squaring the error, numbers that are less than 1 get smaller whereas numbers that are

greater than 1 get bigger. This means that we're going to change what I call "pure error" (pre-
diction-goal_prediction) so that bigger errors become VERY big and smaller errors quickly
become irrelevant. By measuring error this way, we can prioritize big errors over smaller ones.
When we have somewhat large "pure errors” (say... 10), we're going to tell ourselves we have very
large error (10**2 == 100), and in contrast, when we have small "pure errors" (say... 0.01), we're
going to tell ourselves that we have very small error (0.01 **2 == 0.0001). See what I mean about
prioritizing? It's just modifying what we consider to be error so that we amplify big ones and
largely ignore small ones. In contrast, if we took the absolute value instead of squaring the error,
we wouldn't have this type of prioritization. The error would just be the positive version of the
"pure error"... which would be fine... just different. More on this later.

Why do we only want positive error?

Eventually, we're going to be working with millions of input -> goal_prediction pairs... and we're
still going to want to make accurate predictions. This means that we're going to try to take the
average error down to 0.

This presents a problem if our error can be positive and negative. Imagine if we had two dat-
apoints... two input -> goal_prediction pairs that we were trying to get the neural network to
correctly predict. If the first had an error of 1,000, and the second had an error of -1,000, then
our average error would be ZERO! We would fool ourselves into thinking we predicted perfectly
when we missed by 1000 each time!!! This would be really bad. Thus, we want the error of each
prediction to always be positive so that they don't accidentally cancel each other out when we
average them.
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What's the Simplest Form of Neural Learning?

Learning using the Hot and Cold Method

At the end of the day, learning is really about one thing, adjusting our knob weight_
either up or down so that our error reduces. If we keep doing this and our error goes to 0, we
are done learning! So, how do we know whether to turn the knob up or down? Well, we try both
up and down and see which one reduces the error! Whichever one reduces the error is used to
actually update the knob_weight. It's simple, but effective. After we do this over and over again,
eventually our error==0, which means our neural network is predicting with perfect accuracy.

Hot and Cold Learning

Wiggling our weights to see which direction reduces the error the most, moving
our weights in that direction, and repeating until the error gets to 0.

@ An Empty Network weight = 0.1
input data predictions lr = 0.01
enters here come out here

\ <:::Z> J def neural network (input, weight) :
@ prediction = input * weight
@ return prediction

(:) PREDICT: Making A Prediction And Evaluating Error

number of toes = [8.5]

SO win or lose binary = [1] // (won!!!)

input = number of toes[0]
true = win or lose binary[0]

L pred = neural network (input,weight)
error = (pred - true) ** 2

The "error" is simply a way

of measuring "how much we T

missed". There are multiple

ways to calculate error raw error

as we will learn later. This

one is "Mean Squared Error"

Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.
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(:) COMPARE: Making A Prediction With a Higher Weight And Evaluating Error

error higher
0.01

neural network (input,weight+lr)

(p_up - true) ** 2

We want to move the weight so that the error goes downward, so we're
going to try moving the weight up and down to see which one has
the lowest error. First, we're trying moving the weight up (weight+lr).

(:) COMPARE: Making A Prediction With a Lower Weight And Evaluating Error
lower

0.01 ¥

neural network (input,weight-1r)

error

= (p_dn - true) ** 2

(:) COMPARE + LEARN: Comparing our Errors and Setting our New Weight

best!!

errors * if (error > e dn ||

error > e up):

e, e, e, if (e dn < e up):

@ weight -= 1r
i.055} 2.023} i.004}

e T if (e up < e up):

weight += 1r

These last 5 steps comprise 1 iteration of Hot and Cold Learning. Fortunately, this itera-
tion got us pretty close to the correct answer all by itself. (The new error is only 0.004). However,
under normal circumstances, we would have to repeat this process many times in order to find
the correct weights. Some people even have to train their networks for weeks or months before
they find a good enough weight configuration.

This reveals what learning in neural networks really is. It's a search problem. We are
searching for the best possible configuration of weights so that our network's error falls to zero
(and predicts perfectly). As with all other forms of search, we might not find exactly what we're
looking for, and even if we do, it may take some time. On the next page, we'll use Hot and Cold
Learning for a slightly more difficult prediction so that you can see this searching in action!
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Hot and Cold Learning

Perhaps the simplest form of learning.
Execute this code in your Jupyter Notebook. (New neural network modifications are in bold.)
This code attempts to correctly predict 0.8.

how much to move
weight = 0.5 our weights each
input = 0.5 iteration

goal_prediction = 0.8 repeat learning many times

so that our error can
step_amount = 0.001

“”/”’,, keep getting smaller
for iteration in range(1101):

TRY UP!

prediction = input * weight

error = (prediction - goal prediction) ** 2

print "Error:" + str(error) + " Prediction:" +/str(prediction)

up prediction = input * (weight + step amount)

up error = (goal prediction - up prediction) ** 2 TRY DOWN!

down prediction = input * (weight - step amount) ‘//

down error = (goal prediction - down prediction) ** 2

if (down error < up error): ¢ If down is better,
weight = weight - step amount go down!

if (down error > up error): If up is better,
weight = weight + step amount < go up!

