
From E/R Diagrams
to Relations

Lecture 3

By Marina Barsky

Quick recap

• A data model is a collection of concepts for
describing data.

• A schema is a description of a particular collection
of data, using a given data model.

• A database instance is a collection of data
compliant with the schema

Process of database design

• Notation for expressing designs: Entity-Relationship (E/R)
model

Ideas E/R design Relational schema Relational DB

Mechanical process

Conceptual design Physical implementation

Title Year Length FilmType

Star Wars 1997 124 color

Mighty Ducks 1991 104 color

(Wayne’s World 1992 95 color)

.

tuple

Attribute names

components of a tuple

Relations Terminology

More definitions

• Every attribute has an atomic type.

• Relation Schema: relation name + attribute names +
attribute types

• Relation instance: a set of tuples

• Database Schema: a set of relation schemas

• Database instance: a relation instance for every relation in
the schema

• Entity sets become relations with the same set of attributes.

• Relationships become relations whose attributes are only:

– The keys of the connected entity sets.

– Attributes of the relationship itself.

From E/R diagrams to relations

Example: Entity Set to Relation

title year length filmtype

Star Wars 1977 124 Color

Mighty Ducks 1991 104 Color

Wayne’s World 1992 95 Color

Movies

length filmType

title year

Relation schema:
Movies (title, year, length, filmtype)

Relation instance:

Example 1 (with Renaming)

Likes(drinker, beer)

Favorite(drinker, beer)

Married(husband, wife)

Buddies(name1, name2)

LikesDrinkers Beers

Favorite

Married

husband

wife

name addr name manf

Buddies

1 2

Relationship Stars-In between entity sets Movies and Stars is
represented by a relation with schema:

Stars-In(title, year, starName)

A sample instance is:

title year starName

Star Wars 1977 Carrie Fisher

Star Wars 1977 Mark Hamill

Star Wars 1977 Harrison Ford

Mighty Ducks 1991 Emilio Estevez

Wayne’s World 1992 Dana Carvey

Wayne’s World 1992 Mike Meyers

We rename here

just for clarity.

Example 2 (with Renaming)

Many-One Relationships

• We not always have a separate relation for them.
E.g.
Instead of having

Drinkers(name, addr) and
Favorite(drinker, beer)

have
Drinkers(name, addr, favBeer)

Risk with Many-Many Relationships

• Combining Drinkers with Likes would be a mistake. Why?

• It leads to harmful redundancy, as:

name addr beer

Sally 123 Maple Bud

Sally 123 Maple Miller

Redundancy

Many-to-Many Ternary Relationships

Bars Beers

Drinkers

name nameaddr manf

name addr

license

Preferences

Preferences(drinker_name, beer_name, bar_name)

Handling weak entity sets

• Relation for a weak entity set must include
attributes for its complete key (including those
belonging to other entity sets), as well as its own,
nonkey attributes.

• A supporting (double-diamond) relationship is
redundant and yields no relation.

Example: weak entity sets

Studios(name, address, no_of_emp)

Crews(number, studioName, role)

Unit-of(number, studioName, studioName2)

Must be the same

Unit-of becomes part of Crews

Crews StudiosUnit-of

number role
name

address

No. of emp.

Our Movie Example (with ISA)

Voices

to Stars

Movies

length title year filmType

Cartoons

isa isa

Murder-

Mysteries

weapon

How to convert to relations?

Subclass Structures to Relations
Two different approaches

• OO Approach

• An object belongs to exactly one class.

• An object inherits properties from all its super-classes
but it is not a member of them.

• E/R Approach

• An “object” can be represented by entities belonging to
several entity sets that are related by isa relationships.

• The linked entities together represent the object and
give that object its properties (attributes and
relationships).

OO approach: example

• Every subclass has its own relation.

• All the properties of that subclass, including all its inherited
properties, are represented in this relation.

• Example: For our example the relational database schema would
be:

Movies (title, year, length, filmType)

Cartoons (title, year, length, filmType)

MurderMysteries (title, year, length, filmType, weapon)

Cartoon-MurderMysteries (title, year, length, filmType, weapon)

• Can we merge Cartoons with Movies?

– If we do, we lose information about which movies are
cartoons.

