
Hello, world!
Learning to optimize
Lecture 01 by Marina Barsky

Example: Learning the best schedule

Task:

■ Find optimum flight schedule

for this group of people:

❑ Minimize total cost

❑ Minimize flight duration

❑ Minimize waiting time at the

airport

Setup:
■ Six family members meet up in New

York.

■ They arrive on the same day and

leave on the same day, and they

want to share transportation to and

from the airport.

■ There are many possible flights per

day for each family member: 8

inbound flights and 8 outbound flights

■ Flights are arriving-leaving at

different times. They also vary in

price and in duration.

Example: Learning the best schedule

Task:

■ Find optimum flight schedule

for this group of people:

❑ Minimize total cost

❑ Minimize flight duration

❑ Minimize waiting time

Setup:
■ Six family members meet up in New

York.

■ They arrive on the same day and

leave on the same day, and they

want to share transportation to and

from the airport.

■ There are many possible flights per

day for each family member: 8

inbound flights and 8 outbound flights

■ Flights are arriving-leaving at

different times. They also vary in

price and in duration.

We have too many possible

combinations of flights:

812 = 68,719,476,736

Exhaustive search over all these

combinations is infeasible

Can we set up an algorithm so that

the machine would learn the best

possible schedule on its own?

Search for a global minimum

(maximum) of a function

■ We have a very large domain of possible solutions

■ We need to learn the values of many variables which would

yield the best possible solution

■ When there are too many possible solutions to enumerate them

all - we can apply a new type of algorithms: stochastic

optimizations

There are many interesting algorithms in this group:
https://en.wikipedia.org/wiki/Global_optimization#Heuristics_and_metaheuristics

Most of them are inspired by nature

https://en.wikipedia.org/wiki/Global_optimization#Heuristics_and_metaheuristics

Stochastic optimizations

■ I. Baseline: random guess

■ II. Hill climbing

■ III. Simulated annealing

■ IV. Genetic algorithm

I. Random “optimization”

■ Simple idea: generate a huge amount of random solutions

and select the one with the minimum score

■ No matter how many random guesses you try – the fitness of

the resulting solution is very low (the distance from the target

remains high)

■ This “optimization” does not make use of a better solution that

has already been found, it just tries another random guess

■ A better idea: move towards the solution with a better fitness

score

II. Hill climbing

■ An alternate method of random searching is called a hill climbing

■ Hill climbing starts with a random solution and looks at the set of

neighboring solutions

■ If one of these neighboring solutions has a better score, the algorithm

replaces the original solution with a new one

■ You continue moving to a better solution until you reached the

minimum

Finding minimum down the hill

■ You have been randomly

dropped into this landscape

■ You want to reach the lowest

point to find water

■ You look in each direction and

walk in the direction of the

downward slope

■ You continue to walk in the most

steeply sloping direction until you

reach a point where the terrain is

flat or begins sloping uphill Minimum

cost

reached!

Hill climbing: good and bad

■ Hill climbing runs quickly

■ Usually finds a better solution

than random searching

■ Drawback: the final solution is a

local minimum, a solution better

than those around it but not the

best overall

■ The best overall is called the

global minimum, which is our

ultimate goal
Hill climbing algorithm

cannot reach this if it

starts from the green

point

Stuck at

local

minimum

III. Simulated annealing

■ Annealing is the process of heating up an alloy to extremely

high temperature and then cooling it down slowly

■ The atoms first jump around a lot and then gradually settle

into a low-energy state, finding a configuration with the lowest

energy overall

■ This physical process is simulated by an algorithm to find the

global minimum

https://mathworld.wolfram.com/SimulatedAnnealing.html

https://mathworld.wolfram.com/SimulatedAnnealing.html

Simulated annealing algorithm

■ Pick a random solution

■ Set up the temperature, which starts very high and gradually gets

lower

■ In each iteration, one of the numbers in the solution is randomly

chosen and changed in a certain direction (as in Hill climbing)

■ Main difference:

❑ If the new solution cost is lower, the new solution becomes the

current solution (as before)

❑ If the cost is higher, the new solution may still become the current

solution with a certain probability - this may help to get out of the

local minimum

Probability of moving in the wrong

direction

■ In some cases, it’s necessary to move to a worse solution

before you can get to a better one

■ Simulated annealing improves the final result because it will

always accept a move for the better, and because it is also

willing to accept a worse solution near the beginning of the

process

■ As the process goes on, the algorithm becomes less and less

likely to accept a worse solution, until at the end it will only

accept a better solution

■ The probability of a higher-cost solution being accepted:

■ Now, if the temperature is low (T→1), then the probability of

accepting worst solution becomes extremely low

■ Since the temperature (the willingness to accept a worse solution)

starts very high, the exponent will at first be close to 0, so the

probability will almost be 1

■ As the temperature decreases, the difference between the high cost

and the low cost becomes more important – a bigger difference

leads to a lower probability, so the algorithm will favor only slightly

worse solutions over much worse ones

𝑝 =
1

𝑒∆𝑆/𝑇

Probability of accepting worst solution

decreases as the system “cools down”

T – temperature

ΔS = new_score – old_score (always positive, because we

assume that the new score is greater than the old score)

IV. Genetic Algorithms (GA)

■ “Evolutionary Computing” was introduced in the 1960s by I.

Rechenberg.

■ John Holland wrote the first book on Genetic Algorithms

‘Adaptation in Natural and Artificial Systems’ in 1975.

■ In 1992 John Koza used genetic algorithm to evolve

programs to perform certain tasks. He called his method

“Genetic Programming”.

What Are Genetic Algorithms (GAs)?

■ Genetic Algorithms are search and optimization techniques based

on Darwin’s Principle of Natural Selection

■ Evolution is known to be a successful, robust method to produce

adaptations (solutions) to different environments (problems)

■ GAs can search a very large space of hypotheses containing

complex interacting parts

Darwin’s Principle Of Natural Selection

IF there are organisms that reproduce, and

IF offspring inherit traits from their progenitors, and

IF there is variability of traits, and

IF the environment cannot support all members of a
growing population,

THEN those members of the population with less-adaptive
traits (determined by the environment) will die out, and

THEN those members with more-adaptive traits
(determined by the environment) will thrive and
continue to the next generation

The result is the evolution of species.

Basic Idea of Natural Selection

“Select The Best, Discard The Rest”

Evolution Through Natural Selection

Loop: Millions Of Years

Evolved Species
(Favorable characteristic now a trait of Species)

Initial population

Struggle for existence-survival of the fittest

Surviving Individuals Reproduce,

Propagate Favorable Characteristics

Genetic Algorithms implement

optimization strategies by simulating

evolution of species through natural

selection

Flowchart of GA
Begin

Initialize

population

Optimum

Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate

Solutions

Y

Stop

T = 0

T - generation

or epoch

Mapping Nature to an Algorithm

Nature Computer

Population

Individual

Fitness

Chromosome

Gene

Mating (crossover)

Mutation

Set of initial hypotheses (possible solutions)

Solution to a problem

Quality of a solution

Encoding for a Solution

Part of the encoding of a solution

Crossover (exchange parts of solutions)

Mutation (change part of a solution)

GA design

1. Solution encoding

2. Fitness function

3. Selection

4. Mating (crossover)

5. Mutation

1. Solution encoding

The process of representing the solution in the form of a string

that conveys the necessary information.

■ Just as in a chromosome, each gene controls a particular

characteristic of the individual, similarly, each bit in the string

represents a characteristic of the solution

Solution encoding 1/2

■ Binary Encoding – Most common method of encoding.

Chromosomes are strings of 1s and 0s and each position in

the chromosome represents a particular characteristic of the

problem.

11111110000000011111Chromosome B

10110010110011100101Chromosome A

Sample Problem

The Traveling Salesman Problem is defined as:

We are given a set of cities and a symmetric distance matrix that

indicates the cost of travel from each city to every other city.

The goal is to find the shortest circular tour, visiting every city

exactly once, so as to minimize the total travel cost, which

includes the cost of traveling from the last city back to the first

city.

Solution encoding 2/2

■ Permutation Encoding – Useful in scheduling problems

such as the Traveling Salesman Problem (TSP).

■ Example: every chromosome is a string of numbers, each of

which represents a city to be visited in this order.

8 5 6 7 2 3 1 4 9Chromosome B

1 5 3 2 6 4 7 9 8Chromosome A

2. Fitness Function

A fitness function quantifies the optimality of a solution
(chromosome) so that that particular solution may be ranked
against all the other solutions.

■ A fitness value is assigned to each solution depending on
how close it is to the perfect solution.

■ Ideal fitness function correlates closely to goal + is quickly
computable.

■ Example. In TSP, f(x) is sum of distances between the cities
in solution. The lesser the value, the fitter the solution is.

3. Selection

The process that determines which solutions are to be
preserved and allowed to reproduce and which ones deserve
to die out.