When I run this code, I see the following output:
Error:0.3025 Prediction:0.25 Our last step COl'l'eCﬂY

Error:0.30195025 Prediction:0.2505

predicts 0.8!
Error:2.50000000033e-07 Prediction:0.79§E////’
Error:1.07995057925e-27 Prediction:0.8
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Characteristics of Hot and Cold Learning

It's simple

Hot and Cold learning is simple. After making our prediction, we predict two more times, once
with a slightly higher weight and again with a slightly lower weight. We then move the weight
depending on which direction gave us a smaller error. Repeating this enough times eventually
reduces our error down to 0.

Why did I iterate exactly 1101 times?

The neural network reaches 0.8 after exactly that many iterations. If you go past that,
it wiggles back and forth between 0.8 and just above/below 0.8... making for a less
pretty error log printed at the bottom of the left page. Feel free to try it out though.

PROBLEM #1: It's inefficient
We have to predict multiple times in order to make a single knob_weight update. This seems very
inefficient.

PROBLEM #2: Sometimes it's impossible to predict the exact goal prediction.

With a set step_amount, unless the perfect weight is exactly n*step_amount away, the
network will eventually overshoot by some number less than step amount. When it does so, it
will then start alternating back and forth between each side of the goal prediction. Set the
step_amount to 0.2 to see this in action. If you set step_amount to 10 you'll really break it!
When I try this I see the following output. It never remotely comes close to 0.8!!!

The real problem here is that even though

we know the correct direction to move our Error:0.3025 Prediction:0.25
ight, we don't know the correct amount. Error:19.8025 Prediction:5.25
w.elg ’ . Error:0.3025 Prediction:0.25
Since we don't know the correct amount, we Error:19.8025 Prediction:5.25
just pick a fixed one at random (step_amount). ~ Error:0.3025 Prediction:0.25
Furthermore, this amount has NOTHING to .... repeating infinitely...

do with our error. Whether our error is BIG

or our error is TINY, our step_amount is the same. So, Hot and Cold Learning is kindof a
bummer... it's inefficient because we predict 3 times for each weight update and our step_amount
is completely arbitrary... which can prevent us from learning the correct weight value.

What if we had a way of computing both direction and amount for each
weight without having to repeatedly make predictions?
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Calculating Both direction and amount from error

Let's measure the error and find out!
Execute this code in your Jupyter notebook.

weight = 0.5

goal pred = 0.8

input = 0.5 (1) "pure error"

for iteration in range (20) : (2) Scahng’ negatlv_e
pred = input * weight reversal, and stopping
error = (pred - goal pred) ** 2
direction and amount = (pred - goal pred) * input
weight = weight - direction and amount
print "Error:" + str(error) + " Prediction:" + str(pred)

What you see above is a superior form of learning known as Gradient Descent. This
method allows us to (in a single line of code... seen above in bold) calculate both the direction
and the amount that we should change our weight so that we reduce our error.

What is the direction and amount?

It represents how we want to change our weight. The first (1) is what we call "pure
error” which equals (pred - goal pred). This number represents "the raw direc-
tion and amount that we missed". The second part (2) is the multiplication by the
input which performs scaling, negative reversal and stopping...modifying the "pure
error” so that it's ready to update our weight.

What is the "pure error"?

It's the (pred - goal pred) which indicates "the raw direction and amount that we
missed". If this is a positive number then we predicted too high and vice versa. If this
is a big number then we missed by a big amount, etc.

What is "scaling, negative reversal, and stopping"?

These three attributes have the combined affect of translating our "pure error” into
“the absolute amount that we want to change our weight". They do so by addressing
three major edge cases at which points the "pure error” is not sufficient to make a
good modification to our weight.
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What is "stopping"?

This is the first (and simplest) affect on our "pure error" caused by multiplying it
by our input. Imagine plugging in a CD player into your stereo. If you turned the
volume all the way up but the CD player was off... it simply wouldn't matter. "Stop-
ping" addresses this in our neural network... if our input is 0, then it will force our
direction_and_amount to also be 0. We don't learn (i.e. "change the volume") when
our input is 0 because there's nothing to learn... every weight value has the same
error... and moving it makes no difference because the pred is always 0.

What is "negative reversal?

