
CSC 343
Introduction to databases

http://www.cdf.toronto.edu/~csc343h/summer/

Summer 2016

By Marina Barsky

The world of data

• We aggressively acquire and keep data forever

• We feel real freedom when all data is available

• Implications for our live are enormous

Ubiquitous databases

Ubiquitous databases

Ubiquitous databases

Data science

• Empirical Science – collect
and systematize facts

• Theoretical Science –
formulate theories and
empirically test them

• Computational Science –
run automatic proofs,
simulations

• e-Science (Data Science)
– collect data without clear
goal - and test theories, find
patterns in the data itself

What’s a database?

Database (DB): a collection of information that exists over a
long period of time.

Is the WWW a database?

• Crawler indexes pages on the web and we can search for
pages by keyword

• Source data is mostly “prose”: unstructured and untyped

• Public interface is search only:

• can’t modify the data

• can’t get summaries, complex combinations of data

• Few guarantees provided for freshness of data, consistency
across data items, fault tolerance, …

“Search” vs. Query

• Try actors who donated to presidential candidates in your
favorite search engine.

• Now try engineers who donated to presidential candidates

If it isn’t “structured”, it can’t be searched!

A “Database Query” Approach
Actors dataset Donors dataset

“Yahoo Actors” JOIN “FECInfo”

Q: Did it Work?

(From Telegraph research group @Berkeley)

Thought Experiment 2:

• You’re updating a file.

• The power goes out.

• Which changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

A) All B) None C) All Since Last Save D) ???

Is a File System a Database?

Thought Experiment 1:

• You and your project partner are editing the same file.

• You both save it at the same time.

• Whose changes survive?

• Thought Experiment 2:

–You’re updating a file.

–The power goes out.

–Which changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

A) All B) None C) All Since Last Save D) ???

Is a File System a Database?
• Thought Experiment 1:

• You and your project partner are editing the same file.

• You both save it at the same time.

• Whose changes survive?Q: How do you write
programs over a
subsystem when it
promises you only “???” ?

To have a real database we need
to solve problems of:
• Scale: data exceeds main memory, specialized (quite

complex) EM algorithms, efficiently implemented

• Sharing: using the same data by multiple user programs
simultaneously (concurrently)

• Fault-tolerance: avoiding data loss

• Consistency: clean consistent snapshots of data, reinforcing
data constraints

Our dream system:

1. Allows to create new databases and specify their schema (logical

structure of the data) in a simple language

2. Enables data query and modification, using a simple language

3. Supports intelligent storage of very large amounts of data.

a. Enforcing constraints (to not allow the insertion of two different

employees with the same SIN).

b. Efficient access to the data for queries and modifications (Indexes).

4. Controls access to data from many users at once (concurrency), without

allowing “bad” interactions that can corrupt the consistency.

5. Recovers from software failures and crashes.

Such system exists:

Database Management System (DBMS) - complex
software for storing and managing databases.

So what is a database?

A database is a collection of data managed by a
DBMS.

Evolution of Database
Management Systems

Early database management
systems: files
• First commercial database systems evolved from file

systems.

• File systems allow storage of big amounts of data

• They do not guarantee data safety

• They do not resolve an issue of modifying the same file
concurrently

• No query language for the data in files.

• Need to write programs for extracting even the most
elementary information from a set of files.

History: network databases (1969)

• Insertions, updates, and deletions are complex and inefficient

• Lack of Data Independence: a change in structure demands a
change in the application

• Unanticipated queries cannot be performed efficiently

Order

Pen

Pencil

Eraser

Customer

Sales rep

History: hierarchical databases
(1960-s - IBM IMS)

• Data is repetitively stored in many different files.

• Slow search – scan entire model from top to bottom

• One-to-many relationships only (trees)

Order Pen

Pencil

Eraser

Customer Sales rep

Order

Pencil

master

detail

History: relational databases
(1992)
God made the integers;

all else is the work of man.
L. Kronecker, 19-th century mathematician

Codd made relations;

all else is the work of man.
R. Ramakrishnan

Edgar Codd
(1923-2003)

Benefits of relational model

Think in terms of tables, not bits on disk.

“Activities of users at terminals should remain unaffected
when the internal representation of data is changed.”

• Pre-relational: if your data changed, your application
broke

• Early RDBMSs were buggy and slow, but required only
5% of the application code

Relational databases: key idea

Programs that manipulate tabular data exhibit an
algebraic structure allowing reasoning and
manipulation independently of physical data
representation

Can apply relational algebra!

Ted Codd’s vision

• A database system should present the user with a view of
data organized as tables (also called relations).

• Behind the scene there could be a complex data structure
that allows rapid response to a variety of queries. But the
user would not be concerned with the storage structure.

• Queries could be expressed in a very high-level language,
which greatly increases the efficiency of database
programmers.