■ The primary objective of the selection operator is to
emphasize the good solutions and eliminate the bad solutions
in a population, while keeping the population size constant.

■ “Selects The Best, Discards The Rest”.

Elite Selection

■ Sort solutions by fitness (descending).

■ Make multiple copies of the top solutions (parthenogenesis

– cloning).

■ Eliminate bad solutions from the population so that multiple

copies of good solutions can propagate in the population.

Preserving elites

Elitism is a method which copies the best chromosome to
the new offspring population before crossover and
mutation.

■ When creating a new population by crossover or
mutation the best chromosome might be lost.

■ Forces GAs to retain some number of the best
individuals at each generation.

■ Has been found that elitism significantly improves
performance.

Roulette Wheel Selection

■ Each current string in the population has a slot assigned to it

which is in proportion to it’s fitness.

■ We spin the weighted roulette wheel thus defined n times

(where n is the total population size).

■ Each time Roulette Wheel stops, the string corresponding to

that slot is selected for the next generation.

Strings that are fitter are assigned a larger slot and hence have

a better chance of appearing in the new population.

https://en.wikipedia.org/wiki/Fitness_proportionate_selection

https://en.wikipedia.org/wiki/Fitness_proportionate_selection

Example Of Roulette Wheel Selection

No. String Fitness % Of Total

1 01101 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.0

Note that in this example the program

tries to maximize the fitness score of a

solution, unlike in our examples where

we try to minimize the cost

The solution with a greater fitness has greater proportion on a wheel and a better chance to be selected

Roulette Wheel

Tournament selection

■ Tournament Selection: Two members are chosen at

random from a population.

❑ With some predefined probability p the more fit of these two

is then selected, and with probability 1-p the less fit solution

is selected.

Sometimes TS yields a more diverse population that RS.

Tournament selection example

4. Mating (Crossover)

It is the process in which two chromosomes (encodings)

combine their genetic material (bits) to produce a new

offspring which possesses a mix of their characteristics.

■ Two strings are picked from the mating pool (or from elite) at

random to cross over.

■ The method chosen depends on the Encoding.

Crossover methods: 1/3
■ Single-point Crossover- A random point is chosen on

the individual chromosomes (strings) and the genetic
material is exchanged at this point.

Single-point crossover example

Parent

Chromosome 1

11011 | 00100110110

Parent

Chromosome 2

11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

Crossover methods: 2/3

■ Two-point Crossover- Two random points are chosen on

the individual chromosomes (strings) and the genetic

material is exchanged at these points.

Parent

Chromosome 1

11011 | 00100 | 110110

Parent

Chromosome 2

10101 | 11000 | 011110

Offspring 1 10101 | 00100 | 011110

Offspring 2 11011 | 11000 | 110110

NOTE: These chromosomes are different from the last example.

Crossover methods: 3/3

■ Uniform Crossover- Each gene (bit) is selected randomly
from one of the corresponding genes of the parent
chromosomes.

Parent

Chromosome 1

11011 | 00100 | 110110

Parent

Chromosome 2

10101 | 11000 | 011110

Offspring 10111 | 00000 | 110110

NOTE: Uniform Crossover yields ONLY 1 offspring.

Crossover summary

■ Crossover between 2 good solutions MAY NOT ALWAYS

yield a better or as good a solution.

■ Since parents are good, probability of the child being good is

high.

■ If offspring is not good (poor solution), it will be removed in

the next generation during “Selection”.

5. Mutation

It is the process by which a string is deliberately changed at

random to maintain diversity in the population.

We saw in the giraffes’ example, that mutations could be

beneficial.

Mutation Probability- determines how often the parts of a

chromosome will be mutated.

Example of mutation

■ For chromosomes using Binary Encoding, randomly selected

bits are inverted.

Offspring 11011 00100 110110

Mutated Offspring 11010 00100 100110

NOTE: The number of bits to be inverted depends on the Mutation Probability.

GA Summary

When to use Genetic Algorithms

■ If you are trying to minimize (maximize) some function

f(x) over all values of variables x in X

■ When examining every possible combination of x in X is

infeasible

■ When you are concerned with the problem

of local minimum (maximum) – random

mutations can get you out of the trap

Advantages Of GAs over other

optimization methods

■ Search for the function optimum starts from a population of

points in the function domain, not a single point.

■ This makes GAs global search methods: they can climb many

peaks simultaneously, reducing the probability of being

trapped in local minima, which is one of the drawbacks of

traditional optimization methods.

