
Creating databases and
populating tables with Java

desktop applications

Tutorial

What we need at home

• JRE

• Eclipse

• JDBC drivers:
• Postgres v. 9.1

• SQLite

• SQLite database

• ssh tunnel to Postgres db server

What we need in the lab

• JRE

• Eclipse

• JDBC drivers:
• Postgres v. 9.1

• SQLite

• SQLite database

All is already
installed

Step-by-step installation
instructions

JRE-Java Runtime Environment (If not
already installed – check JRE, JDK)

• The Java Runtime Environment (JRE) released by Oracle is a
software distribution containing a stand-alone Java VM and
Java standard libraries

• Install the latest version of JRE for your operating system
from
http://www.oracle.com/technetwork/java/javase/download
s/jre7-downloads-1880261.html

• Java 7 was used to develop this demo

• Ensure that the full directory path of the JRE bin directory is
in your PATH environment variable so that you can run the
Java application launcher from any directory.

http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

Eclipse

• Install Development Environment which will make your life
easier

• Suggested IDE: Eclipse

• Download Eclipse for Java Developers from
https://eclipse.org/downloads/

• Unzip into directory of your choice

• Locate an executable called eclipse in this directory and
launch Eclipse

• If it does not launch, check that your Java bin has been
added to the PATH

https://eclipse.org/downloads/

JDBC

• JDBC: API that allows java to communicate with a database server using
SQL commands.

• To use it do: import java.sql.*

• Most important:

• Connection

• Statement, PreparedStatement

• ResultSet

• They are interfaces instead of classes.

• Because the point of JDBC is to hide the specifics of accessing a
particular database.

• Implementation of the underlying classes is done in the vendor
provided driver and associated classes.

PostgreSQL

• You can download and install the PostgreSQL from:
https://www.postgresql.org/

• Alternatively, the PostgreSQL server version 9.1 is installed
in the lab

• You can access it through localhost if you open an ssh tunnel

• REMEMBER: if you close the tunnel, you cannot access the
db server through localhost anymore, you need to open the
tunnel again

https://www.postgresql.org/

Opening SSH tunnel to cdf db
server
Depending on your ssh client execute:

ssh username@dbsrv1.cdf.toronto.edu -L 5432:localhost:5432

ssh2 username@dbsrv1.cdf.toronto.edu -L 5432:localhost:5432

putty mgbarsky@dbsrv1.cdf.toronto.edu -L 5432:localhost:5432

Enter your password

Now a secure communication tunnel has been opened between your db

on server and your localhost:5432, and you can address your database as

localhost:5432/csc343h-username

Username is your cdf login

Saved tunnel on windows (Putty)

1 2

3 4

56

7

JDBC driver for Postgres

• Download the JDBC driver for version Postgres 9.1 (running
on cdf database server)

• Download from here:
https://jdbc.postgresql.org/download.html#archived

• The driver comes in a form of a .jar file, which you need to
add to your project

• Under Eclipse directory create folder lib and save Postgres
JDBC driver there: postgresql-9.1-903.jdbc4.jar

https://jdbc.postgresql.org/download.html#archived

SQLite3

• Fast, small-footprint, installation-free database, well suited
for data analysis.

https://www.sqlite.org/whentouse.html

• Just download sqlite3 and start running queries.

http://www.sqlite.org/download.html

https://www.sqlite.org/whentouse.html
http://www.sqlite.org/download.html

JDBC driver for SQLite

• We will develop our assignment 1 with SQLite first

• Download the driver for SQLite:

https://bitbucket.org/xerial/sqlite-jdbc/downloads

• Another jar file into lib directory

sqlite-jdbc-3.8.11.2.jar

https://bitbucket.org/xerial/sqlite-jdbc/downloads

Pizza lovers
demo application

Part 1. Creating database

Relations and schema

• The relations for this demo represent information about
customers who eat pizza. The basic information about each
person is recorded, as well as what types of pizza and where
did this person eat

• Schema:

Person(name: string, age: int, gender: string);

Frequents(name: string, pizzeria: string);

Eats(name: string, pizza: string);

Serves(pizzeria: string, pizza: string, price: float);