This is probably our most difficult and important effect. Normally (when input is
positive), moving our weight upward makes our prediction move upward. How-
ever, if our input is negative, then all of a sudden our weight changes directions!!!
When our input is negative, then moving our weight up makes the prediction go
down. It's reversed!!! How do we address this? Well, multiplying our "pure error" by
our input will reverse the sign of our direction_and_amount in the event that our
input is negative. This is "negative reversal’, ensuring that our weight moves in
the correct direction, even if the input is negative.

What is "scaling"?

Scaling is the second effect on our "pure error" caused by multiplying it by our
input. Logically, it means that if our input was big, our weight update should also be
big. This is more of a "side affect" as it can often go out of control. Later, we will use
alpha to address when this scaling goes out of control.
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When you run the code in the top left, you should see the following output.

Error:

Error

Error:

Error:

Error

Error:

0.3025 Prediction:0.25
:0.
0.095712890625 Prediction:0.490625 approach(LS!

17015625 Prediction:0.3875 Our last steps correctly

1.7092608064e-05 Prediction:0.79586567925
:9.
5.40820802026e-06 Prediction:0.797674444578

61459203602e-06 Prediction:0.796899259437

In this example, we saw Gradient Descent in action in a bit of an oversimplified environment.
On the next page, we're going to see it in it's more native environment. Some terminology will be
different, but we will code it in a way that makes it more obviously applicable to other kinds of
networks (such as those with multiple inputs and outputs)
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One Iteration of Gradient Descent

This performs a weight update on a single "training example" (input->true) pair

(:) An Empty Network weight = 0.1
input data predictions alpha = 0.01
enters here come out here

\ <:::Z> J def neural network (input, weight) :

@ prediction = input * weight
@ @ return prediction

(:) PREDICT: Making A Prediction And Evaluating Error

error number of toes = [8.5]
& win or lose binary = [1] // (won!!!)
input = number of toes[0]

goal pred = win or lose binary([0]

.023
o pred = neural network (input,weight)
error = (pred - goal pred) ** 2
The "error" is simply a way
of measuring "how much we T

missed". There are multiple
ways to calculate error raw error
as we will learn later. This
one is "Mean Squared Error"

Forces the raw error to be
positive by multiplying it
by itself. Negative error
wouldn't make sense.

(:) COMPARE: Calculating "Node Delta" and Putting it on the Output Node

node delta“‘-——b-delta = pred - goal pred

Delta is a measurement of "how much this node missed". Thus, since the
true prediction was 1.0, and our network's prediction was 0.85, the
network was too low by 0.15. Thus, delta is negative 0.15.
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The primary difference between the gradient descent on the previous page and the im-
plementation on this page just happened. delta is a new variable. It's the "raw amount that the
node was too high or too low". Instead of computing direction and_amount directly, we first
calculate how much we wanted our output node to be different. Only then do we compute our
direction and amount to change the weight (in step 4, now renamed "weight delta").

(:) LEARN: Calculating "Weight Delta" and Putting it on the Weight

weight delta
i\\\\\\\"weight_delta = input * delta

Weight delta is a measure of "how much this weight caused the newtork to
miss". We calculate it by multiplying the weight's output "Node Delta" by
the weight's input. Thus, we create each "Weight Delta" by scaling it's
output "Node Delta" by the weight's input. This accounts for the 3
aforementioned properties of our "direction and amount", scaling, negative
reversal, and stopping.

(:) LEARN: Updating the Weight

new weight

We multiply our weight delta by
a small number "alpha" before
using it to update our weight.
This allows us to control how
fast the network learns. If it
learns too fast, it can update
weights too aggressively and
overshoot. More on this later.

Note that the weight update alpha = 0.01 // fixed before training
made the same change (small
increase) as Hot and Cold weight -= weight delta * alpha

Learning
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Learning Is Just Reducing Error

Modifying weight to reduce our error.
Putting together our code from the previous pages. We now have the following:

weight, goal pred, input = (0.0, 0.8, 0.5)
these lines have a secret

for iteration in range(4) :

pred = input * weight

error = (pred - goal pred) "** 2

delta = pred - goal pred

weight delta = delta * input

weight = weight - weight delta

print "Error:" + str(error) + " Prediction:" + str(pred)

The Golden Method for Learning

Adjusting each weight in the correct direction and by the cor-
rect amount so that our error reduces to 0.

