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Conditional probability: reminder

● P(B|A) = fraction of worlds in which B is true 
out of all the worlds where A is true 

P(B|A)= P(A ∩ B) / P(A)

A ∩ B

BA

P(A ∩ B) = 4/60
P(A) = 20/60
P(B|A) = 4/60 : 20/60 = 0.2



Joint probability: A ∩ B

Global (joint) probability of A and B:

P(A,B) = P(B|A)*P(A)=4/20*20/60 = 4/60

A,B

What is the general probability of both A and B being True?

P(B|A)= P(A ∩ B) / P(A)



• General (global) probability of 

A and B and C:

P(A,B,C) =P(C|A,B)*P(A,B) = 

P(C|A,B)*P(B|A)*P(A) = 1/4*4/60 =1/60

Joint probability: A ∩ B ∩ C

A,B,C

The Chain Rule



Naïve Bayes as a graph (network)

C

E2E1 E3

This graph states that there is a probabilistic dependence between C 
and each Ei. The probability of one of these variables (Class to predict) 
is influenced by the probabilities of the rest of the variables (set of 
evidences) and vice versa: P(C|E) ≠ P(C), and P(E|C) ≠ P(E)



Bayesian networks model joint probability 
distribution for all variables

C

E2E1 E3 E4

P(c|e1,e2,e3,e4)=P(c,e1,e2,e3,e4) /P(e1,e2,e3,e4)=α P(c,e1,e2,e3,e4)
P(¬c|e1,e2,e3,e4)=P(¬c,e1,e2,e3,e4)/P(e1,e2,e3,e4)= α P(¬c,e1,e2,e3,e4)

In fact, for prediction, it is enough to compute the joint probability 
of all known variables e1..e4 - with either c or ¬c, and to compare



Joint probability when e1- e3 are 
mutually independent events

• P(c|e1,e2,e3) = P(c, e1,e2,e3) / P(e1,e2,e3)

• P(c|E)=P(c ∩ E)/P(E)

We can compute the probability of all these events to happen 
together:

• P(c ∩ e1 ∩ e2 ∩ e3) = P(e1|c) P(e2|c) P(e3|c) *P(c)

Joint probability of all variables in the network

We multiply P(ei|c) because we assume: the probability of ei depends 
only on class C: all events are conditionally independent



Naïve Bayes

C

E2E1 E3 E4

P(c|e1,e2,e3,e4)=α P(c)P(e1|c)P(e2|c)P(e3|c)
P(¬c|e1,e2,e3,e4)= α P(¬c)P(e1|¬c)P(e2|¬c)P(e3|¬c)

Compare



More complex dependencies

C

E2E1

What if E1 and E2 are not 
independent?
For each node with more than 1 
parent we need Conditional 
Probability Table (CPT) with 
probability distribution for all possible 
combinations of parent variables:

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1

CPT for attribute E2



Using the chain rule for complex 
dependencies

C

E2E1

P(c|e1,e2)=α P(c)P(e1|c)P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c)P(e1|¬c)P(e2|¬c,e1)

After all CPTs are computed for 
each node given all possible 
combinations of values of its 
parents, the joint probability is 
computed by the same chain rule.

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1

C does not have parents, so its 
probability is unconditional

CPT for attribute E2



Using the chain rule for complex 
dependencies

C

E2E1

P(c|e1,e2)=α P(c) P(e1|c) P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c) P(e1|¬c) P(e2|¬c,e1)

E1 has 1 parent so its 
probability is conditioned on C

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1

CPT for attribute E2



Using the chain rule for complex 
dependencies

C

E2E1

P(c|e1,e2)=α P(c)P(e1|c) P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c)P(e1|¬c) P(e2|¬c,e1)

E2 has 2 parents so its probability 
is conditioned on both C and E1

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1

CPT for attribute E2



Estimating joint probabilities

• In a complex network of interrelated variables, it is easier to 
think in terms of joint probability of all known variables rather 
than a conditional probability of a class given evidence set

• This way we can predict not only a single attribute (Class) but 
also any other attribute, given that we know some evidences

• Instead of comparing:

• Compare just:

