
Introduction to NoSQL

Lecture 19

By Marina Barsky

Outline

• Relational vs. NoSQL databases

• the value of relational databases

• new requirements and NoSQL features

• flexible data models

• Types of NoSQL databases

• key-value stores

• document databases

• column-family databases

• graph databases

• Concurrency

• Usage patterns

History

1980

1990

2000

2010

Relational databases

• A standard data model is basis for standard
query language SQL

• Mature technologies:

• Physical organization of data on disk

• Indexes: B+-Trees, hash indexes

• Query optimization, operator
implementations

• Concurrency control (ACID)
• transactions: atomicity, consistency,

isolation, durability

• Many reliable integration mechanisms
• “shared database” integration of

multiple applications

Impedance mismatch

• Mismatch between tables and data structures in memory

• For object-oriented languages: invented Object-Relational Mapping
(ORM)

• For other languages (functional, c) – data structures just do not
match

Object-oriented databases

1980

1990

2000

2010

Relational databases

Object-oriented databases

Why object-oriented databases
disappeared
• They were not useful for

integrating applications
through databases

• For integration through
databases, data should be
broken into atomic datum –
to be used by different
applications

Customer
DB

Helpdesk

Registration
website

Warehouse

Relational databases predominate

1980

1990

2000

2010

Relational databases

Object-oriented databasesRelational databases

Current Trends: Big Data

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Current Trends: Lots of traffic

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Current Trends: Cloud Computing

source: http://www.profitbricks.com/what-is-iaas

http://www.profitbricks.com/what-is-iaas

Scaling up

Two alternatives:

• Bigger servers

• Lots of little boxes in massive grids

Partitioning

• Vertical: normalization, splitting into smaller tables

• Horizontal: splitting single table into multiple sets of rows

• Horizontal partitioning when rows are distributed across
multiple nodes based on some attribute (for example,
zip code) is called sharding

Parallelism is not natural for
relational databases
• SQL designed to run as a single node

• Both vertical partitioning and horizontal partitioning
introduce performance bottlenecks:

• Increased latency when querying across more than one
shard

• Indexes are sharded by one dimension, so that some
searches are optimal, and others are slow or impossible

• Cross-shard consistency and durability is hard to achieve
due to the more complex failure modes of a set of
servers

New requirements on data
management

Trends Requirements

• Volume of data
.

• Real scalability
• massive database distribution
• dynamic resource management

• Cloud comp. (IaaS) • horizontally scaling systems

• Velocity of data . • Frequent update operations

• Big traffic • Massive read throughput

• Variety of data • Flexible database schema

History

1980

1990

2000

2010

Relational databases

NoSQL databases

Google BigTable (2006)

• Data model: three-dimensional indexed sorted map

• Input (row, column, timestamp)  Output (cell contents)

16

html…
at t1

R
o

w
s

Columns

Time

“com.cnn.www”

.

.

.

.

“contents:”

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf

Column-family

• Columns are grouped in column-families
• Different fields describing html documents are stored in

different column-families: for fast search and ranking

”com.ccn.www”

column family: lang

row key row

“contents:html” “param:lang” “param:enc” “a:cnnsi.com” “a:ihned.cz”

column names

<html>.

..<html>.

..

t2

t6

<html> EN UTF-8 CNN.com CNN

t2 t2 t3 t7

Partitioning: tablets

• The entire BigTable is split into tablets of
contiguous ranges of rows

• Approximately 100MB to 200MB each

• One machine services 100 tablets

• Fast recovery in event of tablet failure

• Fine-grained load balancing

• 100 tablets are assigned non-
deterministically to avoid hot spots of
data being located on one machine

• Tablets are split as their size grows
18

Tablet1

Tablet2

Locating Tablets
• Metadata for tablet locations

• Similar to B-tree index: row ids are sorted: interval is a key, and an IP of a

corresponding tablet is a value

• No master node – no bottleneck

-Stored in
lock service

-Pointer to root

-Map of rows in
second level
of metadata

-Metadata for actual
tablets

-Pointers to each
tablet

-Tablets

Amazon: Dynamo DB (2007)

• Data model:
simple hash table (map): key-value data store

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Dynamo: architecture

• Implemented as distributed hash table (DHT) based on
consistent hashing – hashing into the place on the ring

• Elastic scalability: able to scale out one node at a time, with
minimal impact on the system

