
Converting logical 
schema into physical 

tables
Lecture 3A

By Marina Barsky

Ideas E/R design Relational schema Relational DB

Mechanical process

Conceptual design Physical implementation



Using DBMS: PostgreSQL

• Powerful object-relational database management 
system (ORDBMS)

• Open source, originally developed at the University 
of California at Berkeley CS Department. 

• Pioneered many concepts that only became 
available in some commercial database systems 
much later.

• Because of the liberal license, PostgreSQL can be 
used, modified, and distributed by anyone free of 
charge for any purpose, be it private, commercial, 
or academic.



2-tier client-server architecture

The DBMS software is running on Database server. 

Your interaction with database consists of 2 processes:

• A server process: manages the database files, maintains 
connection pool, performs database actions on behalf of 
clients. 

• The client (frontend) application: a text-oriented tool, a 
graphical application, a web server that accesses the 
database to display web pages, or a specialized database 
maintenance tool. 

Note: The client and the server can be on different hosts. They communicate over a TCP/IP 
network connection. The files that can be accessed on a client machine might not be 
accessible on the database server machine.



Connecting to DB server

• Login to CDF

• ssh into dbsrv1.cdf.toronto.edu

• Now you are connected to the DB server as 
u_name.

• The databases are already created for each student, 
and they have name: csc343h-u_name.

• Each student has its own single database 



Interactive shell client

• Connect to your specific database:

psql csc343h-u_name

• You see the following prompt:

csc343h-u_name=> 

• You are now connected and you can enter sql
commands



Schema in PostgreSQL

• A database contains one or more named schemas, which in 
turn contain tables. 

• To create or access objects in a schema, write a qualified 
name consisting of the schema name and table name 
separated by a dot:

schema.table

• There is a default schema called public, for which you don’t 
need to specify the qualified name, only the name of the 
table

Documentation: http://www.postgresql.org/docs/9.1/static/ddl-schemas.html

http://www.postgresql.org/docs/9.1/static/ddl-schemas.html


PostgreSQL – SQL standards

• PostgreSQL supports most of the major features of 
SQL:2003. 

• Out of 164 mandatory features required for full Core 
conformance, PostgreSQL conforms to at least 150. 

• In addition, there is a long list of supported optional 
features. (No current version of any database management 
system claims full conformance to Core SQL:2003).

SQL tutorials: http://www.postgresql.org/docs/9.6/static/tutorial-sql.html

SQL syntax is very similar to MySQL and Oracle

http://www.postgresql.org/docs/9.6/static/tutorial-sql.html


Data Definition Language (DDL): 

converitng Schema into physical tables

CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....

)



Create Table
CREATE TABLE Movies (

title VARCHAR(50),

year INT,

length INT,

rating CHAR(2),

studioname VARCHAR(20)  

); 

CREATE TABLE Studios(

name VARCHAR(20),

website VARCHAR(255)

);

CREATE TABLE Stars (

name VARCHAR(20),

gender CHAR(1),

birthyear INT,

birthplace VARCHAR(40)

);

Data types:

• NUMERIC (precision, scale) : 

• scale - count of decimal digits in the 
fractional part, to the right of the 
decimal point. 

• precision - the total count of significant 
digits in the whole number

• CHAR(n) allocates a fixed space, and if the 
string that we store is shorter than n, then 
it is padded with blanks.

• Differently, VARCHAR(n) denotes a string of 
up to n characters. 

• CHAR has better performance. Use CHAR(n) 
for frequently used fields, and use 
VARCHAR(n) otherwise. 

• Default date format: '1994-11-28' 



Declaring primary keys
DROP TABLE IF EXISTS Movies;

DROP TABLE IF EXISTS Studios;

CREATE TABLE Studios (

name VARCHAR(20) PRIMARY KEY,

address VARCHAR(255)

);

CREATE TABLE Movies (

title VARCHAR(20),

year INT,

length INT,

rating CHAR(2),

studioname VARCHAR(20), 

PRIMARY KEY (title, year)

);



Insert
INSERT INTO Movies

VALUES('Walk the Line', 2005, 136, 'PG', 'Fox');

INSERT INTO Movies

VALUES('Pretty Woman', 1990, 119, 'R', 'Disney');

INSERT INTO Movies

VALUES('Wayne''s World', 1991, 104, 'PG', 'Paramount');

INSERT INTO Movies

VALUES('Unfaithful', 2002, 124, 'R', 'Fox');

INSERT INTO Movies

VALUES('Runaway Bride', 1999, 116, 'PG', 'Paramount');

INSERT INTO Movies

VALUES('The Princess and the Frog', 2009, 97, 'G', 'Disney');



Altering, Dropping

ALTER TABLE Stars ADD [COLUMN] phone 

CHAR(16);

ALTER TABLE Stars ALTER COLUMN phone TYPE 

CHAR(26);

ALTER TABLE Stars DROP COLUMN phone;

DROP TABLE Stars;

DROP TABLE Movies;

DROP TABLE Studios;



Getting information about tables

• Describe all tables:

\dt

List of relations

Schema |    Name    | Type  |  Owner   

--------+------------+-------+----------

public | movie      | table | mgbarsky

public | movie_exec | table | mgbarsky

public | movie_star | table | mgbarsky

public | starsin | table | mgbarsky

public | studio     | table | mgbarsky

(5 rows)



Describe columns of table movie

Table "public.movie"

Column   |         Type          | Modifiers | Storage  

------------+-----------------------+-----------+----------+-------------

title      | character varying(30) | not null  | extended | 

year       | integer               | not null  | plain    | 

length     | integer               |          | plain    | 

incolor | integer               |           | plain    | 

studioname | character varying(20) |           | extended | 

producerc | character varying(3)  |           | extended | 

Indexes:

"movie_pkey" PRIMARY KEY, btree (title, year)

\d+ movie;



Explain to each other the following terms:

• data model

• relational data model

• tuple

• component in a tuple

• data type of a component

• attribute

• relation

• schema

• relation instance

Identify any unclarities about the terms and discuss.


