By Marina Barsky

Multivalued Dependencies & Fourth Normal Form (4NF)

Lecture 17

A New Form of Redundancy

- Multivalued dependencies (MVD's) express a condition among tuples of a relation that exists when the relation is trying to represent more than one many-many relationship.
- Then certain attributes become independent of one another, and their values must appear in all combinations.

Example

Drinkers (name, addr, phones, beersLiked)

- A drinker's phones are independent of the beers they like.
- Thus, each of a drinker's phones appears with each of the beers they like in all combinations.
 - If a drinker has 3 phones and likes 10 beers, then the drinker has 30 tuples
 - where each phone is repeated 10 times and each beer 3 times
- This repetition is unlike redundancy due to FD's, of which name->addr is the only one.

Tuples Implied by Independence

If we have tuples:

na	me	addr	phones	beersLiked
SU	9	а	p1	b1
SU	9	а	p2	b2
Then the	ese ti	iples mu	st also be	in the relation:
🔪 sue	5	а	p2	b1
SU	5	а	p1	b2

Definition of MVD

 A multivalued dependency (MVD) X ->->Y is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.

Example

Drinkers (name, addr, phones, beersLiked)

FD: name -> addr

MVD's: name ->-> phones

name ->-> beersLiked

- Key is
 - {name, phones, beersLiked}.
- Which dependencies violate 4NF ?

– All

Example, Continued

- Decompose using name -> addr:
- 1. Drinkers1 (name, addr)
 - In 4NF, only dependency is name -> addr.
- 2. Drinkers2(name, phones, beersLiked)
 - Not in 4NF. MVD's name ->-> phones and name ->-> beersLiked apply.
 - Key?
 - No FDs, so all three attributes form the key.

Example: Decompose Drinkers2

- Either MVD name ->-> phones or name ->-> beersLiked tells us to decompose to:
 - Drinkers3(name, phones)
 - Drinkers4(name, beersLiked)

Fourth Normal Form

- The redundancy that comes from MVD's is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats MVD's as FD's when it comes to decomposition, but not when determining keys of the relation.

4NF Definition

- A relation R is in 4NF if whenever X ->->Y is a nontrivial MVD, then X is a superkey.
 - Nontrivial means that:
 - 1. Y is not a subset of X, and
 - 2. X and Y are not, together, all the attributes.
 - Note that the definition of "superkey" still depends on FD's only.

BCNF Versus 4NF

- Remember that every FD X ->Y is also an MVD, X ->->Y.
- Thus, if *R* is in 4NF, it is certainly in BCNF.
 - Because any BCNF violation is a 4NF violation.
- But *R* could be in BCNF and not 4NF, because MVD's are "invisible" to BCNF.

Decomposition and 4NF

- If X ->->Y is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.
 - 1. XY is one of the decomposed relations.
 - 2. All but Y X is the other.

Example

Drinkers (name, areaCode, phone, beersLiked, manf)

- A drinker can have several phones, with the number divided between areaCode and phone (last 7 digits).
- A drinker can like several beers, each with its own manufacturer.

Example, Continued

 Since the areaCode-phone combinations for a drinker are independent of the beersLiked-manf combinations, we expect that the following MVD's hold:

name ->-> areaCode phone

name ->-> beersLiked manf

Example Data

Here is possible data satisfying these MVD's:

name	areaCode	phone	beersLiked	manf
Sue	650	555-1111	Bud	A.B.
Sue	650	555-1111	WickedAle	Pete's
Sue	415	555-9999	Bud	A.B.
Sue	415	555-9999	WickedAle	Pete's

Another Example

- The relation is Courses(Number, DeptName, Textbook, Professor).
 - Each Course can have multiple required Textbooks.
 - Each Course can have multiple Professors.
 - Professors uses every required textbook while teaching a Course.

Number	DeptName	Textbook	Professor
4604	CS	FCDB	Ullman
4604	CS	SQL Made Easy	Ullman
4604	CS	FCDB	Widom
4604	CS	SQL Made Easy	Widom

The relation is in BCNF since there are no non-trivial FDs.

Is there any redundancy?

Relationships Among Normal Forms

Property	ЗNF	BCNF	4NF
Eliminates redundancy due to FDs	Maybe	Yes	Yes
Eliminates redundancy due to MDs	No	No	Yes
Preserves FDs	Yes	Mby≣be	Maybe
Preserves MDs	Maybe	Maybe	Maybe