P(c|e1,e2)=α P(c)P(e1|c) P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c)P(e1|¬c) P(e2|¬c,e1)

Probabilities of all 3 random 
events to happen together

P(c)P(e1|c) P(e2|c,e1)
P(¬c)P(e1|¬c) P(e2|¬c,e1)



Explanation by example: 
predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

We know that Sprinkler 
was off: S= ¬s
and grass is wet: G=g

Was it raining?
P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)=α P(r, g, ¬s)

P(¬ r|g, ¬s)=α P(¬ r, g, ¬s)



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)=α P(r, g, ¬s)
= α P(r) P(¬s|r) P(g|r, ¬s)

P(¬ r|g, ¬s)=α P(¬ r, g, ¬s)
= α P(¬ r) P(¬s| ¬ r) P(g| ¬ r, ¬s)



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)=α P(r, g, ¬s)
= α P(r) P(¬s|r) P(g|r, ¬s)

P(¬ r|g, ¬s)=α P(¬ r, g, ¬s)
= α P(¬ r) P(¬s| ¬ r) P(g| ¬ r, ¬s)

All probabilities are given in 
CPTs, so we just plug in and 
compute



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)
= α P(r) P(¬s|r) P(g|r, ¬s)
= α 0.20*0.60*0.8
= α 0.096

P(¬ r|g, ¬s)
= α P(¬ r) P(¬s| ¬ r) P(g| ¬ r, ¬s)
= α 0.80 * 0.01 *0.01
= α 0.00008

Definitely, it was raining 



Wet Grass example: hidden variables

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.00 1.00

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

All we know that the grass is wet: 
G=g

P(r|g)=?

The value of S is unknown: S is a 
hidden variable which influences 
G and depends on R. We need to 
include it into the joint 
probability:

P(r|g)=α P(r, g, S)
= α P(r) P(S|r) P(g|r, S)=
= α P(r) *
[P(s|r) P(g|r, s)+ P(¬s|r) P(g|r, ¬s)]

Sprinkler was either on or off



Wet Grass example: hidden variables

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.00 1.00

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

All we know that the grass is wet: 
G=g

P(r|g)=?

P(r|g)=α P(r, g, S T v F)
= α P(r) P(S T v F |r) P(g|r, S T v F)=
= α P(r) *
[P(s|r) P(g|r, s) + P(¬s|r) P(g|r, ¬s)]

We add because we don’t know 
the value of S, and we consider it 
as being or false, or true.
Because s and ¬s are mutually 
exclusive - we just add.



Hidden (missing) evidences

• For each hidden variable consider all possible values of this 
variable and perform summation by substituting this variable 
with all possible values in turn



Bayesian Belief Networks (BBN)

• BBN is a graphical representation (Directed acyclic graph (DAG) – no 
cycles) of probabilistic dependencies between variables

• They combine logical reasoning with probabilities

• Nodes: random variables

• At each node: Conditional Probability Table (CPT) - the probabilities 
for all different values of the node variable given all possible value 
combinations of its parents

• The directed edges show probabilistic influence – dependence 
between variables. Edges can be drawn in any direction: the 
direction is application-dependent

Good 
grades

Time 
spent 

studying



BBN types: possible meaning of edges

A

B

Increased probability of A 

makes B more likely.

A causes B

We know P(B|A) -

diagnostics

Causal BBN 

A

B

Increased probability of B 

makes A more likely.

B is evidence for A,

A depends on B

We know P(B|A)

Evidential 

A

C

B

Intercausal  

A and B can each cause C.  

B explains C and so is

evidence against A

We need to know P(C|A), 

P(C|B), and P(C|A,B) 



Using Bayesian Belief Networks for 
prediction

• Each query asks for a joint probability which is computed by 
applying the chain rule (multiplying corresponding 
conditional probabilities for each variable involved in the 
query and its dependants) 

• This is because all conditional probabilities for each node 
given its parent are in CPTs, and each query for conditional 
probability of a parent given its children can be computed 
using Bayes theorem



