
Hello, world!
Learning to optimize
Lecture 01 by Marina Barsky



Example: Learning the best schedule

Task:

■ Find optimum flight schedule 

for this group of people:

❑ Minimize total cost

❑ Minimize flight duration

❑ Minimize waiting time at the 

airport

Setup:
■ Six family members meet up in New 

York.

■ They arrive on the same day and 

leave on the same day, and they 

want to share transportation to and 

from the airport.

■ There are many possible flights per 

day for each family member: 8 

inbound flights and 8 outbound flights 

■ Flights are arriving-leaving at 

different times. They also vary in 

price and in duration.



Example: Learning the best schedule

Task:

■ Find optimum flight schedule 

for this group of people:

❑ Minimize total cost

❑ Minimize flight duration

❑ Minimize waiting time

Setup:
■ Six family members meet up in New 

York.

■ They arrive on the same day and 

leave on the same day, and they 

want to share transportation to and 

from the airport.

■ There are many possible flights per 

day for each family member: 8 

inbound flights and 8 outbound flights 

■ Flights are arriving-leaving at 

different times. They also vary in 

price and in duration.

We have too many possible 

combinations of flights: 

812 = 68,719,476,736

Exhaustive search over all these 

combinations is infeasible

Can we set up an algorithm so that 

the machine would learn the best 

possible schedule on its own?



Search for a global minimum 

(maximum) of a function

■ We have a very large domain of possible solutions

■ We need to learn the values of many variables which would 

yield the best possible solution

■ When there are too many possible solutions to enumerate them 

all - we can apply a new type of algorithms: stochastic 

optimizations

There are many interesting algorithms in this group:
https://en.wikipedia.org/wiki/Global_optimization#Heuristics_and_metaheuristics

Most of them are inspired by nature

https://en.wikipedia.org/wiki/Global_optimization#Heuristics_and_metaheuristics


Stochastic optimizations

■ I. Baseline: random guess

■ II. Hill climbing

■ III. Simulated annealing

■ IV. Genetic algorithm



I. Random “optimization”

■ Simple idea: generate a huge amount of random solutions 

and select the one with the minimum score

■ No matter how many random guesses you try – the fitness of 

the resulting solution is very low (the distance from the target 

remains high)

■ This “optimization” does not make use of a better solution that 

has already been found, it just tries another random guess

■ A better idea: move towards the solution with a better fitness 

score



II. Hill climbing

■ An alternate method of random searching is called a hill climbing

■ Hill climbing starts with a random solution and looks at the set of 

neighboring solutions 

■ If one of these neighboring solutions has a better score, the algorithm 

replaces the original solution with a new one 

■ You continue moving to a better solution until you reached the 

minimum



Finding minimum down the hill

■ You have been randomly 

dropped into this landscape 

■ You want to reach the lowest 

point to find water 

■ You look in each direction and 

walk in the direction of the 

downward slope 

■ You continue to walk in the most 

steeply sloping direction until you 

reach a point where the terrain is 

flat or begins sloping uphill Minimum 

cost 

reached!



Hill climbing: good and bad

■ Hill climbing runs quickly 

■ Usually finds a better solution 

than random searching

■ Drawback: the final solution is a 

local minimum, a solution better 

than those around it but not the 

best overall

■ The best overall is called the 

global minimum, which is our 

ultimate goal
Hill climbing algorithm 

cannot reach this if it 

starts from the green 

point

Stuck at 

local 

minimum



III. Simulated annealing

■ Annealing is the process of heating up an alloy to extremely 

high temperature and then cooling it down slowly

■ The atoms first jump around a lot and then gradually settle 

into a low-energy state, finding a configuration with the lowest 

energy overall

■ This physical process is simulated by an algorithm to find the 

global minimum

https://mathworld.wolfram.com/SimulatedAnnealing.html

https://mathworld.wolfram.com/SimulatedAnnealing.html


Simulated annealing algorithm

■ Pick a random solution

■ Set up the temperature, which starts very high and gradually gets 

lower 

■ In each iteration, one of the numbers in the solution is randomly 

chosen and changed in a certain direction (as in Hill climbing)