All we're trying to do is figure out the right direction and amount to modify weight
so that our error goes down. The secret to this lies in our pred and error calculations. Notice
that we actually use our pred inside the error calculation. Let's replace our pred variable with
the code we used to generate it.

error = ((input * weight) - goal pred) ** 2

This doesn't change the value of error at all! It just combines our two lines of code so that we
compute our error directly. Now, remember that our input and our goal_prediction are actually
fixed at 0.5 and 0.8 respectively (we set them before the network even starts training). So, if we
replace their variables names with the values... the secret becomes clear

error = ((0.5 * weight) - 0.8) ** 2
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The Secret

For any input and goal pred, there is an exact relationship
defined between our error and weight, found by combining
our prediction and error formulas. In this case:

error = ((0.5 * weight) - 0.8) ** 2

Let's say that you moved weight up by 0.5... if there is an exact relationship between
error and weight... we should be able to calculate how much this also moves the error! What
if we wanted to move the error in a specific direction? Could it be done?

error

. ’
Nav

weight

This graph represents every value of error for every weight according to the relationship in the
formula above. Notice it makes a nice bowl shape. The black "dot" is at the point of BOTH our
current weight and error. The dotted "circle" is where we want to be (error == 0).

Key Takeaway: The slope points to the bottom of the bowl (lowest exrror) no matter
where you are in the bowl. We can use this slope to help our neural network reduce the
error.
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Let's Watch Several Steps of Learning

Will we eventually find the bottom of the bowlI?

weight, goal pred, input = (0.0, 0.8, 1.1)

for iteration in range(4):
print "----- \nWeight:" + str(weight)
pred = input * weight
error = (pred - goal pred) ** 2
delta = pred - goal pred
weight delta = delta * input
weight = weight - weight delta
print "Error:" + str(error) + " Prediction:" + str(pred)
print "Delta:" + str(delta) + " Weight Delta:" + str(weight delta)

(:) A Big Weight Increase

delta (i.e. "raw error")

0.64

1
)
<)
<))
'S
error =

/””/”////"weight = 0.0

weight delta = -0.88

(i.e. "raw error" modified for
scaling, negative reversal,
and stopping per this weight
and input)

(:) Overshot a bit... Let's go back the other way

®
o)
-

error

weight = 0.88
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(:) Overshot Again! Let's go back again... but only just a little

N
S
o
. o
1,001 : 4
" R [9)
e I
9
)
weight '2-0.69
(:) Ok, we're pretty much there...
[+))
o
o
o
S
o
o
:0.000:0054 o
.0081 . K [9)
..... ~
9
4]

weight = 0.73

(:) Code Output

Weight:0.0

Error:0.64 Prediction:0.0

Delta:-0.8 Weight Delta:-0.88
Weight:0.88

Error:0.028224 Prediction:0.968
Delta:0.168 Weight Delta:0.1848
Weight:0.6952

Error:0.0012446784 Prediction:0.76472
Delta:-0.03528 Weight Delta:-0.038808
Weight:0.734008

Error:5.489031744e-05 Prediction:0.8074088
Delta:0.0074088 Weight Delta:0.00814968
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Why does this work? What really is weight_delta?

Let's back up and talk about functions. What is a function? How do we understand it?

Consider this function:

def my function (x):
return x * 2

A function takes some numbers as input and gives you another number as output. As
you can imagine, this means that the function actually defines some sort of relationship between
the input number(s) and the output number(s). Perhaps you can also see why the ability to learn
a function is so powerful... it allows us to take some numbers (say...image pixels) and convert
them into other numbers (say... the probability that the image contains a cat).

Now, every function has what you might call moving parts. It has pieces that we can
tweak or change to make the ouput that the function generates different. Consider our "my_
function" above. Ask yourself, "what is controlling the relationship between the input and the
output of this function?". Well, it's the 2! Ask the same question about the function below.

error = ((input * weight) - goal pred) ** 2

What is controlling the relationship between the input and the output (error) ? Well,
plenty of things are! This function is a bit more complicated! goal pred, input, **2,
weight, and all the parenthesis and algebraic operations (addition, subtraction, etc.) play a part
in calculating the error... and tweaking any one of them would change the error. This is import-
ant to consider.

Just as a thought exercise, consider changing your goal pred to reduce your error.
Well, this is silly... but totally doable! In life, we might call this "giving up"... setting your goals to
be whatever your capability is. It's just denying that we missed! This simply wouldn't do.

What if we changed the input until our error went to zero... well... this is akin to seeing the
world as you want to see it instead of as it actualy is. This is changing your input data until you're
predicting what you want to predict (sidenote: this is loosely how "inceptionism works").

Now consider changing the 2... or the additions...subtractions... or multiplications... well
this is just changing how you calculate error in the first place! Our error calculation is meaning-
less if it doesn't actually give us a good measure of how much we missed (with the right proper-
ties mentioned a few pages ago). This simply won't do either.
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So, what do we have left? The only variable we have left is our weight. Adjusting this
doesn't change our perception of the world... doesn't change our goal... and doesn't destroy our
error measure. In fact, changing weight means that the function conforms to the patterns in the
data. By forcing the rest of our function to be unchanging, we force our function to correctly
model some pattern in our data. It is only allowed to modify how the network predicts.