Example: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

After all CPTs are filled in, we can perform any query on joint distribution 



Joint probability: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

P(Yes|Sunny,Cool,High,True)=αP(Yes,Sunny,Cool,High,True) = 



Joint probability: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

P(Yes|Sunny,Cool,High,True)=αP(Yes,Sunny,Cool,High,True) = α P(Yes) P(Sunny|Yes) 
P(Cool|Yes,Sunny) P(High|Yes, Cool) P (True| Yes, Sunny)



Joint probability: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

P(Yes|Sunny,Cool,High,True)=αP(Yes,Sunny,Cool,High,True) = α P(Yes) P(Sunny|Yes) 
P(Cool|Yes,Sunny) P(High|Yes, Cool) P (True| Yes, Sunny)
All these probabilities are known – just plug them in and compute



Markov Blanket Assumption

• All nodes in the network are connected in some way

• The key feature of Bayesian Networks, which allows us to use 
the chain rule, is the assumption that the probability of each 
node is influenced only by the nodes in the Markov Blanket
of this node:

• The Markov blanket of a node is its set of neighboring nodes: 
its parents, its children, and any other parents of its children.

• No grandparents, no grandchildren, no children of its parent.



Markov Blanket of node A

• The Markov blanket of a node contains all the variables that shield the 
node from the rest of the network. 

• This means that the Markov blanket of a node is the only knowledge 
needed to predict the behavior of that node.



The Markov blanket assumption 

• Markov blanket assumes that P(A|B)=P(A) – probability of A is not 
influenced by the value of B, if B is outside of the blanket

• This corresponds to our intuition about probabilistic influences

B



Example 1: Markov blanket of S

C

RS

Cold

Sneezing Runny nose

Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent

You are sneezing.

What is the probability that you have cold?



C

RS

Cold

Sneezing Runny nose

P(S|R)>P(S)
Thus, S in general is not independent of R: 
R makes C more probable, which in turn influences the probability of S. 
However, P(S|C) is independent of R: if we know the value of C (C is given), then R 
does not influence the probability of S:
P(S|C,R)=P(S|C)      - C ‘shields’ node S from the influence of R

Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent

Example 1: Markov blanket of S



B E

A

Burglary

Alarm

Earthquake

Example 2: Markov blanket of B
Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent

You hear an alarm.

What is the probability of Burglary?



B E

A

Burglary

Alarm

Earthquake

P(B|E)=P(B)  (independent), but P(B|A,E)<P(B|A)
If you hear an alarm, you might evaluate the probability of B, but if you know that 
there was an earthquake, this probability decreases: 
E ‘discounts’ B, E is evidence against B, and it should be included in its Markov 
blanket together with A

Example 2: Markov blanket of B
Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent



C

S

D

Cheating 
spouse

Dining with 
stranger

Spotted 
dining with 
stranger

Example 3: Markov blanket of C
Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent

Your spouse is dining with a stranger (you see it by yourself)

What is the probability of cheating?



C

S

D

Cheating 
spouse

Dining with 
stranger

Spotted 
dining with 
stranger

P(C|S)>P(C)
P(C|D,S)=P(C|D)

If D is known (given), then there 
is no influence of hearsay S on 
the probability of C

Example 3: Markov blanket of C
Include: 
parents
children
parents of its children

Do not include: 
grandparents
grandchildren 
children of its parent



Example 4. Alarm 

Query: what is the probability of John calling given that Mary called

parents
children
parents of its children



Alarm example

Query: what is the probability of Alarm given that John called

parents
children
parents of its children



Alarm example

Query: what is the probability of Burglary given that John called and Mary called

parents
children
parents of its children



Example 5. High Blood Pressure

Query: what is the probability of Heart disease given chest pain

parents
children
parents of its children



Algorithm for classification using BBN

• In complex networks: for each node participating in the query 
- select a subset of nodes which are inside Market blanket of 
this node

• Compute joint probabilities of all these nodes by the chain 
rule, substituting random variables by the evidence values

• If some of the values are unknown (hidden), sum up over all 
possible values



Bayesian Belief Networks: applications

• Very important technology in the Machine Learning / AI field

• A clean, clear, manageable language and methodology for 
expressing what you’re certain and uncertain about

• Many practical applications in medicine, factories, helpdesks:

P(this problem | these symptoms)

anomalousness of this observation

choosing next diagnostic test | these observations



Pathfinder system*

• Diagnostic system for lymph-node diseases.
• 60 diseases and 100 symptoms and test-results.
• 14,000 probabilities
• Experts consulted to make net. Apparently, the experts 

found it quite easy to invent the causal links and 
probabilities.