Creating tables in Postgres

create table Person(name VARCHAR(50), age int, gender
CHAR(7));

create table Frequents(name VARCHAR(50), pizzeria
VARCHAR(50));

create table Eats(name VARCHAR(50), pizza VARCHAR(70));

create table Serves(pizzeria VARCHAR(70), pizza
VARCHAR(70), price NUMERIC(8,2));

Creating database in Postgres

• Script for both table creation and data generation is in file
pizza_pg.sql

• Run it as usual

• This will also create a new schema: pizza

• You can change your search_path permanently by executing the
following command:

ALTER ROLE uname SET SEARCH_PATH = 'pizza','movie','public';

Creating tables in SQLite

create table Person(name text, age int, gender text);

create table Frequents(name text, pizzeria text);

create table Eats(name text, pizza text);

create table Serves(pizzeria text, pizza text, price decimal);

Note how each DBMS has its own data types, but our JDBC application will access
them through the common interface

Creating database in SQLite
• Script for both table creation and data generation is in file

pizza_sqlite.sql

• Launch sqlite

SQLite version 3.13.0 2016-05-18 10:57:30

sqlite> .open pizzerias

sqlite> .read pizza_sqlite.sql

sqlite> SELECT name FROM sqlite_master WHERE type='table';

Person

Frequents

Eats

Serves

To see all
the tables

Creates database named pizzerias

Runs sql script in file pizza_sqlite.sql

Part 2. Connecting to
database from Java

Java project and adding driver
libraries
• In Eclipse create new project of type Java project

• Project->Properties->

Defining connections in
properties files
driver=org.sqlite.JDBC

url=jdbc:sqlite:pizzerias

driver=org.postgresql.Driver

url=jdbc:postgresql://localhost:5432/csc343h-uname

user=unmame

password=pwd

A single Java application will get the properties file name as a
parameter, and work with the corresponding database

In file:
properties_postgre.txt

In file:
properties_sqlite.txt

Full code in file DBConnection.java

Loading driver class

• The syntax for loading a JDBC driver is:

Class.forName (“drivername”)

• We load the driver depending on the property specified in the
properties file:

String driver = props.getProperty("driver");

try {

Class.forName(driver);

}

catch (ClassNotFoundException ce){

System.out.println("JDBC Driver not found");

return null;

}

Causes class drivername to be
dynamically loaded in runtime

Full code in file DBConnection.java

Connection
String url = props.getProperty("url");

String user = props.getProperty("user","");

String password = props.getProperty("password","");

// load the JDBC driver using the current class loader and db URL

try {

Class.forName(driver);

return DriverManager.getConnection(url, user, password);

}

catch (ClassNotFoundException ce){

… return null;

}

catch (SQLException ex) {

… return null;

}

Full code in file DBConnection.java

The first thing - test connection

public static void main (String [] args) throws IOException, SQLException {

Properties props = new Properties();

FileInputStream in = new FileInputStream(args[0]);

props.load(in);

in.close();

Connection conn = getConnection (props);

if (conn == null) {

System.out.println("DB connection error");

}

else {

System.out.println("Yes! connection works");

conn.close();

}

}
Full code in file DBConnection.java (main)

Presenting DB errors to the user

public class SQLError {

public static void print(SQLException ex) {

while (ex != null) {

System.err.println("SQLState: " + ex.getSQLState());

System.err.println("Error Code: " + ex.getErrorCode());

System.err.println("Message: " + ex.getMessage());

Throwable t = ex.getCause();

while (t != null) {

System.out.println("Cause: " + t);

t = t.getCause();

}

ex = ex.getNextException();

}

}
Full code in file SQLError.java

Statement, Result Set

Statement stmt = null;

String query = "select * FROM " + tblName;

stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(query);

int cols = rs.getMetaData().getColumnCount();

while (rs.next()) {

for (int i=0; i< cols; i++)

System.out.print (rs.getObject(i+1) + "\t");

System.out.print("\n");

}

Columns
start from 1

Printing generic table

Full code in file PrintTable.java

Inserting data into a table

• Statement statement = null;

• String insertTableSQL = "INSERT INTO Serves (pizzeria, pizza, price)“ + "
VALUES ('Pizza Hut','corn',10.5)";

try {

statement = conn.createStatement();

// execute insert SQL stetement

int qResult = statement.executeUpdate(insertTableSQL);