■ GAs can be easily used on parallel machines: since most

computational time is spent in evaluating a solution, with

multiple processors all solutions in a population can be

evaluated in a distributed manner.

GA applications

GAs are highly effective in searching a

large, poorly defined search space even in

the presence of high-dimensionality, multi-

modality, discontinuity and noise.

Success stories:

❑ Finding which concert hall shape gives

the best acoustics

❑ Designing an optimal wing for a

supersonic aircraft

❑ Suggesting the best library of chemicals

to research as potential drugs

❑ Automatically designing a chip for voice

recognition

Automatic antenna design with evolutionary algorithms

https://ti.arc.nasa.gov/m/pub-archive/1244h/1244%20(Hornby).pdf

Evolving intelligence:

genetic programming

Genetic programming

■ Application of Genetic Algorithm to the case where

solution space consists of computer programs

■ The goal is to find a program which performs well at a

predefined task

❑ Instead of choosing an algorithm that is the best for a

predefined task, we make a program that will create

such algorithm: we design an algorithm which creates

algorithms

■ In some cases the algorithm finds programs that are

human-competitive

"Human-competitive results produced by genetic programming"

http://www.genetic-programming.com/GPEM2010article.pdf

How does it work

■ We start with a large set of programs (population), which

are either [randomly generated] or [hand-designed to be

somewhat good solutions]

■ The programs then compete in performing some user-

defined task:

❑ A game in which the programs compete against each

other and the performance is measured by the number

of wins

❑ A known set of inputs and outputs and the best

program (function) that perfectly maps inputs to

outputs

Genetic programming flowchart
Create random population of programs

Compute fitness of each individual solution

Is any of them

good enough?

Duplicate best solutions

Mutate Breed

New population

Done

yes

no

Same steps as in GA

■ After evaluating each program using the fitness test, we

produce a ranked list of programs

■ The best programs are replicated and modified in two

different ways

❑ Mutation: certain parts of a program are altered

slightly in a random manner in hope that this will make

a good solution even better

❑ Crossover (breeding): exchange the portions of best

programs

■ This replication and modification procedure creates

many new programs which are evaluated until the best

solution is found

Programs get better with each new

generation
■ Since the size of the population is kept constant, many of

the worst programs are eliminated from the population to

make room for new programs

■ Because the best programs are being kept and only

slightly modified, it is expected that with each generation

they will get better and better

Genetic Programming (GP) vs.

Genetic Algorithm (GA)

■ GA is an optimization technique

❑ As with any optimization, you have already selected

an algorithm or metric and you’re trying to find the best

parameters for it

■ In GP the solutions are not just a best set of parameters

applied to a given algorithm:

❑ The algorithm itself and all its parameters are

designed automatically by means of evolutionary

pressure

GP: sample applications

■ Developing programs for playing games, such as chess

and backgammon

■ Used in photonic crystals, optics, quantum computing

systems, and other scientific inventions

■ In 1998 a robot team that was programmed entirely

using genetic programming which placed well in the

Robo-Cup soccer contest
https://cs.gmu.edu/~sean/papers/robocupgp98.pdf

https://cs.gmu.edu/~sean/papers/robocupgp98.pdf

GROUP TRAVEL

OPTIMIZATION

Sample application 1

Use case: travel optimization

people = [('John','BOS'),

('Mary','DAL'),

('Laura','CAK'),

('Abe','MIA'),

('Greg','ORD'),

('Lee','OMA')]

LaGuardia airport in New York

destination ='LGA'

LGA,MIA,20:27,23:42,169

MIA,LGA,19:53,22:21,173

LGA,BOS,6:39,8:09,86

BOS,LGA,6:17,8:26,89

LGA,BOS,8:23,10:28,149

…

Flights in file schedule.txt

Setup:
■ Six family members meet up in New

York.

■ They arrive on the same day and

leave on the same day, and they

want to share transportation to and

from the airport.

■ There are many possible flights per

day for each family member: 8

inbound flights and 8 outbound flights

■ Flights are arriving-leaving at

different times. They also vary in

price and in duration.

Solution encoding

■ We represent each possible solution as a list of numbers.

■ Each number represents the position of a flight in a list of

flights sorted by time.

■ Since each person needs an outbound flight and a return

flight, the length of this list is twice the number of people.

Sample solution

people = [('John','BOS'),

('Mary','DAL'),

('Laura','CAK'),

('Abe','MIA'),

('Greg','ORD'),

('Lee','OMA')]

[1,4,3,2,7,3,6,3,2,4,5,3]

■ John takes the second flight of the

day from Boston to New York, and

the fifth flight back to Boston on

the day he returns.

