
Structured Query
Language SQL

Lecture 6

By Marina Barsky

SELECT FROM WHERE

Structured Query Language (SQL)

• SQL is a high-level special-purpose language for
manipulating relations

• SQL is mostly a declarative language:
you declare what you want without specifying how you want to get
answer

• SQL provides a limited set of operations:

mostly implementations of Relational Algebra operators

• SQL programmer needs to focus on readability and on
getting the right results – do not need to worry about
efficiency:

because the DMBS optimizes every query and chooses the most
efficient implementation for each operation

Sub-sets of SQL

• Data Manipulation Language (DML): INSERT, UPDATE,
DELETE, SELECT, Transaction control: COMMIT, ROLLBACK

• Data Definition Language (DDL): CREATE, ALTER, DROP,
RENAME

• Data Control Language (DCL): GRANT, REVOKE

Language elements

• Clauses

• Expressions - produce either scalar values, or tables

• Predicates - specify conditions that can be evaluated
according to SQL three-valued logic (3VL) to
true/false/unknown

• Queries

• Statements

SELECT clause corresponds
to projection in RA
Query: list student names with GPA >3

Student

Name GPA Country

Bob 3 Canada

John 3 Britain

Tom 3.5 Canada

Maria 4 Mexico

S =

name

 gpa>3

(Student)

SELECT name
FROM Student
WHERE gpa > 3

S

Name GPA Country

Tom 3.5 Canada

Maria 4 Mexico

How the query is evaluated

• Each tuple of Student is
inspected

• Each attribute of WHERE
clause is substituted with
the actual tuple value

• The condition is then
evaluated, and if true – this
tuple is added to the output
relation

Student

Name GPA Country

Bob 3 Canada

John 3 Britain

Tom 3.5 Canada

Maria 4 Mexico

WHERE 3 > 3
FALSE

WHERE 4 > 3
TRUE

How to parse SQL query

SELECT a,b

FROM X,Y,Z

WHERE X.c=Y.c AND Z.d > 12

1. What relations are involved: FROM clause

2. Selection condition on rows: WHERE clause

3. Projection on columns: SELECT clause

FROM clause

FROM clause

FROM is always followed by name(s) of input relation(s):

SELECT * FROM Student

FROM clause: sub-queries

• You can construct a new relation
using a sub-query, give it a name
(optional in most DBMSs), and
use it in FROM clause

• Thus, the result of one query
(sub-query) becomes an input to
another.

Student

Name GPA Country

Bob 3 Canada

John 3 Britain

Tom 3.5 Canada

Maria 4 Mexico

SELECT name FROM
(SELECT *
FROM Student
WHERE gpa > 3) AS goodStudent

FROM clause: table alias I

• We can rename input relations
and their attributes to use in
SELECT and WHERE clauses

• In that way we can perform
queries on self-relationships

SELECT e.name [AS] employee, s.name [AS] supervisor
FROM Faculty AS e, Faculty AS s
WHERE e.SupID = s.ID

Faculty

ID Name SupID

1 Dr. Monk 2

2 Dr. Pooh 3

3 Dr. Patel

• We can rename input relations
and their attributes to use in
SELECT and WHERE clauses

• Or perform join of table with
itself

FROM clause: table alias II

SELECT S1.name, S2.name

FROM Student S1, Student S2

WHERE S1.address = S2.address

AND S1.name < S2.name;

Student

Name Address

Bob Canada 1

John Britain 2

Tom Canada 1

Maria Britain 2

Producing a new table from
multiple tables

FROM clause: list of tables

• List of tables without any
condition in the WHERE
clause produces …

SELECT * FROM Student, Professor

Student

Name

Bob

John

Tom

Maria

Professor

Name

Dr. Monk

Dr. Pooh

Dr. Patel

Unexpected result?