■ Main difference: 

❑ If the new solution cost is lower, the new solution becomes the 

current solution (as before)

❑ If the cost is higher, the new solution may still become the current 

solution with a certain probability - this may help to get out of the 

local minimum



Probability of moving in the wrong 

direction

■ In some cases, it’s necessary to move to a worse solution 

before you can get to a better one 

■ Simulated annealing improves the final result because it will 

always accept a move for the better, and because it is also 

willing to accept a worse solution near the beginning of the 

process 

■ As the process goes on, the algorithm becomes less and less 

likely to accept a worse solution, until at the end it will only 

accept a better solution 



■ The probability of a higher-cost solution being accepted:

■ Now, if the temperature is low (T→1), then the probability of 

accepting worst solution becomes extremely low

■ Since the temperature (the willingness to accept a worse solution) 

starts very high, the exponent will at first be close to 0, so the 

probability will almost be 1 

■ As the temperature decreases, the difference between the high cost 

and the low cost becomes more important – a bigger difference 

leads to a lower probability, so the algorithm will favor only slightly 

worse solutions over much worse ones

𝑝 =
1

𝑒∆𝑆/𝑇

Probability of accepting worst solution 

decreases as the system “cools down”

T – temperature

ΔS = new_score – old_score (always positive, because we 

assume that the new score is greater than the old score)



IV. Genetic Algorithms (GA)

■ “Evolutionary Computing” was introduced in the 1960s by I. 

Rechenberg.

■ John Holland wrote the first book on Genetic Algorithms 

‘Adaptation in Natural and Artificial Systems’ in 1975. 

■ In 1992 John Koza used genetic algorithm to evolve 

programs to perform certain tasks. He called his method 

“Genetic Programming”.



What Are Genetic Algorithms (GAs)?

■ Genetic Algorithms are search and optimization techniques based 

on Darwin’s Principle of Natural Selection

■ Evolution is known to be a successful, robust method to produce 

adaptations (solutions) to different environments (problems)

■ GAs can search a very large space of hypotheses containing 

complex interacting parts



Darwin’s Principle Of Natural Selection

IF there are organisms that reproduce, and 

IF offspring inherit traits from their progenitors, and 

IF there is variability of traits, and 

IF the environment cannot support all members of a 
growing population, 

THEN those members of the population with less-adaptive 
traits (determined by the environment) will die out, and 

THEN those members with more-adaptive traits 
(determined by the environment) will thrive and 
continue to the next generation

The result is the evolution of species.



Basic Idea of Natural Selection

“Select The Best, Discard The Rest”



Evolution Through Natural Selection

Loop: Millions Of Years

Evolved Species
(Favorable characteristic now a trait of Species)

Initial population

Struggle for existence-survival of the fittest

Surviving Individuals Reproduce, 

Propagate Favorable Characteristics



Genetic Algorithms implement 

optimization strategies by simulating 

evolution of species through natural 

selection



Flowchart of GA
Begin

Initialize 

population

Optimum 

Solution?

T=T+1

Selection
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Solutions
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T - generation 

or epoch



Mapping Nature to an Algorithm

Nature Computer

Population

Individual

Fitness

Chromosome

Gene

Mating (crossover)

Mutation

Set of initial hypotheses (possible solutions)

Solution to a problem

Quality of a solution

Encoding for a Solution

Part of the encoding of a solution

Crossover (exchange parts of solutions)

Mutation (change part of a solution)



GA design

1. Solution encoding

2. Fitness function

3. Selection

4. Mating (crossover)

5. Mutation 



1. Solution encoding

The process of representing the solution in the form of a string

that conveys the necessary information.

