
From schema to physical
tables

Clarification: SQL subsets

• DDL – data definition language

• DML – data manipulation language:

• INSERT

• UPDATE

• DELETE

• Data retrieval language: Structured Query Language

• We just defining tables and filling data, not using query
language yet

Creating schema in Postgre

DROP SCHEMA IF EXISTS movies_db CASCADE;

CREATE SCHEMA movies_db;

SET SEARCH_PATH TO movies_db;

• Now you can use regular syntax without prefixing each
object by movies_db

Need to define proper data types

• NUMERIC

• CHAR(n)

• VARCHAR (n)

• DATE

• BOOLEAN

• ENUM

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');

CREATE TABLE person (

name text,

current_mood mood

);

https://www.postgresql.org/docs/9.3/static/datatype.html

https://www.postgresql.org/docs/9.3/static/datatype.html

Data integrity:
basic constraints

By Marina Barsky

Lecture 4

Constraints

• Data types are a way to limit the kind of data that can be
stored in a table.

• For many applications, however, the constraint they provide
is too coarse.

For example, a column containing a product price should
probably only accept positive values. But there is no standard
data type that accepts only positive numbers.

6

Two types of constraints

• Referential constraints:
PRIMARY KEY,

FOREIGN KEY

• Value constraints:
NULL,

UNIQUE,

CHECK - certain set of values

7

Referential integrity
constraints

Keys in SQL

• Keys play an important role in SQL, because
specifying the values of key attributes is a way of
referring to a unique tuple in a relation.

• Since updates (entered by users of the database)
could potentially violate the uniqueness of a key,
DBMSs offer to check this.

Primary key

CREATE TABLE Movies (

title CHAR(40) PRIMARY KEY,

year INT,

length INT,

type CHAR(2)

);

CREATE TABLE Movies (

title CHAR(40),

year INT,

length INT,

type CHAR(2),

PRIMARY KEY (title, year)

);

Defined at column level

Defined at table level

NULL

• Null is a special marker to indicate that a data value
represents "missing or inapplicable information"

• This should not be confused with a value of 0. A null value
indicates a lack of a value - a lack of a value is not the same
as a value of zero in the same way that a lack of an answer is
not the same as an answer of "no".

Foreign keys

• In relational model tables are related to each other through
common column

• A column (or a set of columns) in one table is a primary key
of this table, if its value uniquely identifies each tuple (row).
Such table is called a parent table

• A column in another table that references a primary key
column in the parent table is known as a foreign key. This
table is called a child table

Foreign key constraints

Example: Each employee in table Emp must work in a
department that is contained in table Dept.

CREATE TABLE Emp (

empno INT PRIMARY KEY,

... ,

deptno INT REFERENCES Dept(deptno)

);

Dept table has to exist first!

Foreign keys: movies

CREATE TABLE Movies (

title VARCHAR2(40),

year INT,

length INT,

type VARCHAR2(2),

PRIMARY KEY (title, year)

);

CREATE TABLE MovieStars(

name VARCHAR2(20) PRIMARY KEY,

address VARCHAR2(30),

gender VARCHAR2(1),

birthdate VARCHAR2(20)

);

CREATE TABLE StarsIn (

title VARCHAR2(40),

year INT,

starName VARCHAR2(20),

FOREIGN KEY(title,year) REFERENCES Movies(title,year),

FOREIGN KEY(starName) REFERENCES MovieStars(name)

);

Remark. If you don’t specify primary keys or unique constraints in the
parent tables, you can’t specify foreign keys in the child tables.

Self-relationships

• A foreign key constraint may also refer to the same table,
i.e., parent table and child table are identical.

Example: Every employee must have a manager who must
be an employee.

CREATE TABLE Emp (

empno INT PRIMARY KEY,

. . .

mgrno INT NOT NULL REFERENCES Emp,

. . .

);

Foreign key: may be NULL

Each row in the child table has to satisfy one of the following
two conditions:

• Foreign key column value must either

• appear as a primary key value in the parenttable, or

• be NULL

So, for table Emp, an employee must not necessarily work in a
department, i.e., for the attribute deptno, NULL is admissible.

CREATE TABLE Emp (

empno INT PRIMARY KEY,

... ,

deptno INT REFERENCES Dept(deptno)

);

Foreign key: forbidding NULLs

• If we don't want NULL’s in a foreign key we must say so.

Example: There should always be a project manager, who
must be an employee.

CREATE TABLE Project (

pno INT PRIMARY KEY,

pmno INT NOT NULL REFERENCES Emp,

. . .

);
When only the name of the parenttable is
given, the primary key of that table is
assumed.

Constraints on deletion (update)

• If there is a foreign-key constraint from table R to S, it is

possible that a deletion or update to S causes some tuples

of R to “dangle.”

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20)

); CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES Beers(name)

);

Enforcing FK constraints

• An insert or update to Sells that introduces a nonexistent
beer must be rejected.

• A deletion or update to Beers that removes a beer value
found in some tuples of Sells can be handled in three ways.