• 8 hours to determine variables.
• 35 hours for net topology.
• 40 hours for probability table values.
• Pathfinder is now outperforming the world experts in 

diagnosis. 
• Being extended to several dozen other medical domains.

* Heckerman 1991, Probabilistic Similarity Networks, MIT Press, Cambridge MA



EXERCISES



I: Burglary
• I'm at work, neighbor John calls to say my alarm is ringing, and 

also my neighbor Mary calls. Sometimes the alarm is set off by 
minor earthquakes. Is there a burglar?

• John always calls when he hears the alarm, but sometimes 
confuses the telephone ringing with the alarm.

• Mary likes rather loud music and sometimes misses the alarm. 

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:

– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call



I: Burglary

The topology shows that burglary and earthquakes directly affect the probability 
of alarm, but whether Mary or John call depends only on the alarm. 

Our assumptions are that they don’t perceive any burglaries/earthquakes 
directly, and they don’t confer before calling.

To save space, some of

the probabilities have been omitted from the 

diagram. The omitted probabilities can be 

recovered by noting that 

P(X = x) = 1 - P(X =¬ x) and 

P(X = x|Y) = 1 - P(X=¬x|Y), where ¬x denotes 

the opposite outcome of x.



I: Prediction
• Suppose, we are given for the evidence variables E1,…,Em, their 

values e1,…,em, and we want to predict whether the query 
variable X has the value x or not. 

• For this we compute and compare the following:

• How do we compute:

What about the hidden variables 
Y1,…,Yk?



I: Classification of burglary and earthquake

• We are given for the evidence variables J=j and M=m, and we 
want to predict whether the query variable B has the value b or 
not b. 

• However, to evaluate the probability of B we need to know: 
whether alarm really went off and whether it was an 
earthquake.

• A and E are hidden variables

What about the hidden variables 
Y1,…,Yk?

Hidden 
variables



I: Inference by enumeration
P(burglary | johhcalls, marycalls)? (Abbrev. P(b|j,m))

In general:

Alarm rings, 
earthquake

No alarm, 
earthquake

Alarm rings, 
no earthquake

No alarm, 
no earthquake

Or

where y1,…yk are hidden variables



I: P(b | j,m)
P(b | j,m) = α P(b) ∑a P(j|a)P(m|a)∑eP(a|b,e)P(e) 

= α P(b) ∑a P(j|a)P(m|a)(P(a|b,e)P(e) + P(a|b,¬e)P(¬e)) 

= α P(b)( P(j|a)P(m|a)( P(a|b,e)P(e) + P(a|b,¬e)P(¬e) ) 

+ P(j|¬a)P(m|¬a)( P(¬a|b,e)P(e) + P(¬a|b,¬e)P(¬e) ))

= α * .001*(.9*.7*(.95*.002 + .94*.998) +.05*.01*(.05*.002 + .71*.998) )

= α * .00059



I: P(¬b | j,m)
P(¬b | j,m) = α P(¬b) ∑a P(j|a)P(m|a)∑eP(a|¬b,e)P(e) 

= α P(¬b) ∑a P(j|a)P(m|a)(P(a|¬b,e)P(e) + P(a|¬b,¬e)P(¬e)) 

= α P(¬b)( P(j|a)P(m|a)( P(a|¬b,e)P(e) + P(a|¬b,¬e)P(¬e) ) 

+ P(j|¬a)P(m|¬a)( P(¬a|¬b,e)P(e) + P(¬a|¬b,¬e)P(¬e) ))

= α * .999*(.9*.7*(.29*.002 + .001*.998) +.05*.01*(.71*.002 + .999*.998) )

= α * .0015



I: Finally…

P(b | j,m) = α P(b) ∑a P(j|a)P(m|a)∑eP(a|b,e)P(e) = …= α * 0.00059

P(¬b | j,m) = α P(¬b) ∑a P(j|a)P(m|a)∑eP(a| ¬b,e)P(e) = …= α * 0.0015

P(B | j,m) = α <0.00059, 0.0015> = <0.28, 0.72>.