■ Just as in a chromosome, each gene controls a particular 

characteristic of the individual, similarly, each bit in the string 

represents a characteristic of the solution



Solution encoding 1/2

■ Binary Encoding – Most common method of encoding. 

Chromosomes are strings of 1s and 0s and each position in 

the chromosome represents a particular characteristic of the 

problem.

11111110000000011111Chromosome B

10110010110011100101Chromosome A



Sample Problem

The Traveling Salesman Problem is defined as:

We are given a set of cities and a symmetric distance matrix that 

indicates the cost of travel from each city to every other city. 

The goal is to find the shortest circular tour, visiting every city 

exactly once, so as to minimize the total travel cost, which 

includes the cost of traveling from the last city back to the first 

city.



Solution encoding 2/2

■ Permutation Encoding – Useful in scheduling problems 

such as the Traveling Salesman Problem (TSP). 

■ Example: every chromosome is a string of numbers, each of 

which represents a city to be visited in this order.

8 5 6 7 2 3 1 4 9Chromosome B

1 5 3 2 6 4 7 9 8Chromosome A



2. Fitness Function

A fitness function quantifies the optimality of a solution 
(chromosome) so that that particular solution may be ranked 
against all the other solutions. 

■ A fitness value is assigned to each solution depending on 
how close it is to the perfect solution. 

■ Ideal fitness function correlates closely to goal + is quickly 
computable.

■ Example. In TSP, f(x) is sum of distances between the cities 
in solution. The lesser the value, the fitter the solution is.



3. Selection

The process that determines which solutions are to be 
preserved and allowed to reproduce and which ones deserve 
to die out.

■ The primary objective of the selection operator is to 
emphasize the good solutions and eliminate the bad solutions
in a population, while keeping the population size constant. 

■ “Selects The Best, Discards The Rest”.



Elite Selection

■ Sort solutions by fitness (descending).

■ Make multiple copies of the top solutions (parthenogenesis 

– cloning).

■ Eliminate bad solutions from the population so that multiple 

copies of good solutions can propagate in the population.



Preserving elites

Elitism is a method which copies the best chromosome to 
the new offspring population before crossover and 
mutation.

■ When creating a new population by crossover or 
mutation the best chromosome might be lost. 

■ Forces GAs to retain some number of the best 
individuals at each generation.

■ Has been found that elitism significantly improves 
performance.



Roulette Wheel Selection

■ Each current string in the population has a slot assigned to it 

which is in proportion to it’s fitness.

■ We spin the weighted roulette wheel thus defined n times 

(where n is the total population size).

■ Each time Roulette Wheel stops, the string corresponding to 

that slot is selected for the next generation.

Strings that are fitter are assigned a larger slot and hence have

a better chance of appearing in the new population.

https://en.wikipedia.org/wiki/Fitness_proportionate_selection

https://en.wikipedia.org/wiki/Fitness_proportionate_selection


Example Of Roulette Wheel Selection

No. String Fitness % Of Total

1 01101 169 14.4

2 11000 576 49.2

3 01000 64   5.5

4 10011 361 30.9

Total 1170 100.0

Note that in this example the program 

tries to maximize the fitness score of a 

solution, unlike in our examples where 

we try to minimize the cost

The solution with a greater fitness has greater proportion on a wheel and a better chance to be selected



Roulette Wheel



Tournament selection

■ Tournament Selection: Two members are chosen at 

random from a population. 

❑ With some predefined probability p the more fit of these two 

is then selected, and with probability 1-p the less fit solution 

is selected. 

Sometimes TS yields a more diverse population that RS.



Tournament selection example



4. Mating (Crossover)

It is the process in which two chromosomes (encodings) 

combine their genetic material (bits) to produce a  new 

offspring which possesses a mix of their characteristics.

■ Two strings are picked from the mating pool (or from elite) at 

random to cross over.

■ The method chosen depends on the Encoding.



Crossover methods: 1/3
■ Single-point Crossover- A random point is chosen on 

the individual chromosomes (strings) and the genetic 
material is exchanged at this point.