Example: RDBMS vs Files

• Suppose we have stored in a file called Employees records
having the fields

(emp_code, name, dept_code)

• and in another file called Departments records having the
fields:

(dept_code, dept_name)

Suppose now that given an employee, for instance with name
“Smith”, we want to find out what department is he working
for.

Files: solution

In the absence of DBMS we have to write a program
which will:

1. open the file Employees

2. declare a variable of the same type as the records stored in the file

3. scan the file:

while the end of the file is not yet encountered,

assign the current record to above variable.

if the value of the name field is “Smith” then remember
the value of the dept_code field. Suppose it is “100”

4. search in a similar way for a record with “100” for the dept_code in
the Department file.

5. print the dept_name when successfully finding the dept_code.

Very painful procedure

Modern RDBMS solution

Compare it to the short and elegant SQL query

SELECT dept_name

FROM Employees, Department

WHERE Employees.name="Smith" AND
Employees.dept_code = Department.dept_code

Early applications of DBMS’s

• Airline reservation systems

• Banking systems

• Corporate records

Data composed of many small items, and various queries and
modifications on them.

Case 1: Airline Reservation
Systems
o Here the items include:

Reservations by a single customer on a single flight, including such
information as assigned seat…

Flights information – the airport they fly from and to, their departure
and arrival times…

Ticket information – prices, requirements, and availability.

o Typical queries ask for:

Flights leaving about a certain time from one given city to another,
seats available, prices.

o Typical data modifications include:

Making a reservation in a flight for a customer, assigning a seat, etc.

Case 1: Airline Reservation
Systems
• Many agents access parts of the data at any given time.

DBMS must allow concurrent accesses and prevent
problems such as two agents assigning the same seat
simultaneously.

• DBMS should also protect against loss of records if the
system suddenly fails.

Case 2: Banking Systems

oData items include:
Customers, their names, addresses etc.

Accounts, and their balances

Loans, and their balances

Connections between customers and their accounts and loans.

o Typical queries are those for account and loan balances.

o Typical modifications are those representing a withdrawal
from or deposit to an account.

Case 2: Banking Systems

• In banking systems failures cannot be tolerated.

• E.g, once the money has been ejected from an ATM
machine, the bank must record the debit, even if the
power immediately fails.

• On the other hand, it is not permissible for the bank to
record the debit and then not to deliver the money
because the power fails.

The proper way to handle this operation is far from obvious and
is one of the significant achievements in DBMS architecture.

Example of a Relational DB

• Relations = Tables. Columns are “headed” by attribute names.

• Rows = Tuples

Queries Examples

1. What’s the balance of account “67890” ?

2. Which are the savings accounts with negative balances?

A relation Accounts might be:

accountNo balance type

12345 1000.00 savings

67890 2846.92 checking

… … …

1 SELECT balance
FROM Accounts
WHERE accountNo = 67890;

2 SELECT accountNo
FROM Accounts
WHERE type = ‘savings’ AND balance < 0;

Components of a Database
Management System
Overview

DBMS Architecture

• The “cylindrical” component
(representing persistent storage)
contains not only data, but also
metadata, i.e. info about the
structure of data.

• If DBMS is relational, metadata
includes:
• names of relations,
• names of attributes of

those relations, and
• data types for those

attributes (e.g., integer or
character string).

DBMS Architecture

• A database also maintains
indexes for the data.

• Indexes are part of the
stored data.

• Description of which
attributes have indexes is
part of the metadata.

Storage Manager

• The job of the Storage Manager
is to

• obtain data from the data
storage, and

• return new data to the data
storage when updated.

• Storage Manager has two
components:

• File Manager handles on-
disk files.

• Buffer Manager handles
main memory.

Storage Manager

Storage Manager has two
components:

• File Manager handles files.
• Keeps track of the location of files

• Obtains block*(s) of a file on
request from the buffer manager.

• Buffer Manager handles main
memory.

Storage Manager

Storage Manager has two
components:

• File Manager handles files.
• Keeps track of the location of files

• Obtains block*(s) of a file on
request from the buffer manager.

• Buffer Manager handles main
memory.

*Block - smallest unit of data that is
read/written from/to disk.

1 block = 1 page ≈ 4,000 to 16,000
bytes.

Query Processor

• Query Processor handles:
queries and modifications to the
data.

• Finds the best way to carry
out a requested operation
and

• Issues commands to the
storage manager which will
carry them out.

Example: Query optimization
A bank has a DB with two tables:

Customers (name, SIN, address),

Accounts (accountNo, balance, SIN)

Query: “Find the balances of all
accounts of which Sally is the owner.”

SQL:

SELECT Accounts.balance

FROM Customers, Accounts

WHERE Customers.SIN = Accounts.SIN
AND Customers.name = 'Sally';

Example: Query optimization
SELECT Accounts.balance

FROM Customers, Accounts

WHERE Customers.SIN = Accounts.SIN
AND Customers.name = 'Sally';

This query - if executed naively:

• Pairs tuples of tables specified in the
FROM-clause into a new table R.

