
Searching for a pattern.
Knuth-Morris-Pratt.
Overlap function

Lecture 2.1

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase by 1

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

where do we find OF[j]?

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

then OF(j) is less than OF(j-1)

We look at v= OF(j-1) and check

again the next character

P[OF(v)+1]

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

we look at v=OF(j-1) and check

again the next character

P[OF(v)+1]

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

then OF(j) is less than OF(j-1)

We look at v=OF(j-1) and check

again the next character

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

P[2]≠P[8]

v=OF(4)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

v=OF(4)

P[1]=P[8], thus

OF(8)=OF(1)+1=1

Why do we compute the OF value this

way?

ββ β

αα

xx y

We know that since we could not extend suffix α, so there is a smaller suffix, β,

which starts somewhere inside α.

What is the next smaller overlap for all suffixes starting inside α?

The same as for all suffixes inside the prefix of length |α|

Thus, if we check the OF value for the position |α|, we see the next smaller maximal

overlap

We check if this is a desired maximal overlap by checking the next character after

the prefix of size |β|

If this character is x, we are done

If not, we continue by the same logic

Example

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We know that the substring

tictict ending at position 7 had

suffix tict which is overlapping

with the prefix tict of the

pattern

We also know that we cannot

extend this overlap since P[8]

and P[5] do not match

Now we want to check what

overlap had the prefix tict

with the prefix of the entire

pattern, since the suffix start

for a new overlap is

somewhere inside tict

We look at position 4 in OF

table and find that the next

overlap for substring of length

4 is of length 1

Example

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We check if P[1+1] matches

P[8]

They do not

We repeat and by the same

logic we are going to the

entry 1 of the OF table, and

find that there is no overlap

for this value: OF[1]=0

So we check if

P[0+1] matches P[8]

They do, so the

OF[8]=OF[1]+1=1

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

We know that OL(23)=11

This means that the sequence of the first 11 characters of P is the same as that

of the last 11 characters of P[1….23]

However, the character P[11+1]=r does not match the character P[23+1]=t

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

The maximum possible overlap is less than 11

The next maximum possible overlap can be found if we look at position 11 of the

OF table and see what overlap this substring had

The substring P[1…11] has a maximum overlap of length 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

Let us check if this value is also the maximum overlap for the substring P[1…24]

For this we check the character next to P[5], which is p, and it does not match

our t

Therefore, the overlap we are looking for is less than 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

3

We check the next possible value by considering the overlap value for the

substring P[1…5]

This value is 2. Is this value of an overlap good for P[1…24]?

We check P[2+1]=t, and P[24]=t

Thus, the overlap for the substring P[1…24] is 2+1=3

Practice jumps on the following pattern

 aaahamaaahamamaaahamaaaa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 3

Overlap function - pseudocode
algorithm computeOverlapFunction (pattern P of length M)

OF[1]=0

for k:=1 to M-1

c:=P[k+1] // current character of P

v:=OF[k]

while: P[v+1] ≠ c and v ≠ 0

v:=OF[v]

if P[v+1]=c

OF[k+1]:=v+1

else

OF[k+1]:=0

return OF table

Overlap function: time complexity

The computation of OF is performed in time O(M) since:

• the total complexity is proportional to the total number of times the value of
v is changed

• this value is increasing by one (or remains zero) in the for loop, and in total,
during the entire algorithm, it is increasing not more than by M units

• in addition, the value of v is decreasing inside the while loop, but since v is
never less than zero, the total number of units by which it is decreasing can
not be more than the number it has been increasing, therefore it is bounded
by M too.

The time is therefore less than 2M: O(M)

If we sum up the length of all the red lines (increasing value of v), the result

will be <=M. Therefore, the total length of blue lines (decreasing value of v)

cannot be more than M in total

Overlap function table

 Is called in the modern literature the border

array

Overlap Function - again
1 2 3 4 5 6

a a b a a a

0 1 0 1 2 2OF

Advance in T Compare P[1]

Stay in T Compare P[1]

Stay in T Compare P[2]

Stay in T Compare P[1]

Stay in T Compare P[2]

Stay in T Compare P[3]

Advance in T Compare P[3]

pos OF

1 0

2 1

3 0

4 1

5 2

6 2

The OF values tell where to position the

start of the next comparison

They also tell which character to

compare in P and whether to advance

or not the pointer in T

For example, if mismatch occurred at

pattern position j=5, from OF(5-1)=1 the

start k is 1 position backwards from a

current position i in T, and we compare

the same character in T with the

character OF(5-1)+1=2 in P, since we

know that the first 1 character matches

T starting from k

Finite state automaton

 FSA is a model of behavior composed of a

finite number of states, transitions between

those states, and actions.

 It is similar to a "flow graph" where we can

inspect the way in which the logic runs when

certain conditions are met.

i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

State – comparing

T[i] with A at pos 1

i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

Transition in

case of match

Transition in

case of

mismatch

Action: advance i

0 1 0 1 2 2OF

Where the transition in

case of failure is

directed, is determined

by the value of an

overlap function

That is why OL

function is called also

a failure function

i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

0 1 0 1 2 2OF

i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

0 1 0 1 2 2OF

A

4

i++

i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Report

occurren

ce at

pos i-M

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

Report 7-6=1

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

Etc…

Automaton for a set of patterns

 The KMP automaton can be build for a set of

patterns

 In this case we are simultaneously finding the

positions of several patterns in T by

streaming T through the automaton

 The automaton for a set of patterns is left as

an exercise for you and may be chosen as a

project (the Aho-Corasick algorithm)

References

 http://en.wikipedia.org/wiki/Knuth-Morris-

Pratt_algorithm

 http://www.ics.uci.edu/~eppstein/161/960227.

html

 Dan Gusfield. Algorithms on strings, trees,

and sequences. Computer science and

computational biology. Cambridge University

press, 1999.

http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://www.ics.uci.edu/~eppstein/161/960227.html
http://www.ics.uci.edu/~eppstein/161/960227.html

