
Alternative data models:
1. RDF

Lecture 18

By Marina Barsky

Strengths of relational model

• Logical data independence

• Ad hoc queries

• Mature technologies

Alternative data models

• The goal:

• Explore alternative ways of data modeling

• Overview of existing tools

• Matching the tool to the task at hand

• Use cases that require alternative models

• Semantics of data models

Semantics – the study of meaning

We like mushrooms

Mushrooms scare Ann

• The same word has different meaning – different semantics

• We determine its semantics intuitively, based on our
previous knowledge and the rules of the language

• We need to explicitly explain meaning to computer
programs

Use case 1. Restaurant search
web app

• Data about restaurants, their prices, addresses,
cuisine, and open hours

Single table model: spreadsheets

Restaurant Address Cuisine Price Open

Deli Llama Peachtree Rd Deli $ Mon, Tue, Wed, Thu, Fri

Peking Inn Lake St Chinese $$$ Thu, Fri, Sat

Thai Tanic Branch Dr Thai $$ Thu, Fri, Sat, Sun

Lord of the
Fries

Flower Ave Fast Food $$ Tue, Wed, Thu, Fri, Sat,
Sun

Wok This Way Second St Chinese $ Mon, Tue, Wed, Thu, Fri,
Sat, Sun

Award
Wieners

Dorfold
Mews

Fast Food $ Mon, Tue, Wed, Thu, Fri,
Sat

Semantics of a single table

• The row and column explains what the value means to a
person reading the data.

• The fact that Chinese is in the row Peking Inn and in the
column Cuisine tells us that “Peking Inn serves Chinese
food.”

• You know this because you understand what restaurants
and cuisines are and because you’ve previously learned how
to read a table.

Limitations of a single table model

• Multi-valued columns are not searchable

• find the restaurants that will be open late on Friday
night?

• Interconnected tables referencing the same data

• a spreadsheet of our friends’ reviews of the restaurants
- no easy way to search across both documents to find
restaurants near our homes that our friends recommend

Relational model

Week Days closeday

Cuisine

nameid

Restaurant

name

id

address

offers

open

open

price

Restaurant (id, name, address, price, cuisineID)
Cuisine (id, name)
Open (restaurant_id, day, open, close)

Relational model: sample tables

Restaurant

id Name Address CuisineID Price

1 Deli
Llama

Peachtree
Rd

1 $

2 Peking
Inn

Lake St 2 $$$

Cuisine

id Name

1 Deli

2 Chinese

3 Thai

4 Fast food

Hours

Rest_id Day Open Close

1 Mon 11 16

1 Tue 11 16

1 Wed 11 16

1 Thu 11 19

1 Fri 11 20

2 Thu 5 22

2 Fri 5 23

2 Sat 5 23

Benefits

• No redundancy.
• Ad hoc queries

Find all the restaurants that will be open at 10 p.m. on a
Friday
SELECT Restaurant.Name, Cuisine.Name, Hours.Open, Hours.Close

FROM Restaurant, Cuisine, Hours

WHERE Restaurant.CuisineID=Cuisine.ID

AND Restaurant.ID=Hours.RestaurantID

AND Hours.Day="Fri"

AND Hours.Open<22

AND Hours.Close>22

Semantics of relational model

• The meaning of each value is described by the schema

• Each datum is labeled with what it means by the table in
which it appears and by the column

• The model captures entities (restaurant, cuisine, week day)
and relationships between them

• We convey this semantics to the computer program. We do
not need to define what the restaurant is, but we can still
get a list of restaurants with given properties

Extending scope of our search
web app
• Our restaurant search app is up and running

• We receive a new data to handle: bars

Bar

Name Address DJ Specialty drink

The bitter end 14th avenue No Beer

Peking Inn Lake St No Scorpion Bowl

Hammer Time Wildcat Dr Yes Hennessey

Integrating new data with existing
model
• We cannot store bars in a separate table because

restaurants and bars are related

• Many restaurants serve as bars later in the evening

• Bars and restaurants have common properties

• Someone might want to query across both tables

Subclasses?

• Venue (id, name, address)

• Restaurant (id, cuisineID)

• Bar (id, DJ, specialty)

Open

to Weekdays

Venue

id name address

Restaurant

isa isa

Bar

DJ?