Single-point crossover example

Parent 

Chromosome 1

11011 | 00100110110

Parent 

Chromosome 2

11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110



Crossover  methods: 2/3

■ Two-point Crossover- Two random points are chosen on 

the individual chromosomes (strings) and the genetic 

material is exchanged at these points.

Parent 

Chromosome 1

11011 | 00100 | 110110

Parent 

Chromosome 2

10101 | 11000 | 011110

Offspring 1 10101 | 00100 | 011110

Offspring 2 11011 | 11000 | 110110

NOTE: These chromosomes are different from the last example.



Crossover methods: 3/3

■ Uniform Crossover- Each gene (bit) is selected randomly 
from one of the corresponding genes of the parent 
chromosomes.

Parent 

Chromosome 1

11011 | 00100 | 110110

Parent 

Chromosome 2

10101 | 11000 |  011110

Offspring 10111 | 00000 | 110110

NOTE: Uniform Crossover yields ONLY 1 offspring.



Crossover summary

■ Crossover between 2 good solutions MAY NOT ALWAYS

yield a better or as good a solution.

■ Since parents are good, probability of the child being good is 

high.

■ If offspring is not good (poor solution), it will be removed in 

the next generation during “Selection”.



5. Mutation

It is the process by which a string is deliberately changed at 

random to maintain diversity in the population.

We saw in the giraffes’ example, that mutations could be 

beneficial.

Mutation Probability- determines how often the parts of a 

chromosome will be mutated. 



Example of mutation

■ For  chromosomes using Binary Encoding, randomly selected 

bits are inverted.

Offspring 11011 00100 110110

Mutated Offspring 11010 00100 100110

NOTE: The number of bits to be inverted depends on the Mutation Probability.



GA Summary



When to use Genetic Algorithms

■ If you are trying to minimize (maximize) some function 

f(x) over all values of variables x in X

■ When examining every possible combination of x in X is 

infeasible

■ When you are concerned with the problem 

of local minimum (maximum) – random 

mutations can get you out of the trap



Advantages Of GAs over other 

optimization methods

■ Search for the function optimum starts from a population of 

points in the function domain, not a single point. 

■ This makes GAs global search methods: they can climb many 

peaks simultaneously, reducing the probability of being 

trapped in local minima, which is one of the drawbacks of 

traditional optimization methods.

■ GAs can be easily used on parallel machines: since most 

computational time is spent in evaluating a solution, with 

multiple processors all solutions in a population can be 

evaluated in a distributed manner. 



GA applications

GAs  are highly effective in searching a 

large, poorly defined search space even in 

the presence of high-dimensionality, multi-

modality, discontinuity and noise.

Success stories:

❑ Finding which concert hall shape gives 

the best acoustics

❑ Designing an optimal wing for a 

supersonic aircraft

❑ Suggesting the best library of chemicals 

to research as potential drugs

❑ Automatically designing a chip for voice 

recognition

Automatic antenna design with evolutionary algorithms

https://ti.arc.nasa.gov/m/pub-archive/1244h/1244%20(Hornby).pdf


Evolving intelligence:

genetic programming



Genetic programming

■ Application of Genetic Algorithm to the case where 

solution space consists of computer programs

■ The goal is to find a program which performs well at a 

predefined task

❑ Instead of choosing an algorithm that is the best for a 

predefined task, we make a program that will create 

such algorithm: we design an algorithm which creates 

algorithms

■ In some cases the algorithm finds programs that are 

human-competitive

"Human-competitive results produced by genetic programming"

http://www.genetic-programming.com/GPEM2010article.pdf


How does it work

■ We start with a large set of programs (population), which 

are either [randomly generated] or [hand-designed to be 

somewhat good solutions] 

■ The programs then compete in performing some user-

defined task:

❑ A game in which the programs compete against each 

other and the performance is measured by the number 

of wins

❑ A known set of inputs and outputs and the best 

program (function) that perfectly maps inputs to 

outputs



Genetic programming flowchart
Create random population of programs

Compute fitness of each individual solution

Is any of them 

good enough?