1. Default : Reject the modification (RESTRICT).

2. Cascade : Make the same changes in Sells.

• Deleted beer: delete Sells tuples referencing that beer.

• Updated beer: change values in Sells.

3. Set NULL : Change the beer in child table to NULL.

Example
Cascade

• Delete Bud from Beers:

• Then delete all tuples from Sells that have beer = 'Bud'.

• Update the Bud tuple by changing 'Bud' to 'Budweiser':

• Then change all Sells tuples with beer = 'Bud' so that
beer = 'Budweiser'.

Set NULL

• Delete the Bud tuple from Beers:

• Change all tuples of Sells that have beer = 'Bud' to have
beer = NULL.

• Update the Bud tuple by changing 'Bud' to 'Budweiser':

• Same change.

Choosing a Policy
Follow the foreign-key declaration by:

ON [UPDATE, DELETE] [SET NULL, CASCADE]

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE

);

Constraint names: default

• Every constraint, has a name. Default (for Postgre):
ab_a_key.

• To find the constraint names in a table: \d ab

…

"ab_a_key" PRIMARY KEY, btree (a)

CREATE TABLE AB (

A PRIMARY KEY NUMBER,

B NUMBER

);

Constraint names: explicit

• We can explicitly name the constraint for easier handling.
CREATE TABLE AB (

A numeric CONSTRAINT my_unique_constraint

PRIMARY KEY,

B numeric

);

It can’t have the same name as
another constraint even if it is in
another table.

Dropping/Adding

CREATE TABLE AB (

A NUMBER,

B NUMBER

);

ALTER TABLE AB ADD CONSTRAINT my_unique_constraint

PRIMARY KEY (B);

ALTER TABLE AB DROP CONSTRAINT

my_unique_constraint;

Chicken and egg problem
CREATE TABLE chicken (

cID INT PRIMARY KEY,

eID INT REFERENCES egg(eID)

);

CREATE TABLE egg(

eID INT PRIMARY KEY,

cID INT REFERENCES chicken(cID)

);

But, if we simply type the above statements, we'll get an error.

• The reason is that the CREATE TABLE statement for chicken refers

to table egg, which hasn't been created yet!

• Creating egg won't help either, because egg refers to chicken.

Solving chicken/egg: first attempt
• First, create chicken and egg without foreign key declarations.

CREATE TABLE chicken(

cID INT PRIMARY KEY,

eID INT

);

CREATE TABLE egg(

eID INT PRIMARY KEY,

cID INT

);

• Then, add foreign key constraints.

ALTER TABLE chicken ADD CONSTRAINT chickenREFegg

FOREIGN KEY (eID) REFERENCES egg(eID);

ALTER TABLE egg ADD CONSTRAINT eggREFchicken

FOREIGN KEY (cID) REFERENCES chicken(cID);

They go through…

However, inserting fails…

INSERT INTO chicken VALUES(1, 2);

*

ERROR: insert or update on table "chicken" violates foreign
key constraint "chickenrefegg"

DETAIL: Key (eid)=(2) is not present in table "egg".

INSERT INTO egg VALUES(2, 1);

*

ERROR: insert or update on table "egg" violates foreign key
constraint "eggrefchicken"

DETAIL: Key (cid)=(1) is not present in table "chicken".

Deferrable Constraints
1. We need the ability to group several SQL statements into one

atomic unit called transaction.

2. Then, we need a way to tell the SQL system not to check the
constraints until the transaction is committed.

• UNIQUE, PRIMARY KEY, and REFERENCES (FK) may be
declared “DEFERRABLE” or “NOT DEFERRABLE.”

• NOT DEFERRABLE is default, means that with every
modification the constraint is immediately checked.

• DEFERRABLE means that we have the option of telling the
system to wait until a transaction is complete before
checking the constraint.

Initially Deferred / Initially Immediate

• If a constraint is deferrable, then we may also declare it as

• INITIALLY DEFERRED, and the check will be deferred to the
end of the current transaction.

• INITIALLY IMMEDIATE, (default) and the check will be made
before any modification.

• But, because the constraint is deferrable, we have the option of
later deciding to defer checking:

SET CONSTRAINT MyConstraint DEFERRED

Setting up solution to chicken/egg

• Here we declare the constraints DEFERRABLE and INITIALLY
DEFERRED.

ALTER TABLE chicken ADD CONSTRAINT
chickenREFegg

FOREIGN KEY (eID) REFERENCES egg(eID)

DEFERRABLE INITIALLY DEFERRED;

ALTER TABLE egg ADD CONSTRAINT eggREFchicken

FOREIGN KEY (cID) REFERENCES chicken(cID)

DEFERRABLE INITIALLY DEFERRED;

Successful insertions as a single
transaction
BEGIN;

INSERT INTO chicken VALUES(1, 2);

INSERT INTO egg VALUES(2, 1);

COMMIT;

Dropping

Finally, to get rid of the tables, we have to drop the
constraints first, because we can’t drop a table that's
referenced by another table.