Student

Name

Bob

John

Tom

Maria

Professor

Name

Dr. Monk

Dr. Pooh

Dr. Patel

SELECT * FROM Student, Professor

T=Student x Professor

T

S.Name P.Name

Bob Dr. Monk

Bob Dr. Pooh

Bob Dr. Patel

John Dr. Monk

John Dr. Pooh

John Dr. Patel

Tom Dr. Monk

Tom Dr. Pooh

Tom Dr. Patel

Maria Dr. Monk

Maria Dr. Pooh

Maria Dr. Patel

FROM clause: list of tables -
warning
• List of tables without any condition in the WHERE clause

produces Cartesian product

The implicit writing of Cartesian product - a dangerous illusion
that you are asking the list of Professors to be appended to
the end of the list of students, while in fact you are asking to
pair each tuple in Student with each tuple in Professor

Combination of 2 tables:
Cartesian product in SQL
• Results from multi-table query that does not have a WHERE

clause

• The product results in a huge output which normally is not
very useful

• To avoid a Cartesian product, we use one or more valid join
conditions

Joins: NATURAL JOIN

SELECT *
FROM Student NATURAL JOIN RegisteredFor;

More explicit:

SELECT *
FROM Student JOIN RegisteredFor USING (name);

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI

Joins: NATURAL JOIN - USING

If you want to join only on a single common attribute – specify it with
USING:

SELECT name, Teacher.score, Student.score
FROM Teacher JOIN Student USING (name);

Student

Name Country Score

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teacher

Name Score

Bob 2

John 3

Tom 4

SELECT name
FROM Teacher JOIN Student
ON Teacher.score > Student.score

AND Teacher.name = Student.name

Joins: theta join

Student

Name Country Score

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teacher

Name Score

Bob 2

John 3

Tom 4

Join condition

Multiple joins are required to collect
information from multiple tables

It is preferably to write joining attributes explicitly,

using WHERE clause - to avoid mistakes:

SELECT s.name AS student, r.topic AS course, t.name AS professor

FROM Student s, RegisteredFor r, Teaches t

WHERE s.name = r.name

AND r.topic = t.topic

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teaches

Name Topic

Dr. Monk Algorithms

Dr. Pooh Python

Dr. Patel Databases

Dr. Patel GUI

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

NULL values in joined columns

We use NULL to indicate:

• Value unknown

• Value inapplicable

• Value withheld

NULL is a special value

• When joining on condition involving attributes A and B:

• If both A and B are NULL:

• A=B returns false

• A<>B returns false

• If one of A or B is NULL

• A=B returns false

• A<>B returns false

• The reason is that DBMS uses a 3-valued logic – discussion
on slides 36-37

• The NULLs do not generally appear in the results of joins

OUTER JOIN

• Preserves dangling tuples (that did not match any tuple in
another table) by padding them with NULL

• Has 3 types:

• Full: Pad dangling tuples in both tables.

• L FULL OUTER JOIN R

• Left outerjoin: Only pad dangling tuples of L.

• L LEFT OUTER JOIN R

• Right outerjoin: Only pad dangling tuples of R.

• L RIGHT OUTER JOIN R

Keywords INNER and OUTER

• There are keywords INNER and OUTER, but you never need
to use them.

• Your intentions are clear anyway:

• You get an OUTER join iff you use the keywords LEFT,
RIGHT, or FULL.

• If you don’t use these keywords you get an inner join –
normal join.

OUTER JOIN example: LEFT JOIN

SELECT t.name, country

FROM Teacher t LEFT JOIN Student s

ON t.name = s.name

Student

Name Country Score

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teacher

Name Score

Bob 2

John 3

Tom 4

Kim 3

Result

Name Country

Bob Canada

John Britain

Tom Canada

Kim NULL

OUTER JOIN example: FULL JOIN

SELECT *

FROM Teacher t FULL JOIN Student s

ON t.name = s.name

Student

Name Country Score

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teacher

Name Score

Bob 2

John 3

Tom 4

Kim 3

Result

Name Country t.score s.score

Bob Canada 2 3

John Britain 3 3

Tom Canada 4 3.5

Kim NULL 3 NULL

Maria Mexico NULL 4

Subquery or Join?