Duplicate best solutions

Mutate Breed

New population

Done

yes

no



Same steps as in GA

■ After evaluating each program using the fitness test, we 

produce a ranked list of programs

■ The best programs are replicated and modified in two 

different ways

❑ Mutation: certain parts of a program are altered 

slightly in a random manner in hope that this will make 

a good solution even better 

❑ Crossover (breeding): exchange the portions of best 

programs 

■ This replication and modification procedure creates 

many new programs which are evaluated until the best 

solution is found



Programs get better with each new 

generation
■ Since the size of the population is kept constant, many of 

the worst programs are eliminated from the population to 

make room for new programs 

■ Because the best programs are being kept and only 

slightly modified, it is expected that with each generation 

they will get better and better



Genetic Programming (GP) vs. 

Genetic Algorithm (GA)

■ GA is an optimization technique 

❑ As with any optimization, you have already selected 

an algorithm or metric and you’re trying to find the best 

parameters for it

■ In GP the solutions are not just a best set of parameters 

applied to a given algorithm: 

❑ The algorithm itself and all its parameters are 

designed automatically by means of evolutionary 

pressure



GP: sample applications

■ Developing programs for playing games, such as chess 

and backgammon 

■ Used in photonic crystals, optics, quantum computing 

systems, and other scientific inventions 

■ In 1998 a robot team that was programmed entirely 

using genetic programming which placed well in the 

Robo-Cup soccer contest
https://cs.gmu.edu/~sean/papers/robocupgp98.pdf

https://cs.gmu.edu/~sean/papers/robocupgp98.pdf


GROUP TRAVEL 

OPTIMIZATION

Sample application 1



Use case: travel optimization

people = [('John','BOS'),

('Mary','DAL'),

('Laura','CAK'),

('Abe','MIA'),

('Greg','ORD'),

('Lee','OMA')]

# LaGuardia airport in New York

destination ='LGA'

LGA,MIA,20:27,23:42,169

MIA,LGA,19:53,22:21,173

LGA,BOS,6:39,8:09,86

BOS,LGA,6:17,8:26,89

LGA,BOS,8:23,10:28,149

…

Flights in file schedule.txt

Setup:
■ Six family members meet up in New 

York.

■ They arrive on the same day and 

leave on the same day, and they 

want to share transportation to and 

from the airport.

■ There are many possible flights per 

day for each family member: 8 

inbound flights and 8 outbound flights 

■ Flights are arriving-leaving at 

different times. They also vary in 

price and in duration.



Solution encoding

■ We represent each possible solution as a list of numbers. 

■ Each number represents the position of a flight in a list of 

flights sorted by time.

■ Since each person needs an outbound flight and a return 

flight, the length of this list is twice the number of people.



Sample solution

people = [('John','BOS'),

('Mary','DAL'),

('Laura','CAK'),

('Abe','MIA'),

('Greg','ORD'),

('Lee','OMA')]

[1,4,3,2,7,3,6,3,2,4,5,3]

■ John takes the second flight of the 

day from Boston to New York, and 

the fifth flight back to Boston on 

the day he returns. 

■ Mary takes the fourth flight from 

Dallas to New York, and the third 

flight back. 

John Mary



Fitness function design: 

most challenging and non-trivial part

■ The goal is to find a set of flights that minimizes the cost 

function.

■ The cost function has to return a value that represents how 

bad a solution is.

■ There is no particular scale for badness: the only requirement 

is that the function returns larger values for worse solutions.



What to include into the fitness function
■ Price

❑ The total price of all the plane tickets [can be a weighted average that 

takes financial situations into account].

■ Travel time
❑ The total time that everyone must spend on a plane.

■ Waiting time
❑ Time spent at the airport waiting for the other members of the party to 

arrive.