So, at the end of the day, we're modifying specific parts of an error function until the
error value goes to zero. This error function is calculated using a combination of variables...
some of them we can change (weights) and some of them we cannot (input data, output data,
and the error logic itself).

weight = 0.5

goal pred = 0.8

input = 0.5

for iteration in range(20) :
pred = input * weight

error = (pred - goal pred) ** 2

direction and amount = (pred - goal pred) * input
weight = weight - direction and amount

print "Error:" + str(error) + " Prediction:" + str(pred)

We can modify anything in our pred calculation except the input.

In fact, we're going to spend the rest of this book and many deep learning researchers
will spend the rest of their lives just trying everything you can imagine to that pred calculation so
that it can make good predictions. Learning is all about automatically changing that prediction
function so that it makes good predictions... aka... so that the subsequent error goes down to 0.

Ok, now that we know what we're allowed to change... how do we actually go about do-
ing that changing? That's the good stuff! That's the machine learning, right? In the next, section,
we're going to talk about exactly that.
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Tunnel Vision on One Concept
Concept: "Learning is adjusting our weight to reduce the error to zero"

So far in this chapter, we've been hammering on the idea that learning is really just
about adjusting our weight to reduce our error to zero. This is the secret sauce. Truth be told,
knowing how to do this is all about understanding the relationship between our weight and
our error. If we understand this relationship, we can know how to adjust our weight to reduce
our error.

What do I mean by "understand the relationship"? Well, to understand the relationship
between two variables is really just to understand how changing one variable changes the other.
In our case, what we're really after is the sensitivity between these two variables. Sensitivity is
really just another name for direction and amount. We want to know how sensitive the error
is to the weight. We want to know the direction and the amount that the error changes when
we change the weight. This is the goal. So far, we've used two different methods to attempt to
understand this relationship.

You see, when we were "wiggling" our weight (hot and cold learning) and studying its
affect on our error, we were really just experimentally studying the relationship between these
two variables. It's like when you walk into a room with 15 different unlabeled light switches.
You just start flipping them on and off to learn about their relationship to various lights in the
room. We did the same thing to study the relationship between our weight and our error.
We just wiggled the weight up and down and watched for how it changed the error. Once
we knew the relationship, we could move the weight in the right direction using two simple if

statements. if (down error < up error):

weight = weight - step amount

if (down error > up error):
weight = weight + step amount

Now, let's go back to the formula from the previous pages, where we combined our pred and
error logic. As mentioned, they quietly define an exact relationship between our error and our
weight. error = ((input * weight) - goal pred) ** 2
This line of code, ladies and gentlemen, is the secret. This is a formula. This is the relationship
between error and weight.This relationship is exact. It's computable. It's universal. It is and it
will always be. Now, how can we use this formula to know how to change our weight so that
our error moves in a particular direction. Now THAT is the right question! Stop. I beg you.
Stop and appreciate this moment. This formula is the exact relationship between these two
variables, and now we're going to figure out how to change one variable so that we move the
other variable in a particular direction. As it turns out, there's a method for doing this for any
formula. We're going to use it for reducing our error.
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A Box With Rods Poking Out of It

An analogy.

Picture yourself sitting in front of a cardboard box that has two circular rods sticking through
two little holes. The blue rod is sticking out of the box by 2 inches, and the red rod is sticking out
of the box by 4 inches. Imagine that I told you that these rods were connected in some way, but I
wouldn't tell you in what way. You had to experiment to figure it out.

So, you take the blue rod and push it in 1 inch, and watch as... while you're pushing... the red
rod also moves into the box by 2 inches!!! Then, you pull the blue rod back out an inch, and the
red rod follows again!!... pulling out by 2 inches. What did you learn? Well, there seems to be a
relationship between the red and blue rods. However much you move the blue rod, the red rod
will move by twice as much. You might say the following is true.

red length = blue length * 2

As it turns out, there's a formal definition for "when I tug on this part, how much does this other
part move". It's called a derivative and all it really means is "how much does rod X move when I
tug on rod Y."

In the case of the rods above, the derivative for "how much does red move when I tug on blue" is
2. Just 2. Why is it 22 Well, that's the multiplicative relationship determined by the formula.

derivative

red length = blue length * 2

Notice that we always have the derivative between two variables. We're always looking
to know how one variable moves when we change another one! If the derivative is positive then
when we change one variable, the other will move in the same direction! If the derivative is
negative then when we change one variable, the other will move in the opposite direction.

Consider a few examples. Since the derivative of red_length compared to blue_length
is 2, then both numbers move in the same direction! More specifically, red will move twice as
much as blue in the same direction. If the derivative had been -1, then red would move in the
opposite direction by the same amount. Thus, given a function, the derivative represents the
direction and the amount that one variable changes if you change the other variable. This is
exactly what we were looking for!
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Derivatives... take Two
Still a little unsure about them?... let's take another perspective...