• Chooses from R the tuples satisfying the
condition in the WHERE clause.

• Produces as answer only the values of
attributes in SELECT-clause.

The performance would be terrible,
because of the usually enormous
(quadratic) size of all pairs of tuples.

Example: Query optimization
SELECT Accounts.balance

FROM Customers, Accounts

WHERE Customers.SIN = Accounts.SIN
AND Customers.name = 'Sally';

Query processor will cleverly create a
plan which inexpensively:

• Retrieves the tuple for “Sally” and
gets the SIN number

• Retrieves the account tuples for
this SIN number

Transaction manager

Transaction Manager assures that:

• several queries running
simultaneously do not interfere with
each other and that,

• the system will not end up with
corrupted data even if there is a
power failure.

Transaction manager

Transaction Manager interacts with:

• Query Manager

Because it may need to delay
certain query operations to
avoid conflicts.

• Storage Manager

Because schemes for protecting
data involve storing a LOG of
changes to the data.

DBMS is a very complex system

Good news: it has been already built for you to use

Modern RDBMS’s guarantee:

• Efficient algorithms for out-of-memory inputs

• Enforcing consistency of data

• Data safety

• Multi-user concurrency

• Convenient interface – level of abstraction above physical
data storage: declarative language SQL

Database studies

• Design of databases (data modeling).

• How to structure information?

• How to connect data items?

• What constraints should the data satisfy?

• Database programming.
• How to query and modify the database?

• How is database programming combined with conventional
programming?

• Database system implementation.
• How does one build a DBMS, including such matters as query

processing, transaction processing and organizing storage for efficient
access?

Database studies

• Design of databases (data modeling).

• How to structure information?

• How to connect data items?

• What constraints should the data satisfy?

• Database programming.
• How to query and modify the database?

• How is database programming combined with conventional
programming?

• Database system implementation.
• How does one build a DBMS, including such matters as query

processing, transaction processing and organizing storage for efficient
access?

That is in
CSC443

In this course we explore database
world from the point of view of:

Designer

Developer

User

Main topics

• Database design and data modeling

• Data storage and manipulation through DBMS

• Queries about data in relational model

• Alternative data models and their applications

• Embedding databases into conventional programs

Both theory and practice!

DBMS`s used for this course

• PostgreSQL: advanced open source database with
enterprise-class features comparable to Oracle and DB2

• SQLite: self-contained, serverless, zero-configuration,
transactional SQL database engine, for small data collections

• MongoDB: free and open-source cross-platform document-
oriented database

Course mechanics

• 10 Homework assignments: 10%

• 3 major project-oriented Assignments: 45%

• Midterm: 10%

• Final exam: 35%

Textbook: A First Course in Database Systems by Jeffrey D.
Ullman, and Jennifer D. Widom, Pearson, 3-rd edition, SBN-10:
013600637X, 2008.

Why take this class?

A. Database systems are at the core of CS

B. They are incredibly important to society

C. The topic is intellectually rich

D. It isn’t that much work

E. Looks good on your resume

F. Be a data ninja

Socrative.com Room: OLKOQEWE

• Shift from computation to information

• True in corporate computing for years

• Web made this clear for “the rest of us” by the end of 90’s

• Increasingly true in scientific computing

• Need for DB technology has exploded

• Corporate: retail swipe/clickstreams, “customer relationship
mgmt”, “supply chain mgmt”, “data warehouses”, etc.

• Web: not just “documents”. Search engines, maps, e-
commerce, blogs, wikis, social networks.

• Scientific: digital libraries, genomics, satellite imagery,
physical sensors, simulation data

• Personal: Music, photo, & video libraries. Email archives. File
contents (“desktop search”).

A. Database systems are the core of CS

Why take this class?

Why take this class?

“Knowledge is power.” --
Sir Francis Bacon

“With great power comes
great responsibility.” --
Spiderman's Uncle Ben

B. DBs are incredibly important to society

• Policy-makers should
understand technological
possibilities

• Informed Technologists needed
in public discourse

• Everyone should be provided
with access to data

• Sophisticated algorithms for massive data

• Complex system architecture and implementation

• Resource management and scheduling of concurrent
transactions

• Query language design, semantics and optimization

• Data modeling

• Data analytics

Why take this class?
C. The topic is intellectually rich.

Why take this class?

• Bad news: It is a fair bit of work.

• Good news: it is a lot of fun (at least in the eye of the
instructor)

D. It isn’t that much work.

Yes, but why?

• Data Management is simultaneously the most boring and
most interesting technology around!

• Database systems are “merely” a means to an end.

• We want cool applications.

• …how long to prototype/build your new application?

• …how long to add features?

• …what happens when the power goes out, disk crashes,
etc? (cool applications don’t lose user data)

Why take this class?
E. Looks good on my resume.

http://projects.oicr.on.ca/files_proj/7445/file/app.html

Why take this class?
F. Be a data ninja.

xkcd.com/208

I know
Database Systems!