IIA: High Blood Pressure

Once the right topology has been found. the probability table associated with 
each node is determined from the data. 
Estimating such probabilities is similar to the approach used by Naïve Bayes.
It is done by counting rows where all the assignments of variables hold.



IIA: High Blood Pressure
• Suppose we get to know that the new patient has high blood 

pressure. 
• What’s the probability he has heart disease under this condition?

=1

Heart disease: Yes



IIA: High Blood Pressure
Heart disease: No



IIA: High Blood Pressure (α)



IIB: High Blood Pressure, Healthy Diet, Regular Exercise



IIB: Probability of heart disease



IIB: Probability of not heart disease



II. High Blood Pressure, Healthy 
Diet, and Regular Exercise

The model therefore suggests that eating healthily and exercising 
regularly may reduce a person's risk of getting heart disease, even 
if he has high blood pressure



III: Solving the mystery

• One early morning the maid was dusting the window when she 
saw something horrific. Right outside the window lay dead Mr. 
Boddy. She called the police and a detective was assigned to the 
case

• The detective, a former computer scientist, always tried to make 
his job as easy as possible. 

• After a brief examination, he determined that Mr. Boddy has been 
hit over the head with a dull instrument, probably made of metal. 
The detective found two candidate weapons that matched the 
crime scene: an extension of Vacuum cleaner (V) used by the maid 
and a candleStick (S) used by the butler.

• He took a brief statement from both the Made (M) and the Butler 
(B), the only two individuals who could have possibly committed 
the murder.

• Then he went to his office and decided to create BBN to 
determine whether the murderer is likely to confess



III: Network topology

• T – time of day when the 
murder was committed: 
evening (e) or night (n)

• W – crime weapon: 
vacuum (v) or stick (s)

• M- murderer: maid (m) or 
butler (b)

• C – will confess: yes or no

W

M

T

C



III: CPT for Time

• T- time: the murder was 
committed in the 
evening (e) or at night 
(n), but much more 
likely at night
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C

e n
.05 .95



III: CPT for Weapon

• W- weapon: the murder 
weapon was most likely 
an extension to vacuum 
cleaner than the candle 
stick
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III: CPT Murderer

• M- murderer: Although it 
is possible for one 
employee to use the tool 
of another, it is very 
unlikely
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III: CPT Murderer

• Probabilities that 
maid did it given 
combinations of 
time and murder 
weapon 
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III: CPT Murderer
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• Probabilities that 
maid did it given 
combinations of 
time and murder 
weapon 



III: CPT Murderer

• And the butler 
takes the rest 
(mutually 
exclusive events)

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95



III: CPT Confession

• The maid has a very 
strong conscience and 
she will eventually 
confess if she 
committed the murder. 
The butler is quite 
opposite
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III: The probability of confession (no 
evidences are given)

• The detective can 
evaluate the 
probability that the 
murderer will 
confess without 
having any real 
evidence
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III: The probability of confession

P(c|_)= α∑t ∑w ∑mP(T)P(W)P(M|T,W)P(c|M) 

= α ∑t P(T) ∑w P(W) ∑mP(M|T,W)P(c|M) 

= α ∑t P(T) ∑w P(W) [P(m|T,W)P(c|m) 

+ P(b|T,W)P(c|b)] 

= α ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+ α ∑t P(T) ∑w P(W) P(b|T,W) *0.40 
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III: The probability of confession

P(c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) P(v) P(m|T,v) *0.90 

+  ∑t P(T) P(s) P(m|T,s) *0.90 

+  ∑t P(T) P(v) P(b|T,v) *0.40

+  ∑t P(T) P(s) P(b|T,s) *0.40
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III: The probability of confession

P(c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40
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III: The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
P(e)*0.80 * P(m|e,v) * 0.90+P(n)*0.80 * P(m|n,v)*0.90 +