• We can achieve the same result by using both
subqueries and joins

• Which one is better?

• The one which is more readable – both queries will
be parsed and optimized into the same code by
DBMS

Example 2

• What does this do?
SELECT studentID, courseID, grade
FROM Took,
(SELECT *
FROM Offering
WHERE instructor=‘David’) Doffering

WHERE Took.courseID = Doffering. courseID;

• Can you suggest another version?

WHERE clause

WHERE clause

The predicates (conditions) can be written using:

• Column names

• Logical and comparison operators

• Mathematical expressions

• Constants

• Built-in DBMS functions

• Sub-queries

Building Boolean expressions

• We can build Boolean expressions with operators that
produce Boolean results.

• comparison operators: =, <>, <, >, <=, >=

• and many other operators:
see section 6.1.2 of the text and chapter 9 of the
postgreSQL documentation.

• Compound conditions are constructed using logical
operators: AND, OR, NOT.

Checking for NULLs

• Can’t meaningfully use = or <>

• Should use:

IS NULL

IS NOT NULL

SELECT *

FROM Students

WHERE age IS NOT NULL;

Operations involving NULL

• A tuple is in a query result iff the WHERE clause evaluates to
TRUE.

• When we compare using any comparison operators: (for
example a < b), and a or b or both are NULL, the result is
UNKNOWN – the third truth value, SQL special

• But a query only produces a tuple in the answer if its truth
value for the WHERE clause is TRUE (not FALSE or
UNKNOWN).

3-valued truth of databases
Rule to remember:

TRUE = 1, FALSE = 0, UNKNOWN (NULL) = ½

AND: min, OR: max, NOT: 1-x

x y x AND y (min) x OR y (max)

FALSE (0) FALSE (0)

FALSE (0) NULL(½)

FALSE (0) TRUE (1)

NULL(½) NULL(½)

NULL(½) TRUE (1)

TRUE (1) TRUE (1)

x NOT x (1-x)

FALSE (0)

NULL(½)

TRUE (1)

3-valued truth of databases
Rule to remember:

TRUE = 1, FALSE = 0, UNKNOWN (NULL) = ½

AND: min, OR: max, NOT: 1-x

x y x AND y (min) x OR y (max)

FALSE (0) FALSE (0) FALSE (0) FALSE (0)

FALSE (0) NULL(½) FALSE (0) NULL(½)

FALSE (0) TRUE (1) FALSE (0) TRUE (1)

NULL(½) NULL(½) NULL(½) NULL(½)

NULL(½) TRUE (1) NULL(½) TRUE (1)

TRUE (1) TRUE (1) TRUE (1) TRUE (1)

x NOT x (1-x)

FALSE (0) TRUE (1)

NULL(½) NULL(½)

TRUE (1) FALSE (0)

Example

SELECT *

FROM course

WHERE year <=3 OR year >3

Meaning:

SELECT *

FROM course

WHERE year is NOT NULL

Course

Topic Year

Databases 3

HTML

GUI 2

Comparison of strings

• Strings can be compared (lexicographically) using the same
operators:

=

<>

<

>

<=

>=

BETWEEN A and B – is equivalent to >=A and <=B

Student

Name Country GPA

Bob Canada 3

John Britain 3

Joan Canada 3.5

Maria Mexico 4

SELECT *
FROM student
WHERE name > ‘Job‘

SELECT *
FROM student
WHERE name <= ‘John‘

Comparison of dates

• Default date data type format in PostgreSQL is

‘YYYY-MM-DD’: for example ‘1990-04-12’

• Dates can be compared against string literal using function
to_date

SELECT name

FROM student

WHERE birthdate < to_date(‘28-03-1989’,’DD-MM-YYYY’)

Student

Name Birthdate

Bob ‘1990-12-04’

John ‘1987-11-30’

Joan ‘1993-12-09’

Maria ‘1989-02-28’

Patterns

• General form:

<Attribute> LIKE <pattern>

or

<Attribute> NOT LIKE <pattern>

• <pattern> is a quoted string which may contain

% = meaning “any string”

_ = meaning “any character.”