System.out.println("Rows affected="+qResult);

} catch (SQLException e) {

SQLError.show(e);

} finally { if (statement != null) { statement.close();} }
Full code in file AddStatement.java

Updating. Prepared Statement

PreparedStatement updateStmt = null;

String sql = "UPDATE Serves "+

"SET price=? WHERE pizza=?";

updateStmt = conn.prepareStatement(sql);

updateStmt.setDouble(1,newPrice);

updateStmt.setString(2, pizzaName);

updateStmt.execute();

Full code in file UpdateStatement.java

Deleting

PreparedStatement deleteStmt = null;

String sql = "DELETE FROM Serves "+

"WHERE pizzeria=? AND pizza=?";

deleteStmt = conn.prepareStatement(sql);

deleteStmt.setString(1,pizzeria);

deleteStmt.setString(2, pizza);

deleteStmt.execute();

Full code in file DeleteStatement.java

Person class: fields

private String name;

private int age;

private String gender;

Full code in file Person.java

Person class: db methods

public void addToDatabase (Connection conn) throws SQLException

public void updateInDatabase (Connection conn) throws SQLException

public void deleteFromDatabase (Connection conn) throws SQLException

private String insertSQL = "INSERT INTO Person (name, age, gender)"

+ " VALUES (?,?,?)";

private String updateSQL = "UPDATE Person SET age=?, gender=? "+
"WHERE name=?";

private String deleteSQL = "DELETE FROM Person WHERE name=?";

PreparedStatement stmt = null;

Full code in file Person.java

setXXX, getXXX

private String insertSQL = "INSERT INTO Person "
+" (name, age, gender)"

+ " VALUES (?,?,?)";

stmt = conn.prepareStatement(insertSQL);

stmt.setString(1,this.name);

stmt.setInt(2, this.age);

stmt.setString(3, this.gender);

stmt.execute();

Adds single quotes

Full code in file Person.java

Testing Person functionality with
text UI
java.sql.Connection conn = DBConnection.getConnection (props);

// create a scanner so we can read the command-line input

Scanner scanner = new Scanner(System.in);

while (true){

// prompt for the user's action

System.out.print("What would you like to do next? ");

int choice = scanner.nextInt();

}

Full code in file PersonTest.java

Serves class

private String pizzeria;

private String pizza;

private double price;

public void addPizzaToDatabase (Connection conn) throws SQLException

public void updatePriceInDatabase (Connection conn) throws
SQLException

public void deleteFromDatabase (Connection conn) throws SQLException

Full code in file Serves.java

Persistent Objects and Hibernate

• Open-source persistence
framework

• Does object-relational
mapping with XML

• Implemented using
Java.reflection

tx = session.beginTransaction();

Employee employee = new Employee(fname, lname, salary);

employeeID = (Integer) session.save(employee);

tx.commit();

<hibernate-mapping>
<class name="Employee" table="EMPLOYEE">

<meta attribute="class-description">
This class contains the employee detail.

</meta>
<id name="id" type="int" column="id">

<generator class="native"/>
</id>
<property name="firstName" column="first_name"

type="string"/>
<property name="lastName" column="last_name"

type="string"/>
<property name="salary" column="salary" type="int"/>

</class>
</hibernate-mapping>

Not required for A 1. If you want, you can do A 1 with Hibernate,
just to learn it and to get 1 point bonus

http://hibernate.org/

Recording data at Point of Sale
(POS)
• When the sale occurs, we insert data into 2

different tables: Frequents and Eats.

• This should be an atomic operation

Full code in file POSapp.java

Sale class. Transactions
conn.setAutoCommit(false);

stmt1 = conn.prepareStatement(insertSQL1);

stmt1.setString(1, this.name);

stmt1.setString(2, this.pizzeria);

stmt2 = conn.prepareStatement(insertSQL2);

stmt2.setString(1, this.name);

stmt2.setString(2, this.pizza);

stmt1.execute();

stmt2.execute();

conn.commit();
Full code in file POSapp.java

GUI with swing

• The most difficult part: layout

• The demo also shows how to create and update
JTable object

Full code in file POSapp.java

SWING is not required for A 1. IF YOU KNOW IT – do A1 with Swing, for 1
point bonus

