Memory-based reasoning: nearest neighbors

Lecture 05 by Marina Barsky

Classification example: bankruptcy dataset

Training set

Late	Spending	
payments, L	ratio, R	Bankruptcy
3	0.2	No
1	0.3	No
4	0.5	No
2	0.7	No
0	1.0	No
1	1.2	No
1	1.7	No
6	0.2	Yes
7	0.3	Yes
6	0.7	Yes
3	1.1	Yes
2	1.5	Yes
4	1.7	Yes
2	1.9	Yes
		Class labels

New customer

Memory-based reasoning

Seems poisonous

Amanita muscaria

Classification by similarity

" If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."

New classifier: Nearest Neighbor

- Remember the entire labeled training set
- When a new sample comes:
 - Find the most similar sample in the labeled collection (the nearest neighbor)
 - Return the class label associated with it

Classification: eager classifier

(for example logistic regression or decision tree) Training set

Late	Spending	
payments, L	ratio, R	Bankruptcy
3	0.2	No
1	0.3	No
4	0.5	No
2	0.7	No
0	1.0	No
1	1.2	No
1	1.7	No
6	0.2	Yes
7	0.3	Yes
6	0.7	Yes
3	1.1	Yes
2	1.5	Yes
4	1.7	Yes
2	1.9	Yes
		Class labels

New customer

Different approach: lazy classifier

L	R	B
3	0.2	No
1	0.3	No
4	0.5	No
2	0.7	No
0	1	No
1	1.2	No
1	1.7	No
6	0.2	Yes
7	0.3	Yes
6	0.7	Yes
3	1.1	Yes
2	1.5	Yes
4	1.7	Yes
2	1.9	Yes

Predicting bankruptcy: nearest neighbor

Predicting bankruptcy: nearest neighbor

Predicting bankruptcy: noise

Predicting bankruptcy: K neighbors

K-NN classifier: lazy classifier

Training set

Late	Spending	
payments, L	ratio, R	Bankruptcy
3	Very low	No
1	Very low	No
4	Low	No
2	Low	No
0	Normal	No
1	Medium	No
1	High	No
6	Very low	Yes
7	Very low	Yes
6	Low	Yes
3	Normal	Yes
2	Medium	Yes
4	High	Yes
2	High	Yes

New sample

K-NN classification algorithm

Input:

```
set T of N labeled records,
K,
instance A to classify
```

Classification:

```
for i from 1 to N
compute distance d(A,T_i)
sort T asc by d(A,T_i) into T_{sorted}
from top K records in T_{sorted}
extract class labels L_{1...K}
```

Output:

return *combination* (L_{1...K})

K-NN classification algorithm

Input:

set **T** of N labeled records, **K**, instance **A** to classify

Classification:

for *i* from 1 to *N* compute *distance* $d(A,T_i)$ *sort T asc* by $d(A,T_i)$ into T_{sorted} from top *K* records in T_{sorted} extract class labels $L_{1...K}$

Output:

return *combination* (*L*_{1...K})

We need to discuss:

- How many neighbors: choice of K
- Distance/similarity function
- Combining neighbor class labels

At this point we just need to know that K should be odd

We need to discuss:

- How many neighbors: choice of K
- Distance/similarity function
- Combining neighbor class labels

If attributes are numeric: Simple distance function Geometry: Euclidean distance

Simple distance function Geometry: Euclidean distance

We need to discuss:

- How many neighbors: choice of K
- Distance/similarity function
- Combining neighbor class labels

Simple combination function: majority voting

Classified as non-bankrupt

K-NN regressor: simple combination function: average

L	R	D
3	0.2	0
1	0.3	0
4	0.5	0
2	0.7	0
0	1	0
1	1.2	0
1	1.7	0
6	0.2	50K
7	0.3	100K
6	0.7	500K
3	1.1	25K
2	1.5	30K
4	1.7	150K
2	1.9	40K

Predicted default: (0+30+25)/3=18K

My friends dataset

Average ratings for 26 friends

https://hope.simons-rock.edu/~mbarsky/intro19/lectures/data/predict/