
Writing relational
algebra queries

More general approach

1. Choose relations involved

• Ask yourself which relations need to be involved. Ignore the
rest!

• Every time you combine relations, confirm that you specify
the names of matching attributes (unless natural join)

Example 1

• Find all pizzerias frequented by at least one person under
the age of 18.

• We need pizzeria and age, joined on name

• Creating a new relation:

ExtendedFrequents (name, age, gender, pizzeria) = Person ⋈ Frequents

• We then apply the selection to ExtendedFrequents:

σage<18 ExtendedFrequents

• And finally projection for desirable attributes

πpizzeria(σage<18(Person⋈Frequents))

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

2. Write intermediate relations
with attributes and sample data
• Remember that selection checks one tuple at a time.

• If you need info from two different tuples, you must make a
new relation where all the required info is in one tuple.

• Use assignment to define this intermediate relation.

• To visualize:

• Draw an example of an intermediate relation with actual
data in it.

• Use good names for new relations.

• Name the attributes on the LHS each time, so you don’t
forget what you have in hand.

• Add a comment explaining exactly what’s in the relation.

Example 2

• Find all pizzerias that are frequented
by only females or only males.

PizzeriasFemales_MalesNotExcluded(pizzeria)
=

πpizzeria(σgender='female'(Person)⋈Frequents))

PizzeriaMales_FemalesNotExcluded(pizzeria)
=

πpizzeria(σgender=‘male'(Person)⋈Frequents))

PizzeriaFemalesOnly = PF_M – PM_F

PF_M

pizzeria

A

B

C

D

PM_F

pizzeria

A

D

E

F

PFemales

pizzeria

B

C

-

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

3. Computing Max (min is
analogous)
• Do self-product and find those that are not max

• Subtract from all to find the maxes

Example 3: 1/2

• Find the pizzeria serving the cheapest pepperoni pizza. In
the case of ties, return all of the cheapest-pepperoni
pizzerias.

ServesPepperoni1 (pizzeria, price) = ρServesPepperoni1

[πpizzeria,price(σpizza='pepperoni'Serves)]

ServesPepperoni2 (pizzeria, price) = ρServesPepperoni2

[πpizzeria,price(σpizza='pepperoni'Serves)]

• Pair all tuples in SP1 with all other tuples in SP2 (Cartesian
product, not a join):

ServesPepperoni1 x ServesPepperoni2

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

Example 3: 2/2

• Select those that are not min price, because there are some
pairs where SP1.price > SP2.price

PizzeriasNotChepestPP=σSP1.price>SP2.price2(SP1 x SP2)

Result = πpizzeria ServesPepperoni1 – πSP1.pizzeria (PizzeriasNotChepestPP)

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

4. Queries asking for “every”

• Make all combinations that include both every and
some

• Subtract those that make it “not every”. The result
is those who failed “every”.

• Subtract the failures from all to get a result

Example 4

• Find the names of all people who frequent every pizzeria
serving at least one pizza they eat.

• First, for each person – all pizzerias that serve pizzas the
person eats

PotentialGoodPizzerias (name, pizzeria) = πname,pizzeria(Eats⋈Serves)

• Now need to find those people who do not frequent every
good pizzeria, missing some that serve desirable pizzas:

NotEvery = πname(PotentialGoodPizzerias−Frequents)

FrequentEveryGoodPizzeria = πname(Person) - NotEvery

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

5. K or more

• Make k Cartesian products with itself and select
rows where all k values are equal

Example 5

• Find names of all pizzerias which serve at least 2 pizzas that
Amy can eat

• Pizzerias which serve desirable pizzas (including those that
serve only 1 good pizza)

AllAmyPizzerias = πpizzeria, pizza (σname='Amy'(Eats)⋈Serves)

• Cartesian product of AAP with itself, select only rows where
pizzerias are equal – and pizzas are different

A1 = ρA1(AllAmyPizzerias), A2 = ρA2(AllAmyPizzerias)

AtLeast2 = σA1.pizza>A2.pizza AND A1.pizzeria = A2.pizzeria(A1 x A2)

Answer = πpizzeria(AtLeast2)

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

6. Exactly k

• “k or more” – “(k+1) or more”

Example 6

• Find the names of all pizzerias which serve exactly 2 pizzas that
Amy can eat

A1 = ρA1(AllAmyPizzerias), A2 = ρA2(AllAmyPizzerias), A3 = ρA3(AllAmyPizzerias)

• We have AtLeast2

• Compute at least 3:

AtLeast3 = σA1.pizza>A2.pizza AND A1.pizzeria = A2.pizzeria

AND A1.pizza>A3.pizza AND A1.pizzeria = A3.pizzeria (A1 x A2 x A3)

Exactly2 = AtLeast2 – AtLeast3

Answer = πpizzeria (Exactly2)

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

7. Related pairs

• Do Cartesian product and select the non-equal pairs joined
on the desired shared attribute

Example 7

• Find all pairs of customers who frequent the same pizzeria

F1 = ρF1(Frequents)

F2 = ρF2(Frequents)

σF1.pizzeria=F2.pizzeria AND F1.name < F2.name(F1 x F2)

Person (name, age, gender)
Frequents (name, pizzeria)
Eats (name, pizza)
Serves (pizzeria, pizza, price)