Specialty

Offers

to Cuisine

Relational model: problem 1
dealing with constantly evolving
schema
• Relational databases are great for datasets where the data

model is understood up front and there is a typical usage
pattern

• Product catalogs, contact lists, payroll systems

• Data integration across the Web

• Rapidly changing types of data: venues could include a
live music hall or a rental space for events

• Cannot predict how data will be used

Changing the schema each time is
expensive!
• Schema migration:

• Load data from old tables into new tables

• Update all triggers, functions and procedures

• Update all queries and views

• Update web site code

• Techniques for schema migration:

• ORM (Hibernate)

• Stored procedures

• Complexities and bugs …

• Downtime…

Relational model: problem 2
Very complex schemas
• Incredibly complicated schemas which include different data types

• Hundreds or thousands of inter-connected entities

• Challenge of using someone else’s relational data is understanding how

the various tables relate to one another.

• This information—the data about the data representation—is called

metadata

• Too frequently, data is archived, published, or shared without this

critical metadata. Schemas need not become very large before

metadata recovery becomes nearly impossible.

Movies and movie goers E/R

Hospital E/R (left upper corner)

Designing more flexible model
for web data integration

Making it extendable from the
beginning

Attribute meaningid

ValueVenue

name

id

address

Attribute ID

Flexible schema
Venue

id Name Address

1 Deli Llama Peachtree Rd

2 Peking Inn Lake St

3 Thai Tanic Branch Dr

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

Flexible schema: adding concert
venues

Venue

id Name Address

1 Deli Llama Peachtree Rd

2 Peking Inn Lake St

3 Thai Tanic Branch Dr

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

5 Live Music

6 Music Genre

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

3 5 Yes

3 6 Jazz

Converting everything into
attribute-value pairs

Attributes

id Meaning

1 Cuisine

2 Price

3 Specialty

4 DJ

5 Live Music

6 Music Genre

7 Name

8 Address

Properties

VenueID Attribute ID Value

1 1 Deli

1 2 $

2 1 Chinese

2 2 $$$

2 3 Scorpion Bowl

2 4 No

1 7 Deli Llama

2 7 Peking Inn

1 8 Peachtree Road

2 8 Lake ST

Joining everything into a single
table

Venues

VenueID Attribute Value

1 Cuisine Deli

1 Price $

2 Cuisine Chinese

2 Price $$$

2 Specialty Scorpion Bowl

2 DJ No

1 Name Deli Llama

2 Name Peking Inn

1 Address Peachtree Road

2 Address Lake ST

Semantic meaning

• Fully parameterized venue table - represent arbitrary facts about
food and music venues

• This three-column format is known as a triple

• Each triple is composed of a subject, a predicate, and an object.

• Each triple represents simple linguistic statements

Venue 1 has name Deli Llama

Subject Predicate Object

Venue 1 serves deli

Subject Predicate Object

Semantic table
Venues

Subject Predicate Object

S1 Cuisine Deli

S1 Price $

S2 Cuisine Chinese

S2 Price $$$

S2 Specialty Scorpion Bowl

S2 DJ No

S1 Name Deli Llama

S2 Name Peking Inn

S1 Address Peachtree Road

S2 Address Lake ST

Semantic modeling

• The subject in a triple corresponds to an entity—a “thing”
for which we have a conceptual class.

• People, places, even periods of time and ideas.

• Predicates are a property of the entity to which they are
attached.

• A person’s name or birth date or a business’s mailing
address are all examples of predicates.

• Objects fall into two classes:

• entities that can be the subject in other triples

• literal values such as strings or numbers.

Data graph

• Multiple triples can be tied together by using the same
subjects and objects in different triples

• As we assemble these chains of relationships, they form a
directed labeled graph

Graph of venues: sample node
Deli

Llama

Deli

$$

S1

Name

Cuisine

Price

Integrating new entity:
neighborhood

• Let’s relax the meaning of the first column and assert that subjects can
represent any entity

• We can then append neighborhood information to the same table as our
restaurant data

Neighborhoods

Subject Predicate Object

S11 Name Financial District

S11 Contained-by S12

S12 Name Downtown core

S12 Contained-by Toronto

S13 Name Greektown

S13 Contained-by S14

S14 Name East end

S14 Contained-by Toronto

Graph of neighborhoods: sample
node

Greek
town

S14

East
end

S13

Name

Contained-by

Contained-by

Name

Toronto

Integrating data from multiple
sources

Deli
Llama

Deli

$$

S1

Name

Cuisine

Price

Greek
town

S14

East
end

S13

Name

Contained-by

Contained-by

Name

Toronto

Located-at

Advantages of semantic model
1/5

• Very flexible – we can add any new data type into
the same table
• Espresso machine locations, coffee shops, book stores,

gas stations …

Advantages of semantic model
2/5
• Self-describing data – do not need a special schema

definition
• the semantic relationships that previously were inferred

from the table and column are contained in data itself

Advantages of semantic model
3/5
• Easy integration of data from multiple sources