ALTER TABLE egg DROP CONSTRAINT eggREFchicken;

ALTER TABLE chicken DROP CONSTRAINT

chickenREFegg;

DROP TABLE egg;

DROP TABLE chicken;

Value constraints

Value constraints

• Define if NULL is disallowed

• Define if UNIQUE values are required

• Define CHECK for a set of values

34

Not Null constraint
CREATE TABLE ABC (

A numeric NOT NULL,

B numeric,

C numeric

);

insert into ABC values (1, null, null);

insert into ABC values (2, 3, 4);

insert into ABC values (null, 5, 6);

The first two records can be inserted, the third cannot,
throwing
ERROR: null value in column "a" violates not-null constraint

The not null constraint can be altered with:
ALTER TABLE ABC ALTER COLUMN A DROP NOT NULL;

After this modification, the column A can contain null values.

UNIQUE constraint
CREATE TABLE AB (

A NUMERIC UNIQUE,

B NUMERIC

);

insert into AB values (4,5);

insert into AB values (2,1);

insert into AB values (6,1);

insert into AB values (null,9);

insert into AB values (null,9);

insert into AB values (2, 7);

• The last statement issues
ERROR: duplicate key value violates unique
constraint "ab_a_key"

DETAIL: Key (a)=(2) already exists.

UNIQUE doesn't allow
duplicate values in a
column. If it encompasses
more columns, no two
equal combinations are
allowed.

However, nulls can be
inserted multiple times.

UNIQUE on multiple columns

CREATE TABLE AB (

A NUMBER,

B NUMBER,

CONSTRAINT UNIQUE(A, B)

);

insert into AB values (4, 5);

insert into AB values (4, 1);

insert into AB values (9, 1);

insert into AB values (null, null);

insert into AB values (null, null);

insert into AB values (null,9);

insert into AB values (5,null);

insert into AB values (5, null);

The last statement issues an ERROR

So why two combinations
(5, null) and (5,null) are not
allowed?

UNIQUE doesn't allow
duplicate values in a
column. If it encompasses
more columns, no two
equal combinations are
allowed.

However, nulls can be
inserted multiple times.

Composite UNIQUE constraints
and NULL
• UNIQUE constraint allows more than one NULL values

to be inserted: DBMS considers one NULL value is not
equal to another NULL value.

• We can insert null values to both columns multiple
times. This is because DBMS creates an index for each
unique combination, and when all columns are NULL
this combination is not included into the index

• But the result changes when we have only one NULL
value for the composite UNIQUE constraint. In this case
the not NULL value is included into the index, and no
another tuple with the same combination is allowed

38

allow users to restrict the domain of possible
attribute values for columns to admissible ones

CHECK constraints

[CONSTRAINT <name>] CHECK (<condition>)

Column-level CHECK constraints:
examples
• The name of an employee must consist of upper case letters

only;
• The minimum salary of an employee is 500;
• Department numbers must range between 10 and 100:

CREATE TABLE Emp (

empno NUMBER,

ename VARCHAR2(30) CONSTRAINT check_name

CHECK(ename = UPPER(ename)),

sal NUMBER CONSTRAINT check_sal

CHECK(sal >= 500),

deptno NUMBER CONSTRAINT check_deptno

CHECK(deptno BETWEEN 10 AND 100)

);

Enforcing CHECK constrains

• DBMS automatically checks the specified conditions each
time a database modification is performed on this relation.
E.g., the insertion

INSERT INTO emp

VALUES(7999,'SCOTT',450,10);

causes a constraint violation and it is rejected.

Tuple-level CHECK constraints

• A check constraint can also be a tuple constraint, and the <condition> can
refer to several columns of the same tuple.

• Example:
• At least two persons must participate in a project, and
• project's start date must be before project's end date

CREATE TABLE Project (

... ,

pstart DATE,

pend DATE,

persons NUMBER CONSTRAINT check_pers CHECK
(persons>=2),

... ,

CONSTRAINT dates_ok CHECK (pend > pstart)

);

Column constraint

Tuple constraint

Constraint logic

• Create table MovieStar. If the star gender is 'M', then his name
must not begin with 'Ms.'.

CREATE TABLE MovieStar (

name CHAR(20) PRIMARY KEY,

address VARCHAR(255),

gender CHAR(1),

CHECK (gender<>'M' OR name NOT LIKE 'Ms.%')

);

We can’t use an “implication (if)”
We should formulate it in terms of OR.

Checks with sub-queries
(theoretically)
Example

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CONSTRAINT beer_check

CHECK (beer IN (SELECT name FROM Beers)),

price REAL CHECK (price <= 5.00)

);

Checks with sub-queries
(theoretically)
Such checks are called assertions

They state what must be true all the time

DBMS’s do not generally support assertions since it is
very hard to implement them efficiently

CREATE TABLE Sells (

bar CHAR(20),

price REAL CHECK (price <= 5.00)

beer CHAR(20) CONSTRAINT beer_check

CHECK (beer IN (SELECT name FROM Beers)),

);
Not possible in Postgre, Oracle

Possible: IN (‘Blue’, ‘Bud’)