• Decentralization

General definition of NoSQL
databases

• What is “NoSQL”?
• term used in late 90s for a different type of

technology: Carlo Strozzi: http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en_US/NoSQL/

• “Not Only SQL”?
• but many RDBMS are also “not just SQL”

• “NoSQL is an accidental term with no precise definition”
• first used at an informal meetup in 2009 in San

Francisco (presentations from Voldemort, Cassandra,
Dynomite, HBase, Hypertable, CouchDB, and
MongoDB)

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/

Common characteristics

• Not relational

• Cluster-friendly

• Schema-less

• Open source

Data models

1. Key - value (hash table)

2. Key - document

3. Wide-column

4. Graph

1. Key-value stores

• Value can be anything

• Search only by key – no structure inside the value

• Basic operations:
Get the value for the key value:= get(key)
Put a value for a key put(key, value)
Delete a key-value delete(key)

Key-value Stores: Representatives

Project
Voldemort

Ranked list: http://db-engines.com/en/ranking/key-value+store

LevelDB

http://db-engines.com/en/ranking/key-value+store

2. Document stores

• Also key-value pairs

• But value is a semi-structured text data - document

• Documents are self-describing pieces of data

• Hierarchical tree data structures

• Nested associative arrays (maps), collections, scalars

• XML, JSON (JavaScript Object Notation), BSON, …

• Can query inside document: building search indexes on
various keys/fields

Data Formats

• Structured Text Data

• JSON, BSON (Binary JSON)
• JSON is currently number one data format used on the Web

• XML: eXtensible Markup Language

• RDF: Resource Description Framework

• Binary Data

• often, we want to store objects (class instances)

• objects can be binary serialized (marshalled)
• and kept in a key-value store

• there are several popular serialization formats
• Protocol Buffers, Apache Thrift

JSON: Basic Information
• Text-based open standard for data interchange

• Serializing and transmitting structured data

• JSON = JavaScript Object Notation
• Originally specified by Douglas Crockford in 2001
• Derived from JavaScript scripting language
• Uses conventions of the C-family of languages

• Filename: *.json

• Internet media (MIME) type: application/json

http://www.json.org

http://www.json.org/

JSON: Data Types (1)

• object – an unordered set of key+value pairs
• these pairs are called properties (members) of an object
• syntax: { key: value, key: value, key: value, ...}

• array – an ordered collection of values (elements)
• syntax: [comma-separated values]

JSON: Data Types (2)

• value – string in double quotes / number / true or
false (i.e., Boolean) / null / object / array

• Can be nested

JSON: Data Types (3)

• string – sequence of zero or more Unicode
characters, wrapped in double quotes

• Backslash escaping

JSON: Data Types (4)

• number – like a C or Java number
• Integer or float
• Octal and hexadecimal formats are not used

JSON data: Example
{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

XML basics
• XML: eXtensible Markup

Language
• W3C standard (since 1996)

• both human and
machine readable

<element attribute="value">content</element>

rule of thumb: data = element tag, metadata = attribute

XML example: books.xml
<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book category="cooking">

<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year><price>30.00</price>

</book>

<book category="children">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year><price>29.99</price>

</book>

<book category="computers">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year><price>39.95</price>

</book>

</bookstore>

XML prologue

XML document tag
(analogous to HTML)

Custom tag

Custom attribute

Equivalent representation of
books.xml using JSON
{

"bookstore":

[

{"category": "cooking", "year": 2005, "price": 30.00,

"title": "Everyday Italian", "author": "Giada De Laurentiis"},

{"category": "computers", "year": 2003, "price": 49.99,

"title": "XQuery Kick Start", "author": "James McGovern"},

{"category": "children", "year": 2005, "price": 29.99,

"title": "Harry Potter", "author": "J K. Rowling"},

{"category": "computers", "year": 2003, "price": 39.95,

"title": "Learning XML", "author": "Erik T. Ray"}

]

}

XML Features

• Document may be valid according to a schema:
• DTD, XML Schema, etc.

