MINING FLIPPING CORRELATIONS FROM LARGE DATASETS WITH TAXONOMIES

MARINA BARSKY, SANGKYUM KIM,
TIM WENINGER, JIAWEI HAN

Outline

\square Challenge: strong correlations with low support
\square Flipping correlation patterns
\square Algorithm for mining flipping correlations
\square Performance
\square Real flipping patterns
\square Conclusion and future work

Correlations and frequent itemsets

\square Once all frequent itemsets are enumerated, we can find correlation between items in these frequent itemsets
\square Computation of frequent itemsets is feasible only for high support thresholds
\square Top-frequent itemsets often represent obvious relationships between items

Example: frequent items in papers on frequent pattern mining

Challenge of finding itemsets with low

 supportIn large datasets we can find the top most frequent itemsets
\square When we lower the support threshold, the number of frequent itemsets becomes big
\square How big? Very big: that we cannot keep in memory all different 2 -item combinations, to update their counters

How can we discover non-trivial correlations in large datasets?

\square Instead of computing top-frequent, compute topcorrelated patterns directly, without enumerating all frequent itemsets
\square This presents computational challenges
\square Some progress in this direction is in our previous paper

Negative correlations

\square What if we are also interested in items that rarely appear in the same transaction?
\square The negative correlations can be useful:
\square To identify competing items: absence of Blu ray and DVD player in the same transaction
\square To discover underrepresented topic combinations: in DBLP -\{mobile networks, data cube\}
\square The set of all itemsets where items are negatively correlated is exponentially large and "the solution remains elusive"
P.-N. Tan et al., 2005.

Challenge: all positive and negative correlations in itemsets with low-to-medium support
\square Computing all frequent itemsets with very low support is computationally prohibitive
\square Most of the correlation measures for large datasets possess neither monotonicity nor anti-monotonicity properties, and as such cannot be straightforwardly used for pruning purposes.

Outline

- Challenge: strong correlations with low support
\square Flipping correlation patterns
\square Algorithm for mining flipping correlations
\square Performance
\square Real flipping patterns
\square Conclusion and future work

Feasible task with the use of taxonomy

\square We cannot compute all positive and negative correlations with low support
\square We can find the most surprising positive and negative correlations, which change across the levels of abstraction
\square Items at different levels of abstraction can be modeled as a taxonomy tree

Example of taxonomy: movies

Example: flipping correlations in Movielens dataset

People who like westerns do not like romance movies (negative correlation)

Despite this general rule, people who like High Noon (western) also like The big Country (romance) (positive correlation)

Flipping Correlation Example

Flipping correlations are surprising

\square If two groups of items are negatively correlated, but some sub-groups are positively correlated. What is so special about them?
\square The positive correlation between two groups of items suggest that the items in both groups behave similarly. But some sub-groups are negatively correlated. Why?
\square We leave these questions to domain experts, and our contribution is an efficient computation of all flipping correlations

Outline

- Challenge: strong correlations with low support
- Flipping correlation patterns
\square Algorithm for mining flipping correlations
\square Performance
\square Real flipping patterns
\square Conclusion and future work

Selecting correlation measure

Two groups of correlation measures

\square Null-invariant
\square Expectation-based

Null-(transaction)
invariance is crucial for large datasets

Measure	Definition	Range	Null-Invariant
$\chi^{2}(a, b)$	$\sum_{i, j=0,1} \frac{\left(e\left(a_{i}, b_{j}\right)-o\left(a_{i}, b_{j}\right)\right)^{2}}{e\left(a_{i}, b_{j}\right)}$	$[0, \infty]$	No
Lift (a, b)	$\frac{P(a b)}{P(a) P(b)}$	$[0, \infty]$	No
AllConf (a, b)	$\frac{\sup (a b)}{\max \{\sup (a), \sup (b)\}}$	[0,1]	Yes
Coherence (a, b)	$\frac{\sup (a b)}{\sup (a)+\sup (b)-s u p(a b)}$	[0,1]	Yes
Cosine (a, b)	$\frac{\sup (a b)}{\sqrt{\sup (a) \sup (b)}}$	$[0,1]$	Yes
Kulc (a,b)	$\frac{\sup (a b)}{2}\left(\frac{1}{\sup (a)}+\frac{1}{\sup (b)}\right)$	[0, 1]	Yes
MaxConf (a,b)	$\max \left\{\frac{\sup (a b)}{\sup (a)}, \frac{\sup (a b)}{\sup (b)}\right\}$	$[0,1]$	Yes

T. Wu et al., 2010.

Challenge with null-invariant measures

\square Some (Cosine, Kulczynsky) are not anti-monotone
\square We cannot extract flipping correlations by postprocessing all positive and negative correlations, since we cannot compute all positive and negative correlations (see slide 8)
\square Solution: incorporate flipping constraints into a mining process

Flipper algorithm:

based on three main pruning techniques

1. Pruning non-flipping itemsets
2. Termination of the entire pattern growth
3. Pruning single items and their supersets

1. Pruning non-flipping patterns (I)

\square If both parent itemset ($a b$) and child itemset $\left(a_{1} b_{2}\right)$ have the same correlation sign, then they break a flipping sequence and the children of $a_{1} b_{2}$ cannot be a part of flipping pattern - do not test them

1. Pruning non-flipping patterns (II)

\square However, a superset of child itemset $\left(a_{12} b_{12}\right)$ can still be a part of a flipping pattern, since we cannot predict the correlation value of its superset (not antimonotone).