• Just add new data to the same table and create a link to
the old data if needed

Advantages of semantic model
4/5
• We can add new features without affecting legacy

software – no schema migration, there is the same
simple schema all the time

Advantages of semantic model
5/5
• Simple common data interface:

• everyone can write an app in Python, Ruby or Ruby to
plot crime statistics on the map or find cuisines in the
walking distance from the movie

Semantic web

• RDF (Resource Description Framework) web data can be
thought of in terms of a decentralized directed labeled
graph wherein the arcs start with subject URIs, are labeled
with predicate URIs, and end up pointing to object URIs or
scalar values

• Uniform Resource Identifier (URI) is a string of characters
used to identify a resource (for example for books -
urn:isbn:0-486-27557-4)

Example: Celebrities dataset

• Entities – celebrity, relationship, rehab, album,
movie

• Entities can be both subject and object

• Predicates:
• end
• enemy
• person
• released_album
• starred_in
• start
• with

Let’s model celebrity

Britney Spears starred in Crossroads

Subject Predicate Object

Let’s model relationships

Relationship1 with Britney Spears

Subject Predicate Object

Relationship1 with Justin Timberlake

Subject Predicate Object

Relationship1 start 1998

Subject Predicate Object

Relationship1 end 2002

Subject Predicate Object

Celebrity graph: sample node

Crossroads

Britney Spears

Mikey Mouse
Club

Relationship 1

1998
2002

Justin
Timberlake

Shar Jackson

…Baby One
More Time

Rehab 1

16-Feb-2007 17-Feb-2007

starred in

starred in

with
with

start
end

person

start
end

enemy

released album

Example 1. Which celebrities have
dated more than one star?
CREATE VIEW movie_stars AS

SELECT distinct subject FROM celebrities

WHERE predicate = 'starred_in';

CREATE VIEW relationships AS

SELECT distinct R1.object AS celeb1, R2.object AS celeb2

FROM celebrities R1, celebrities R2

WHERE R1.predicate = 'with' AND R2.predicate = 'with'

AND R1.subject = R2.subject AND R1.object < R2.object;

SELECT distinct celeb1, COUNT(celeb2) AS cnt FROM relationships

WHERE celeb2 IN (SELECT * FROM movie_stars)

GROUP BY celeb1

HAVING cnt >=2;

Example 2. Which musicians have
spent time in rehab?
CREATE VIEW musicians

AS select distinct subject from celebrities

where predicate = 'released_album';

CREATE VIEW rehab_celebs

AS SELECT distinct object FROM celebrities

WHERE predicate = 'person';

SELECT * from musicians INTERSECT SELECT * from
rehab_celebs;

Triplestores implementation:
index
• A common technique: cross-indexing the subject, predicate,

and object in all different permutations (ops, osp, pos, pso,
sop, spo) so that all triple queries can be answered through
fast lookups

• Each of the indexes holds a different permutation of each
triple that is stored in the graph. The name of the index
indicates the ordering of the terms in the index (i.e., the pos
index stores the predicate, then the object, and then the
subject, in that order).

Triplestores implementation:
query format
• The basic query method takes a (subject, predicate, object)

pattern and returns all triples that match the pattern.

• Terms in the triple that are set to None are treated as
wildcards.

• The triples method determines which index to use based on
which terms of the triple are wildcarded, and then iterates
over the appropriate index,

Queries can be implemented as
triple matchings
(*, ‘with’, ‘Britney Spears’)

• We can put the results into a list variable – relationships

(‘?relationships’, ‘with’, ‘Britney Spears’)

• And use the results in a subsequent queries:

(‘relationships’, ‘with’, ‘?partners’)

http://linkeddata.org/

The goal: exposing,
sharing, and
connecting pieces
of data,
information, and
knowledge on the
Semantic Web using
URIs and RDF

NoSQL ("Not only SQL")
databases

NoSQL database systems

• New generation of non-relational database systems

• Properties:

• Flexibility: schema-less

• Scalability: inherently parallelizable

Main types of NoSQL systems

• Key-value databases: key-value pairs

Redis, SimpleDB

• Document databases: key-value stores where values are
entire documents

CouchDB, MongoDB

• Wide-column databases: multi-dimensional sorted map

Google's BigTable, Cassandra

• Graph databases: store data as connected nodes of a graph

HyperGraphDB, multiple implementations of semantic
RDF triplestores