• Technologies for parsing: DOM, SAX
• Advanced search technologies:

• XPath, XQuery, XSLT (transformation)

• XML is great for configurations, meta-data, etc.
• XML databases are not widely used
• Currently, JSON format rules:

• compact, easier to write, has all features typically needed

Two main properties of structured
documents: both JSON and XML
• Schema-less – can add new attributes “on-the-fly”

• Self-describing data – data and metadata are stored in the
same document

Binary Data
• Data objects to be stored often originate from

memory structures (objects, class instances)

• Before storing, these objects must be serialized
• Key-value stores can store a binary value

• Serialization (marshalling) can be done
• By your own proprietary (de)serializator
• Using “standard” language-specific way (Java serialization)
• Using a cross-language standard: ProtoBuf, Apache Thrift

Protocol Buffers

• Technique for serializing structured data
• Developed by Google since 2008

○ BSD Licence

• Philosophy:
1. Define the structure of the data

• Using an ProtoBuf interface description language

2. Automatically create source code in multiple programming
languages for (de)serialization of such data

• Compilers for Java, C++, Python, JavaScript, PHP, …

Protocol Buffers: Example
// file: addressbook.proto

message Person {

required string name = 1;

required int32 id = 2;

optional string email = 3;

enum PhoneType {

MOBILE = 0; HOME = 1; WORK = 2;

}

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;

}

message AddressBook {

repeated Person person = 1;

}

source: https://developers.google.com/protocol-buffers/

Protocol Buffers: Example 2 - Java
• Compile this source by:
protoc --java_out=jdir addressbook.proto

protoc --cpp_out=cppdir addressbook.proto

protoc --python_out=pdir addressbook.proto

• Result looks like this (Java):

https://github.com/jgilfelt/android-protobuf-

example/blob/master/src/com/example/tutorial/AddressBookProtos.java

https://github.com/jgilfelt/android-protobuf-example/blob/master/src/com/example/tutorial/AddressBookProtos.java

Most documents have JSON format
key=3 -> { "personID": "3",

"firstname": "Martin",

"likes": ["Biking","Photography"],

"lastcity": "Boston",

"visited": ["NYC", "Paris"] }

key=5 -> { "personID": "5",

"firstname": "Pramod",

"citiesvisited": ["Chicago", "London","NYC"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM" },

{ "state": "MH",

"city": "PUNE" }],

"lastcity": "Chicago“ }

Document store: sample query
Example in MongoDB syntax

• Query language expressed via JSON
• clauses: where, sort, count, sum, etc.

SQL: SELECT * FROM users

MongoDB: db.users.find()

SELECT * FROM users WHERE personID = "3"

db.users.find({"personID":"3"})

SELECT firstname,lastcity FROM users WHERE personID=5

db.users.find({"personID":"5"},{firstname:1,lastcity:1})

Schema-less?

anOrder [“price”]*anOrder[“qty”]

• Need to know the names of attributes

• Implicit schema: figure out the meaning of data

Document Databases:
Representatives

Ranked list: http://db-engines.com/en/ranking/document+store

http://db-engines.com/en/ranking/document+store

Key-value vs document:
boundaries are blurry

Customer_id: 7231

Indexes metadata
about the value

Document –
may have id

3. Column-family Stores
• Also called: wide-column, columnar

• Data model: rows that have many columns associated with a
row key. Data is physically stored by column families

• Column families are groups of related data (columns) that are
often accessed together

• e.g., for a customer we typically access all profile
information at the same time, but not customer’s orders

Column-family Stores:
Representatives

Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store

Common for key-value, key-
document, row-col_family:
aggregates
• We often operate in the world of

clusters of objects

• Aggregate: complex structure that
you can save as a single unit,
retrieve as a single unit and work
with it as a single unit

• A value, a document, a column-
family is a single unit - aggregate

By
product

Aggregate-oriented databases

• There is no general strategy to set aggregate boundaries

• Aggregates give the database information about which bits
of data will be manipulated together

• These should be stored on the same cluster node

Relational model: aggregate
ignorant

• Relational databases are aggregate-ignorant
• It is not a bad thing, it is a feature
• Allows to easily look at the data in different ways
• Best choice when there is no primary structure for

data manipulation

Aggregate example: order

What if we want to calculate how many units are sold in total?