SELECT *

FROM student

WHERE name LIKE ‘Jo%';

Student

Name Birthdate Comment

Bob ‘1990-12-04’ Mike’s
brother

John ‘1987-11-30’

Joan ‘1993-12-09’ John’s sister

Maria ‘1989-02-28’

Patterns: apostrophe

• Two consecutive apostrophes
represent one apostrophe and
not the end of the string.

SELECT name

FROM student

WHERE comment LIKE '%''s%';

Student

Name Birthdate Comment

Bob ‘1990-12-04’ Mike’s
brother

John ‘1987-11-30’

Joan ‘1993-12-09’ John’s sister

Maria ‘1989-02-28’

Patterns: % and _
• What if the pattern contains the characters % or _?

We should “escape” their special meaning preceding them by some
escape character. SQL allows us to use a custom escape character.

• Syntax: s LIKE 'x%%x%%' ESCAPE 'x'

x will be the escape character.

Example of matched string: '%aaaa%bb'

Student

Name Birthdate Comment

Bob ‘1990-12-04’ Mike’s brother

John ‘1987-11-30’

Joan ‘1993-12-09’ John’s sister

Maria ‘1989-02-28’ m_1

SELECT name

FROM student

WHERE comment LIKE 'my_%'
ESCAPE ‘y';

Pattern example with dates

• Born in 1980s:

SELECT name

FROM student

WHERE Birthdate > ‘1979-12-31’

AND Birthdate < ‘1990-01-01’

• We can use LIKE:

SELECT name

FROM student

WHERE Birthdate LIKE ‘__8%’

Student

Name Birthdate

Bob ‘1990-12-04’

John ‘1987-11-30’

Joan ‘1993-12-09’

Maria ‘1989-02-28’

PostgreSQL-specific escaping

• PostgreSQL also accepts "escape" string constants -
extension to the SQL standard.

• An escape string constant is specified by writing letter E
before the opening single quote: e.g. E'foo'.

• Within an escape string, a backslash character (\) begins a C-
like backslash escape sequence:

\n for newline

\t for a tab etc.

• Any other character following a backslash is taken literally.

include a backslash character - write two backslashes (\\).

Include a single quote –write \', in addition to the standard way of ''

Conditions involving lists

SELECT name

FROM student

WHERE country = ‘Canada’

OR country = ‘Britain’

OR country=‘Australia’

• Instead:

SELECT name

FROM

Student

WHERE country IN (‘Canada’, ‘Australia’, ‘Britain’)

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

WHERE clause

The conditions can be written using

• Column names

• Logical and comparison operators

• Mathematical expressions

• Constants

• Built-in DBMS functions

• Sub-queries

Sub-queries in WHERE clause

• We can compare the value in the column in the current
tuple to a value in another column (of the same tuple)

• We can also compare it to the result of a subquery

• Syntax:

• The subquery must be parenthesized.

• Must name the result (in PostgreSQL), so you can refer
to it in the outer query.

Subquery as a value in a WHERE
clause
• If a subquery is guaranteed to produce exactly one tuple,

then the subquery can be used as a value.

• Simplest situation: that one tuple has only one component.

Example

• Find all students with a gpa greater than
that of John.

SELECT name
FROM Student
WHERE gpa >

(SELECT gpa
FROM Student
WHERE name = 'John');

• This is analogous to something we can’t
do in RA:

πname σ gpa > («subquery») Student

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

What if the subquery returns more
than one value?

• We can make comparisons using a special quantifier.
SELECT name
FROM Student
WHERE gpa >

(SELECT gpa
FROM Student
WHERE name = 'John');

• We can require that
gpa >= all of them, or
gpa > at least one of them.

SQL operators on subquery that
returns multiple tuples - to produce a
Boolean result

• ANY

• ALL

• IN

• EXISTS

• These operators can be negated by putting NOT in front of
the entire expression.