There are two ways I've heard people explain derivatives. One way is all about understanding
"how one variable in a function changes when you move another variable". The other way of
explaining it is "a derivative is the slope at a point on a line or curve". As it turns out, if you take
a function and plot it out (draw it), the slope of the line you plot is the same thing as "how much
one variable changes when you change the other". Let me show you by plotting our favorite
function.

error = ((input * weight) - goal pred) ** 2

Now remember... our goal pred and input are fixed, so we can rewrite this function:

error = ((0.5 * weight) - 0.8) ** 2

Since there are only two variables left that actually change (all the rest of them are
fixed), we can just take every weight and compute the error that goes with it! Let's plot them
As you can see on the right, our plot
looks like a big U shaped curve! Notice
that there is also a point in the middle
where the error == 0! Also notice that
to the right of that point, the slope of
the line is positive, and to the left of that
point, the slope of the line is negative.
Perhaps even more interesting, the
farther away from the goal weight that
you move, the steeper the slope gets. We
like all of these properties. The slope's
sign gives us direction and the slope's
steepness gives us amount. We can
use both of these to help find the goal

weight.

starting "weight"
weight = 0.5

error = 0.3025
direction and amount = -0.3025

error

goal "weight™"
weight = 1.6
error = 0.0
direction_and amount = 0.

Sao

weight

Even now, when I'look at that curve, it's easy for me to lose track of what it represents.
It's actually similar to our "hot and cold" method for learning. If we just tried every possible
value for weight, and plotted it out, we'd get this curve. And what's really remarkable about
derivatives is that they can see past our big formula for computing error (at the top of this
page) and see this curve! We can actually compute the slope (i.e. derivative) of the line for any
value of weight. We can then use this slope (derivative) to figure out which direction reduces
our error! Even better, based on the steepness we can get at least some idea for how far away we
are (although not an exact one... as we'll learn more about later).
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What you really need to know...

With derivatives... we can pick any two variables... in any formula... and know how they
interact.

Take a look at this big whopper of a function.
y = (((beta * gamma) ** 2) + (epsilon + 22 - x)) ** (1/2)

Here's what you need to know about derivatives. For any function (even this whopper)
you can pick any two variables and understand their relationship with each other. For any func-
tion, you can pick two variables and plot them on an x-y graph like we did on the last page. For
any function, you can pick two variables and compute how much one changes when you change
the other. Thus, for any function, we can learn how to change one variable so that we can move
another variable in a direction. Sorry to harp on, but it's important you know this in your bones.

Bottom Line: In this book we're going to build neural networks. A neural network is
really just one thing... a bunch of weights which we use to compute an error function. And for
any error function (no matter how complicated), we can compute the relationship between any
weight and the final error of the network. With this information, we can change each weight

in our neural network to reduce our error down to 0... and that's exactly what we're going to
do.

What you don't really need to know...
....Calculus....

So, it turns out that learning all of the methods for taking any two variables in any func-
tion and computing their relationship takes about 3 semesters of college. Truth be told, if you
went through all three semesters so that you could learn how to do Deep Learning... you'd only
actually find yourself using a very small subset of what you learned. And really, Calculus is just
about memorizing and practicing every possible derivative rule for every possible function.

So, in this book I'm going to do what I typically do in real life (cuz i'm lazy?... i mean...
efficient?) ... just look up the derivative in a reference table. All you really need to know is what
the derivative represents. It's the relationship between two variables in a function so that you can
know how much one changes when you change the other. It's just the sensitivity between two
variables. I know that was a lot of talking to just say "It's the sensitivity between two variables"...
but it is. Note that this can include both "positive" sensitity (when variables move together) and
"negative” sensitivity (when they move in opposite directions) or "zero" sensitivity...where one
stays fixed regardless of what you do to the other. For example, y = 0 * x. Move x... y is always 0.
Ok, enough about derivatives. Let's get back to Gradient Descent.
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How to use a derivative to learn

"weight_delta" is our derivative.

What is the difference between the error and the derivative of our error and weight?
Well the error is just a measure of how much we missed. The derivative defines the realtionship
between each weight and how much we missed. In other words, it tells how much changing a
weight contributed to the error. So, now that we know this, how do we use it to move the error in
a particular direction?

So, we've learned the relationship between two variables in a function... how do we ex-
ploit that relationship? As it turns out, this is incredibly visual and intuitive. Check out our error
curve again. The black dot is where our weight starts out at (0.5). The dotted circle is where we
want it to go... our goal weight. Do
you see the dotted line attached to our
black dot? That's our slope otherwise
known as our derivative. It tells us at
that point in the curve how much the
error changes when we change the
weight. Notice that it's pointed down-
ward! It's a negative slope!