New classification of NoSQL

Aggregate databases:

Key-value
Document

Wide-column

Graph databases

4. Graph databases

• Not aggregated: Very hard to model relationships between
aggregates in aggregate-oriented databases

• Break things apart into smaller units

• Moving across multiple relationships in relational databases:
– too many joins cause very bad performance

Graph database example

Graph databases: mission

• To store entities and relationships between them

• Nodes are instances of objects

• Nodes have properties, e.g., name

• Edges have directional significance

• Edges have types e.g., likes, friend, …

• Nodes are organized by relationships

• Allow to find interesting patterns

• example: Get all nodes that are “employee” of “Big
Company” and that “likes” “NoSQL Distilled”

Graphs in RDBMS
• When we store a graph-like structure in RDBMS, it is

for a single type of relationship
• “Who is my manager”

• Adding another relationship usually means a lot of
schema changes

• In RDBMS we model the graph beforehand based on
the traversal we want

• If the traversal changes, the data will have to change
• Graph DBs: the relationship is not calculated but persisted

Graph Databases: Representatives

Ranked list: http://db-engines.com/en/ranking/graph+dbms

http://db-engines.com/en/ranking/graph+dbms

Consistency and
concurrency

Consistency

• RDBMSs need ACID transactions – because data is in pieces

• We cannot afford that data is updated in chunks and parts
of it are overridden

• We use transactions to wrap things together

• Graph databases do ACID updates

Aggregate consistency

• Aggregates themselves are transaction boundaries

• Isolated atomic update of an aggregate, not between 2
aggregates

Multi-client system

• ACID requires additional handling, because we cannot lock
the entire table in web app domain

• Holding a transaction open – degrades performance

Offline lock

Get

Post

Get

Post

Overrides last update –
last update is lost

Offline lock

Get

Post

Get

Post
v102

v101

v101

v101

v101

v101

Version
stamp

Consistency

• Logical consistency: when the same piece of data is
broken into multiple chunks

• Multi-client consistency: performance vs. resilience

Example: booking hotel rooms

• If the connection is temporarily lost at time of booking

• 2 alternatives
• Prohibit
• Allow double-booking

• Consistency vs availability

• This is a business choice, not a technical choice

CAP theorem

• Tradeoff between:

• Consistency

• Availability

• Partition tolerance

• Can have only 2 out of 3

• Consistency vs response time of your server

• Even if all the nodes are available – want fast response

In partitioned systems

Partition

Consistency

Availability

Choose one

CAP theorem and DBMSs

When to use NoSQL

• Large amounts of data

• Complex evolving schema

• The domain matches graph or document

• Ease of development: rapid time to market

• Projects that give you a strategic advantage

http://www.tim-wellhausen.de/papers/NoSQL-Patterns/NoSQL-Patterns.html

What with the application
integration?
• This has changed too

• Integration through
database:

• Not safe

• Resistance to schema
change – multiple apps
are affected

• Business logic split
across applications

• Now integrating data is
achieved through web
services (REST)

Customer
DB

Helpdesk

Registration
website

Warehouse

Future?

1980

1990

2000

2010

Relational databases

NoSQL databases

Polyglot persistence

One Example of NoSQL Usage:
Facebook
Facebook statistics (Spring 2014)

• 1.28 billion users (1.23B active monthly)
• 300 PB of user data stored
• 10 billion messages sent daily
• 250 billion stored photos (350 million uploaded daily)

2009: 10,000 servers
2010: 30,000 servers
2012: 180,000 servers (estimated)

source: http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

Database Technology Behind
Facebook
Apache Hadoop http://hadoop.apache.org/

• Hadoop File System (HDFS)
• over 100 PB in a single HDFS cluster

• an open source implementation of MapReduce:
• Enables efficient calculations on massive amounts of data

Apache Hive http://hive.apache.org/

• SQL-like access to Hadoop-stored data
• integration of MapReduce query evaluation

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hadoop.apache.org/
http://hive.apache.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Database Technology Behind
Facebook II
Apache HBase http://hbase.apache.org/

• a Hadoop column-family database
• used for e-mails, instant messaging and SMS
• replacement for MySQL and Cassandra

Memcached http://memcached.org/

• distributed key-value store
• used as a cache between web servers

and MySQL servers since the beginning of FB

sources: http://goo.gl/SZ6jia http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://hbase.apache.org/
http://memcached.org/
http://goo.gl/SZ6jia
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

Database Technology Behind
Facebook III
Apache Giraph http://giraph.apache.org/

• graph database
• facebook users and connections is

one very large graph
• used since 2013 for various analytic tasks

RocksDB http://rocksdb.org/

• high-performance key-value store
• developed internally in FB, now open-

source

sources: https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/ http://goo.gl/XNtG6p

http://hbase.apache.org/
http://rocksdb.org/
https://code.facebook.com/posts/509727595776839/scaling-apache-giraph-to-a-trillion-edges/
http://goo.gl/XNtG6p