• For the relationship Voices, we create:

– Voices(title, year, starName)

• Is it necessary to create two relations one connecting cartoons
with stars, and one connecting cartoon-murder-mysteries with
stars?

– Not, really. We can use the same relation (table).

E/R Approach: example

• We will have the following relations:

Movies (title, year, length, filmType).

MurderMystery (title, year, weapon).

Cartoons (title, year).

Voices (title, year, name).

• Remark:

• There is no relation for class Cartoon-MurderMystery.

• For a movie that is both, we obtain:

• its voices from the Voices relation,

• its weapon from the MurderMystery relation,

• and all other information from the Movies relation.

• Relation Cartoons has a schema that is a subset of the schema for
the relation Voices. Should we eliminate the relation Cartoons?

• However there may be silent cartoons in our database. Those
cartoons would have no voices and we would lose them.

Comparison of Approaches

OO translation advantage:

• The OO translation keeps all properties of an object together
in one relation.

OO translation drawback:

• Too many tables!

• If we have a root and n children we need 2n different
tables!!!

E/R translation advantage:

• The E/R translation allows us to find in one relation tuples
from all classes in the hierarchy.

E/R translation drawback:

• We may have to look in several relations to gather information
about a single object.

Comparison of Approaches

• What movies of 2009 were longer than 150 minutes?

– Can be answered directly in the E/R approach.

– In the OO approach we have to examine all the relations.

• What weapons were used in cartoons of over 150 minutes in
length?

– More difficult in the E/R approach.

• We should access Movies to find those of over 150 mins.

• Then, we have to access Cartoons to see if they are
cartoons.

• Then we should access MurderMysteries to find the
weapon.

– In OO approach we need only access the Cartoon-
MurderMysteries table.

Examples

Null Values to Combine Relations
• If we are allowed to use NULL in tuples, we can handle a hierarchy

of classes with a single relation.

• For the Movie hierarchy, we would create a single relation:

• Movie (title, year, length, filmType, studioName, starName,
voice, weapon)

• “Who Framed Roger Rabbit?”, being both a cartoon and a
murder-mystery, is represented by a tuple that had no NULL’s.

• The “Little Mermaid,” being a cartoon but not a murder-
mystery, has NULL in the weapon component.

• This approach allows us to find all the information about an object
in one relation. Drawback?

Will the schema be “good”?

• If we use this translation process, will the schema we get be
a good one?

• The process should ensure that there is no redundancy.

• But only with respect to what the E/R diagram represents.

• Crucial thing we are missing: functional dependencies (We
only have keys, not other FDs.)

• So we still need to learn the design theory.

Converting logical schema into
physical tables

Ideas E/R design Relational schema Relational DB

Mechanical process

Conceptual design Physical implementation

Using DBMS: PostgreSQL

• Powerful object-relational database management
system (ORDBMS)

• Open source, originally developed at the University
of California at Berkeley CS Department.

• Pioneered many concepts that only became
available in some commercial database systems
much later.

• Because of the liberal license, PostgreSQL can be
used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial,
or academic.

2-tier client-server architecture

The DBMS software is running on Database server.

Your interaction with database consists of 2 processes:

• A server process: manages the database files, maintains
connection pool, performs database actions on behalf of
clients.

• The client (frontend) application: a text-oriented tool, a
graphical application, a web server that accesses the
database to display web pages, or a specialized database
maintenance tool.

Note: The client and the server can be on different hosts. They communicate over a TCP/IP
network connection. The files that can be accessed on a client machine might not be
accessible on the database server machine.

Connecting to DB server

• Login to CDF

• ssh into dbsrv1.cdf.toronto.edu

• Now you are connected to the DB server as
u_name.

• The databases are already created for each student,
and they have name: csc343h-u_name.

• Each student has its own single database

Interactive shell client

• Connect to your specific database:

psql csc343h-u_name

• You see the following prompt:

csc343h-u_name=>

• You are now connected and you can enter sql
commands

Schema in PostgreSQL

• A database contains one or more named schemas, which in
turn contain tables.