The slope of a line or curve
always points in the opposite direction
to the lowest point of the line or curve.
So, if you have a negative slope, you
increase your weight to find the mini-
mum of the error. Check it out!

starting "weight"
weight = 0.5

error = 0.3025

weight _delta = -0.3025

goal "weight"
weight = 1.6
error = 0.0
weight_delta = 0.0

error

. a
v

weight

So, how do we use our derivative to find the error minimum (lowest point in the
error graph)? We just move the opposite direction of the slope! We move in the opposite direc-
tion of the derivative! So, we can take each weight, calculate the derivative of that weight with
respect to the error (so we're comparing two variables there... the weight and the error) and then
change the weight in the opposite direction of that slope! That will move us to the minimum!

Let's remember back to our goal again. We are trying to figure out the direction and the
amount to change our weight so that our error goes down. A derivative gives us the relation-
ship between any two variables in a function. We use the derivative to determine the relationship
between any weight and the error. We then move our weight in the opposite direction of the
derivative to find the lowest weight. Wallah! Our neural network learns!

This method for learning (finding error minimums) is called Gradient Descent. This
name should seem intuitive! We move in the weight value opposite the gradient value, which
descends our error to 0. By opposite, I simply mean that we increase our weight when we have a
negative gradient and vice versa. It's like gravity!
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Look Familiar?

weight = 0.0
goal pred

= 0.8
input = 1.1

for iteration in range(4) :

pred = input * weight

derivative

(i.e., how fast the
error changes given
changes in the weight)

error = (pred - goal pred) **/2
delta = pred - goal pred
weight_delta = delta * input
weight = weight - weight delta

print "Error:" + str(error) + " Prediction:" + str(pred)
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(:) A Big Weight Increase

delta (i.

e. "raw error")
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f”””””)"weight = 0.0
weight delta = -0.88
(i.e. "raw error" modified for

scaling, negative reversal,
and stopping per this weight
and input)

(:) Overshot a bit... Let's go back the other way

o -
W
error =

0.03

weight = 0.88
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Breaking Gradient Descent

Just Give Me The Code

weight = 0.5
goal pred
input = 0.

= 0.8
5

for iteration in range(20):
pred = input * weight
error = (pred - goal pred) ** 2
delta = pred - goal pred
weight delta = input * delta
weight = weight - weight delta
print "Error:" + str(error) + " Prediction:" + str(pred)

When I run this code, I see the following output...

Error:0.3025 Prediction:0.25

Error:0.17015625 Prediction:0.3875
Error:0.095712890625 Prediction:0.490625
Error:1.7092608064e-05 Prediction:0.79586567925
Error:9.61459203602e-06 Prediction:0.796899259437
Error:5.40820802026e-06 Prediction:0.797674444578

Now that it works... let's break it! Play around with the starting weight, goal pred,
and input numbers. You can set them all to just about anything and the neural network will
figure out how to predict the output given the input using the weight. See if you can find
some combinations that the neural network cannot predict! I find that trying to break some-
thing is a great way to learn about it.

Let's try setting input to be equal to 2, but still try to get the algorithm to predict
0.8. What happens? Well, take a look at the output.

Error:0.04 Prediction:1.0
Error:0.36 Prediction:0.2
Error:3.24 Prediction:2.6

Error:6.67087267987e+14 Prediction:-25828031.8
Error:6.00378541188e+15 Prediction:77484098.6
Error:5.40340687069e+16 Prediction:-232452292.6

Woah! That's not what we wanted! Our predictions exploded! They alternate from
negative to positive and negative to positive, getting farther away from the true answer at
every step! In other words, every update to our weight overcorrects! In the next section,
we'll learn more about how to combat this phenomenon.
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Visualizing the Overcorrections

(:) A Big Weight Increase

delta (i.e. "raw error")

s
weight": 0.5
weight delta = -0.28
(i.e. "raw error" modified for

scaling, negative reversal,
and stopping per this weight
and input)

(:) Overshot a bit... Let's go back the other way

)

error :

weight = 0.1

(:) Overshot Again! Let's go back again... but only just a little

e
2)
=

error

weight = 1.3
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Divergence

Sometimes... neural networks explode in value... oops?

2nd step

"

weight value

derivative wvalue

3rd step

So what really happened? The explosion in error on the previous page is caused by
the fact that we made the input larger. Consider how we're updating our weight.

weight = weight - (input * (pred - goal pred))

If our input is sufficiently large, this can make our weight update large even when
our error is small. What happens when you have a large weight update and a small error? It
overcorrects!!! If the new error is even bigger, it overcorrects even more!!! This causes the
phenomenon that we saw on the previous page, called divergence.