Vertical pruning if it is not flipping

2. Termination of the Entire Pattern Growth

\square We prove that for any null-invariant correlation measure, correlation of the superset cannot be larger than the max of correlations of its subsets

$$
\operatorname{Corr}\left(a_{1}, \cdots, a_{n+1}\right) \leq \max \left(\operatorname{Corr}\left(a_{1}, \cdots, a_{n}\right), \cdots, \operatorname{Corr}\left(a_{2}, \cdots, a_{n+1}\right)\right)
$$

2. Termination of the Entire Pattern

 Growth$$
\operatorname{Corr}\left(a_{1}, \cdots, a_{n+1}\right) \leq \max \left(\operatorname{Corr}\left(a_{1}, \cdots, a_{n}\right), \cdots, \operatorname{Corr}\left(a_{2}, \cdots, a_{n+1}\right)\right)
$$

If we adding items to itemsets, and we found that all itemsets in two consecutive cells are non-positive, then there are no more flipping patterns because supersets cannot be positively correlated

We can stop our search right there

		k-itemsets			
		$\mathrm{k}=2$	k=3	...	k=K
	$\mathrm{h}=1$		\square		
	$\mathrm{h}=2$		ص		
	!				
	$h=\mathrm{H}-1$				

3. Pruning single items and their supersets

\square If all itemsets containing item a_{1} are non-positive, and all itemsets containing its generalization item a are non-positive, then item a_{1} and all its supersets can be removed from further consideration

Order of computation

\square To utilize these pruning principles, we need to always compare results for two vertically consecutive cells

These are the main ideas of the Flipper algorithm

Outline

\checkmark Challenge: strong correlations with low support
Flipping correlation pattern
\checkmark Algorithm for mining flipping correlations
\square Performance
\square Real flipping patterns
\square Conclusion and future work

Performance: Synthetic datasets

\square Running Time (sec)

Flipper scales gracefully with the increase of the number of transactions and the average number of items per transaction

Performance: real datasets

\square Data Sets

	\# Trans	\# Pos	\# Neg	\# Flips
GROCERIES	10 K	4.8 K	80 K	174
CENSUS	32 K	140 K	73 K	232
MEDLINE	6.4 M	4.2 K	1.6 M	430

\square Running Time (sec)
\square Basic is not included (ran more than 10 hours for the smallest dataset GROCERIES).

Outline

V Challenge: strong correlations with low support
Flipping correlation pattern
V Algorithm for mining flipping correlations
\checkmark Performance
\square Real flipping patterns
\square Conclusion and future work

Flipping patterns: discover incorrectly classified items

GROCERIES

Re-design store layouts
\square pork and salad dressing are positively correlated, while in general meat and delicatessen are negatively correlated.
\square This might suggest removing the salad dressing from delicatessen, and moving it closer to the meat department.

Flipping patterns: contrasting sub-populations

CENSUS

Discover sub-populations with a distinct behaviour
\square People working in Craftrepair and having Bachelor degree are positively correlated with high income, unlike all people working in
Craft-repair
\square Education matters

Flipping patterns:

under-represented item combinations

Suggest under-represented research topic combinations
\square This pattern suggests the collaboration between two unrelated areas of psychophysiology and psychotherapy.
\square However, if one decides to study the combination of such subtopics as biofeedback and behavior therapy, he finds out that these two are in fact often studied together.

Flipping patterns in real datasets

GROCERIES

CENSUS

MEDLINE

Outline

V Challenge: strong correlations with low support
Flipping correlation pattern
V Algorithm for mining flipping correlations
\checkmark Performance
V Real flipping patterns
\square Conclusion and future work

Summary

\square Introduced the notion of a flipping correlation pattern.
\square Developed the Flipper algorithm for mining these patterns.
\square Algorithm is based on flipping constraints and mathematical properties shared among all null-invariant correlation measures
\square Demonstrated the high efficiency of Flipper in experiments with low support thresholds
\square Have shown that interesting new patterns can be extracted using the flipping pattern concept.

Future work

\square More advanced data structures for improving performance of Flipper
\square Top-K "most flipping" patterns
\square Computing a set of all discriminative correlations specific for a given subgroup

Thank you for listening

Please email your questions and suggestions to: mgbarsky@gmail.com