• To create or access objects in a schema, write a qualified
name consisting of the schema name and table name
separated by a dot:

schema.table

• There is a default schema called public, for which you don’t
need to specify the qualified name, only the name of the
table

Documentation: http://www.postgresql.org/docs/9.1/static/ddl-schemas.html

http://www.postgresql.org/docs/9.1/static/ddl-schemas.html

PostgreSQL – SQL standards

• PostgreSQL supports most of the major features of
SQL:2003.

• Out of 164 mandatory features required for full Core
conformance, PostgreSQL conforms to at least 150.

• In addition, there is a long list of supported optional
features. (No current version of any database management
system claims full conformance to Core SQL:2003).

SQL tutorials: http://www.postgresql.org/docs/9.6/static/tutorial-sql.html

SQL syntax is very similar to MySQL and Oracle

http://www.postgresql.org/docs/9.6/static/tutorial-sql.html

Data Definition Language (DDL):

converitng Schema into physical tables

CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....

)

Create Table
CREATE TABLE Movies (

title VARCHAR(50),

year INT,

length INT,

rating CHAR(2),

studioname VARCHAR(20)

);

CREATE TABLE Studios(

name VARCHAR(20),

website VARCHAR(255)

);

CREATE TABLE Stars (

name VARCHAR(20),

gender CHAR(1),

birthyear INT,

birthplace VARCHAR(40)

);

Data types:

• NUMERIC (precision, scale) :

• scale - count of decimal digits in the
fractional part, to the right of the
decimal point.

• precision - the total count of significant
digits in the whole number

• CHAR(n) allocates a fixed space, and if the
string that we store is shorter than n, then
it is padded with blanks.

• Differently, VARCHAR(n) denotes a string of
up to n characters.

• CHAR has better performance. Use CHAR(n)
for frequently used fields, and use
VARCHAR(n) otherwise.

• Default date format: '1994-11-28'

Declaring primary keys
DROP TABLE IF EXISTS Movies;

DROP TABLE IF EXISTS Studios;

CREATE TABLE Studios (

name VARCHAR(20) PRIMARY KEY,

address VARCHAR(255)

);

CREATE TABLE Movies (

title VARCHAR(20),

year INT,

length INT,

rating CHAR(2),

studioname VARCHAR(20),

PRIMARY KEY (title, year)

);

Insert
INSERT INTO Movies

VALUES('Walk the Line', 2005, 136, 'PG', 'Fox');

INSERT INTO Movies

VALUES('Pretty Woman', 1990, 119, 'R', 'Disney');

INSERT INTO Movies

VALUES('Wayne''s World', 1991, 104, 'PG', 'Paramount');

INSERT INTO Movies

VALUES('Unfaithful', 2002, 124, 'R', 'Fox');

INSERT INTO Movies

VALUES('Runaway Bride', 1999, 116, 'PG', 'Paramount');

INSERT INTO Movies

VALUES('The Princess and the Frog', 2009, 97, 'G', 'Disney');

Altering, Dropping

ALTER TABLE Stars ADD [COLUMN] phone

CHAR(16);

ALTER TABLE Stars ALTER COLUMN phone TYPE

CHAR(26);

ALTER TABLE Stars DROP COLUMN phone;

DROP TABLE Stars;

DROP TABLE Movies;

DROP TABLE Studios;

Getting information about tables

• Describe all tables:

\dt

List of relations

Schema | Name | Type | Owner

--------+------------+-------+----------

public | movie | table | mgbarsky

public | movie_exec | table | mgbarsky

public | movie_star | table | mgbarsky

public | starsin | table | mgbarsky

public | studio | table | mgbarsky

(5 rows)

Describe columns of table movie

Table "public.movie"

Column | Type | Modifiers | Storage

------------+-----------------------+-----------+----------+-------------

title | character varying(30) | not null | extended |

year | integer | not null | plain |

length | integer | | plain |

incolor | integer | | plain |

studioname | character varying(20) | | extended |

producerc | character varying(3) | | extended |

Indexes:

"movie_pkey" PRIMARY KEY, btree (title, year)

\d+ movie;

Explain to each other the following terms:

• data model

• relational data model

• tuple

• component in a tuple

• data type of a component

• attribute

• relation

• schema

• relation instance

Identify any unclarities about the terms and discuss.