You see, if we have a BIG input, then the prediction is very sensitive to changes in
the weight (since pred = input * weight). This can cause our network to overcorrect. In
other words, even though our weight is still only starting at 0.5, our derivative at that point
is very steep. See how tight the u shaped error curve is in the graph above?

This is actually really intuitive. How do we predict? Well, we predict by multiplying
our input by our weight. So, if our input is huge, then small changes in our weight are go-
ing to cause BIG changes in our prediction!! The error is very sensitive to our weight. Aka...
the derivative is really big! So, how do we make it smaller?
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Introducing.... Alpha

The simplest way to prevent overcorrecting our weight updates.

2nd s‘;tep

start

e goal
\ / weight wvalue

derivative wvalue

1st step

3rd step

So, what was the problem we're trying to solve? The problem is this: if the input is
too big, then our weight update can overcorrect. What is the symptom? The symptom is that
when we overcorrect, our new derivative is even larger in magnitude than when we started
(although the sign will be the opposite). Stop and consider this for a second. Look at the
graph above to understand the symptom. The 2nd step is even farther away from the goal...
which means the derivative is even greater in magnitude! This causes the 3rd step to be even
farther away from the goal than the second step, and the neural network continues like this,
demonstrating divergence.

The symptom is this overshooting. The solution is to multiply the weight update by
a fraction to make it smaller. In most cases, this involves multiplying our weight update by a
single real-valued number between 0 and 1, known as alpha. One might note, this has no af-
fect on the core issue which is that our input is larger. It will also reduce the weight updates
for inputs that aren't too large. In fact, finding the appropriate alpha, even for state-of-the-
art neural networks, is often done simply by guessing. You watch your error over time. If
it starts diverging (going up), then your alpha is too high, and you decrease it. If learning is
happening too slowly, then your alpha is too low, and you increase it. There are other meth-
ods than simple gradient descent that attempt to counter for this, but gradient descent is still
very popular.
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Alpha In Code

Where does our "alpha" parameter come in to play?

So we just learned that alpha reduces our weight update so that it doesn't overshoot. How
does this affect our code? Well, we were updating our weights according to the following
formula.

weight = weight - derivative

Accounting for alpha is a rather small change, pictured below. Notice that if alpha is small
(say...0.01), it will reduce our weight update considerably, thus preventing it from over-
shooting.

weight = weight - (alpha * derivative)

Well, that was easy! So, let's install alpha into our tiny implementation from the beginning
of this chapter and run it where input = 2 (which previously didn't work)

weight = 0.5

goal pred = 0.8
input = 2
alpha = 0.1
for iteration in range(20):
pred = input * weight
error = (pred - goal pred) ** 2
derivative = input * (pred - goal pred)
weight = weight - (alpha * derivative)
print "Error:" + str(error) + " Prediction:" + str(pred)
Error:0.04 Prediction:1.0 What h
Error:0.0144 Prediction:0.92 ha appeni
Error:0.005184 Prediction:0.872 waen you make
alpha crazy
small or big?
What about
Error:1.14604719983e-09 Prediction:0.800033853319 making it

1 :
Error:4.12576991939e-10 Prediction:0.800020311991 negative?
Error:1.48527717099e-10 Prediction:0.800012187195

Wallah! Our tiniest neural network can now make good predictions again! How did I know
to set alpha to 0.1? Well, to be honest, I just tried it and it worked. And despite all the crazy
advancements of deep learning in the past few years, most people just try several orders

of magnitude of alpha (10,1,0.1,0.01,0.001,0.0001) and then tweak from there to see what
works best. It's more art than science. There are more advanced ways which we can get to
later, but for now, just try various alphas until you get one that seems to work pretty well.
Play with it!
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Memorizing
Ok... it's time to really learn this stuff

This may sound like something that's a bit intense, but I can't stress enough the value I have
found from this exercise. The code on the previous page, see if you can build it in an iPy-
thon notebook (or a .py file if you must) from memory. I know that might seem like overkill,
but I (personally) didn't have my click moment with neural networks until I was able to
perform this task.

Why does this work? Well, for starters, the only way to know that you have gleaned all the
information necessary from this chapter is to try to produce it just from your head. Neural
networks have lots of small moving parts, and it's easy to miss one.

Why is this important for the rest of the chapters? In the following chapters, I will be re-
ferring to the concepts discussed in this chapter at a faster pace so that I can spend plenty
of time on the newer material. It is vitally important that when I say something like "add
your alpha parameterization to the weight update” that it is at least immediately apparent to
which concepts from this chapter I'm referring.

All that is to say, memorizing small bits of neural network code has been hugely beneficial
for me personally, as well as to many individuals who have taken my advice on this subject
in the past.
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