■ Departure time
❑ Flights that leave too early in the morning may impose an additional 

cost by requiring travelers to miss out on sleep.

■ Car rental period
❑ If the party rents a car, they must return it earlier in the day, or be forced 

to pay for a whole extra day.



Run schedule optimization

■ Execute cells in Parts 1 and 2 in 

https://github.com/mgbarsky/labs_ml_optimizations

■ Don’t forget to FORK the repository before cloning it: 

it contains your lab assignment

How much better is the GA solution 

comparing to the random pick?

https://github.com/mgbarsky/labs_ml_optimizations


BEST STUDENT TO DORM 

ASSIGNMENT

Sample application 2



Student → Dorm optimization

■ The goal is to assign students to dorms depending on their 

first and second choices.

■ Although this is a very specific example, it’s easy to 

generalize it to other problems—the exact same code can be 

used to: 

❑ assign tables to players in an online card game

❑ assign bugs to developers in a large coding project

❑ even to assign housework to household members 

■ In all these problems the purpose is to take preferences from 

individuals and produce the overall optimal result



Representing solutions

■ In theory we could create a list of numbers, one for each 

student, where each number represents the dorm in which 

you put the student. 

■ The problem is that this representation doesn’t constrain the 

solution to only two students in each dorm. 

■ A list of all zeros would indicate that everyone had been 

placed in Williams, which isn’t a real solution at all.

■ We could potentially ….

# The dorms, each of which has two available spaces

dorms=['Williams','Sage','Lehman','Armstrong','Mills']



Considering only valid solutions

■ In general, it’s better not to waste time  searching among invalid 

solutions

■ We need to find a way to represent solutions so that every solution 

is valid 

■ A valid solution is not necessarily a good solution; it just means that 

there are exactly two students assigned to each dorm

Idea (you do not have to use it - come up with your own) 

■ We think of every dorm as having two slots, so that there are 10 

available slots in total 

■ Each student, in order, is assigned to one of the open slots—the 

first person can be placed in any one of the ten, the second person 

can be placed in any of the nine remaining slots, and so on.



Solution is represented as a list of 

assignments

■ The print_solution in Part 3 of your lab illustrates how this 

solution representation works

■ This function first creates a list of slots, two for each dorm. It 

then loops over every number in the solution and finds the 

dorm number at that location in the slots list, which is the dorm 

that a student is assigned to 

■ It prints the student and the dorm, and then it removes that 

slot from the list so no other student will be given that slot 

■ After the final iteration, the slots list is empty and every student 

and dorm assignment has been printed

[0,0,0,0,0,0,0,0,0,0]



Task 1. Each slot has its own domain

■ If you change the numbers to view different solutions, 

remember that each number must stay in the appropriate 

range.

■ Your first task is to figure out what is this range (domain) for 

each student in the solution list

[0,0,0,0,0,0,0,0,0,0]



Task 2. Fitness function

■ The cost function works similarly to the print function. 

■ A list of all slots is constructed and slots are removed as they 

are used up 

■ The cost is calculated by comparing a student’s current dorm 

assignment to his top two choices. 

❑ Add 0 if the student is currently assigned to the room of 

their top choice

❑ Add 1 if the student is assigned to their second choice

❑ Add 3 if the student is not assigned to either of their 

choices



Dorm optimization

■ After you defined a valid domain for each position in the 

solution and created a fitness function, you can reuse the 

optimization code in Part 2 of the lab:  the algorithms stay 

exactly the same

■ You may need to adjust some parameters for better results

■ There is also a ‘challenging’ bonus coding



Designing optimization algorithms: 

Summary
■ In order for this to work:

❑ The problem needs to have a defined cost function 

❑ Similar solutions should yield similar cost

■ To restate any problem as an optimization problem:

❑ Represent each solution as a sequence (string!)

❑ Define a way to evaluate the quality of each solution: the cost 

function (solution fitness)

■ We start with a random solution (stochastic!) and try to improve its 

fitness with slight changes