■ Mary takes the fourth flight from

Dallas to New York, and the third

flight back.

John Mary

Fitness function design:

most challenging and non-trivial part

■ The goal is to find a set of flights that minimizes the cost

function.

■ The cost function has to return a value that represents how

bad a solution is.

■ There is no particular scale for badness: the only requirement

is that the function returns larger values for worse solutions.

What to include into the fitness function
■ Price

❑ The total price of all the plane tickets [can be a weighted average that

takes financial situations into account].

■ Travel time
❑ The total time that everyone must spend on a plane.

■ Waiting time
❑ Time spent at the airport waiting for the other members of the party to

arrive.

■ Departure time
❑ Flights that leave too early in the morning may impose an additional

cost by requiring travelers to miss out on sleep.

■ Car rental period
❑ If the party rents a car, they must return it earlier in the day, or be forced

to pay for a whole extra day.

Run schedule optimization

■ Execute cells in Parts 1 and 2 in

https://github.com/mgbarsky/labs_ml_optimizations

■ Don’t forget to FORK the repository before cloning it:

it contains your lab assignment

How much better is the GA solution

comparing to the random pick?

https://github.com/mgbarsky/labs_ml_optimizations

BEST STUDENT TO DORM

ASSIGNMENT

Sample application 2

Student → Dorm optimization

■ The goal is to assign students to dorms depending on their

first and second choices.

■ Although this is a very specific example, it’s easy to

generalize it to other problems—the exact same code can be

used to:

❑ assign tables to players in an online card game

❑ assign bugs to developers in a large coding project

❑ even to assign housework to household members

■ In all these problems the purpose is to take preferences from

individuals and produce the overall optimal result

Representing solutions

■ In theory we could create a list of numbers, one for each

student, where each number represents the dorm in which

you put the student.

■ The problem is that this representation doesn’t constrain the

solution to only two students in each dorm.

■ A list of all zeros would indicate that everyone had been

placed in Williams, which isn’t a real solution at all.

■ We could potentially ….

The dorms, each of which has two available spaces

dorms=['Williams','Sage','Lehman','Armstrong','Mills']

Considering only valid solutions

■ In general, it’s better not to waste time searching among invalid

solutions

■ We need to find a way to represent solutions so that every solution

is valid

■ A valid solution is not necessarily a good solution; it just means that

there are exactly two students assigned to each dorm

Idea (you do not have to use it - come up with your own)

■ We think of every dorm as having two slots, so that there are 10

available slots in total

■ Each student, in order, is assigned to one of the open slots—the

first person can be placed in any one of the ten, the second person

can be placed in any of the nine remaining slots, and so on.

Solution is represented as a list of

assignments

■ The print_solution in Part 3 of your lab illustrates how this

solution representation works

■ This function first creates a list of slots, two for each dorm. It

then loops over every number in the solution and finds the

dorm number at that location in the slots list, which is the dorm

that a student is assigned to

■ It prints the student and the dorm, and then it removes that

slot from the list so no other student will be given that slot

■ After the final iteration, the slots list is empty and every student

and dorm assignment has been printed

[0,0,0,0,0,0,0,0,0,0]

Task 1. Each slot has its own domain

■ If you change the numbers to view different solutions,

remember that each number must stay in the appropriate

range.

■ Your first task is to figure out what is this range (domain) for

each student in the solution list

[0,0,0,0,0,0,0,0,0,0]

Task 2. Fitness function

■ The cost function works similarly to the print function.

■ A list of all slots is constructed and slots are removed as they

are used up

■ The cost is calculated by comparing a student’s current dorm

assignment to his top two choices.

❑ Add 0 if the student is currently assigned to the room of

their top choice

❑ Add 1 if the student is assigned to their second choice

❑ Add 3 if the student is not assigned to either of their

choices

Dorm optimization

■ After you defined a valid domain for each position in the

solution and created a fitness function, you can reuse the

optimization code in Part 2 of the lab: the algorithms stay

exactly the same

■ You may need to adjust some parameters for better results

■ There is also a ‘challenging’ bonus coding

Designing optimization algorithms:

Summary
■ In order for this to work:

❑ The problem needs to have a defined cost function

❑ Similar solutions should yield similar cost

■ To restate any problem as an optimization problem:

❑ Represent each solution as a sequence (string!)

❑ Define a way to evaluate the quality of each solution: the cost

function (solution fitness)

■ We start with a random solution (stochastic!) and try to improve its

fitness with slight changes