P(e) *0.20* P(m|e,s) *0.90+ P(n) *0.20* P(m|n,s) *0.90 +

P(e) *0.80 * P(b|e,v) *0.40+ P(n) *0.80 * P(b|n,v) *0.40 +

P(e) *0.20* P(b|e,s) *0.40+ P(n) *0.20* P(b|n,s) *0.40 
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III:The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * P(m|e,v) * 0.90+0.95*0.80 * P(m|n,v)*0.90 +

0.05 *0.20* P(m|e,s) *0.90+ 0.95 *0.20* P(m|n,s) *0.90 +

0.05 *0.80 * P(b|e,v) *0.40+ 0.95*0.80 * P(b|n,v) *0.40 +

0.05 *0.20* P(b|e,s) *0.40+ 0.95 *0.20* P(b|n,s) *0.40 
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III: The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * 0.90 * 0.90+0.95*0.80 * 0.35*0.90 +

0.05 *0.20* 0.55 *0.90+ 0.95 *0.20* 0.05 *0.90 +

0.05 *0.80 * 0.10 *0.40+ 0.95*0.80 *0.65 *0.40 +

0.05 *0.20* 0.45 *0.40+ 0.95 *0.20* 0.95 *0.40 = 0.56
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III: The probability of non-confession
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P(¬c|_)= α∑t ∑w ∑mP(T)P(W)P(M|T,W)P(¬c|M) 

= α ∑t P(T) ∑w P(W) ∑mP(M|T,W)P(¬c|M) 

= α ∑t P(T) ∑w P(W) [P(m|T,W)P(¬c|m) 

+∑w P(b|T,W)P(¬c|b)] 

= α ∑t P(T) ∑w P(W) P(m|T,W) *0.10 

+ α ∑t P(T) ∑w P(W) P(b|T,W) *0.60



III: The probability of non-confession

P(¬c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) P(v) P(m|T,v) *0.10 

+  ∑t P(T) P(s) P(m|T,s) *0.10 

+  ∑t P(T) P(v) P(b|T,v) *0.60

+  ∑t P(T) P(s) P(b|T,s) *0.60
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III: The probability of non-confession

P(¬c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) *0.80 * P(m|T,v) *0.10 

+  ∑t P(T) *0.20* P(m|T,s) *0.10 

+  ∑t P(T) *0.80 * P(b|T,v) *0.60

+  ∑t P(T) *0.20* P(b|T,s) *0.60
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III: The probability of non-confession

P(¬c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.10 

+  ∑t P(T) *0.20* P(m|T,s) *0.10 

+  ∑t P(T) *0.80 * P(b|T,v) *0.60

+  ∑t P(T) *0.20* P(b|T,s) *0.60 = 
P(e)*0.80 * P(m|e,v) * 0.10+P(n)*0.80 * P(m|n,v)*0.10 +

P(e) *0.20* P(m|e,s) *0.10+ P(n) *0.20* P(m|n,s) *0.10 +

P(e) *0.80 * P(b|e,v) *0.60+ P(n) *0.80 * P(b|n,v) *0.60 +

P(e) *0.20* P(b|e,s) *0.60+ P(n) *0.20* P(b|n,s) *0.60 
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III: The probability of non-confession

P(¬c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * P(m|e,v) * 0.10+0.95*0.80 * P(m|n,v)*0.10 +

0.05 *0.20* P(m|e,s) *0.10+ 0.95 *0.20* P(m|n,s) *0.10 +

0.05 *0.80 * P(b|e,v) *0.60+ 0.95*0.80 * P(b|n,v) *0.60 +

0.05 *0.20* P(b|e,s) *0.60+ 0.95 *0.20* P(b|n,s) *0.60 
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The probability of non-confession

P(¬c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * 0.90 * 0.10+0.95*0.80 * 0.35*0.10 +

0.05 *0.20* 0.55 *0.10+ 0.95 *0.20* 0.05 *0.10 +

0.05 *0.80 * 0.10 *0.60+ 0.95*0.80 *0.65 *0.60 +

0.05 *0.20* 0.45 *0.60+ 0.95 *0.20* 0.95 *0.60 = 0.44
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b .40 .60 “Most probably they will confess” - concluded the 
detective, and went home

P(c|_) =  α*0.56 P(¬c|_) = α*0.44