ANY

• Suppose subquery returns relation R. If R is a unary relation
(on a single column) then

• Condition s > ANY R is true if s is greater than at least one
value in unary relation R.

• Similarly we can use any other comparison operators in
place of >. For instance, s = ANY R is the same as s IN R.

• If R is not unary we could match the entire tuple, but this
feature is not supported by most DBMSs.

ALL

• Suppose subquery returns relation R.

• s > ALL R is true if s is greater than every value in the unary
(one column) relation R.

• Similarly, the > operator could be replaced by any other
comparison operator with the analogous meaning. For
instance, s <> ALL R is the same as s NOT IN R.

Example with ANY

SELECT name

FROM student

WHERE GPA > ANY

(SELECT GPA

FROM

Student)

What is the result?

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Example with ANY

SELECT name

FROM student

WHERE GPA > ANY

(SELECT GPA

FROM

Student)

• "Any" sounds a lot like "every" in this query. But it means "any
one or more".

• Remember that ANY is existentially quantified.

• This query sounds much more like what it actually is when we
express it instead with the keyword SOME, which is a synonym for
ANY in SQL.

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Example with ALL

SELECT name

FROM student

WHERE GPA > ALL

(SELECT GPA

FROM

Student)

What is the result?

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Example with ALL

SELECT name

FROM student

WHERE GPA > = ALL

(SELECT GPA

FROM

Student)

What is the result?

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

• For subquery R:

• s IN R is true if s is equal to one of the tuples in R. Likewise,
s NOT IN R is true if and only if s is equal to no tuple in R.

• s can be a list of attributes and the entire tuple is compared

IN

Example with IN

SELECT name

FROM

Student

WHERE country IN

(SELECT countryName

FROM EnglishSpeakingCountries)

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Exercise

Suppose we have tables R(a, b) and S(b, c).

1.What does this query do?
SELECT a
FROM R
WHERE b IN (SELECT b FROM S);

2.Can we express this query without using IN?

• For subquery R:

• EXISTS R is a condition that is true if R is not empty.

• Read it as “exists at least one row in the subquery result”

EXISTS

Correlated subqueries

• EXISTS (NOT EXISTS) are used with correlated
subqueries

• The EXISTS operator checks if the inner query returns at
least one row, and it returns TRUE or FALSE

• If a subquery refers only to names defined inside it, it
can be evaluated once and used repeatedly in the outer
query.

• If it refers to any name defined outside of itself, it must
be evaluated once for each tuple in the outer query.
These are called correlated subqueries.

Example 1: EXISTS

SELECT Teacher.Name

FROM Teacher outer

WHERE EXISTS

(SELECT ‘1’

FROM Student

WHERE name = outer. name);
Student

Name Country Score

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Teacher

Name Score

Tom 4

Kim 3

Example 2: EXISTS

SELECT name, gpa
FROM Student
WHERE EXISTS (

SELECT *
FROM Took
WHERE Student.name = Took.name

AND grade > 85);

Student

Name GPA

Bob 3

John 3

Tom 3.5

Maria 4

Took

Name Course Grade

Bob Algo 55

John Algo 90

Tom DB 85

Maria HCI 100

Example 3: EXISTS

SELECT DISTINCT Course
FROM Took
WHERE EXISTS (

SELECT *
FROM Took t, Offering o
WHERE

t.course = o.course AND
t.course <> Took.course AND
o.dept = ‘CSC' AND
took.name = t.name);

Offering

Course Dept

Algo CSC

DB CSC

Java CSC

HCI CSC

Took

Name Course Grade

Bob Algo 55

John Algo 90

Tom DB 85

Maria HCI 100

SELECT clause

Expressions in SELECT clauses

• Instead of a simple projection, you can use an
expression in a SELECT clause.

• Operands: attributes, constants
Operators: arithmetic ops, string ops

• Examples:
SELECT name, grade+10 AS adjusted
FROM Took;

SELECT dept||course
FROM Offering;

Operations involving NULL

• If we operate with arithmetic operators on two values: a + b
– and a is NULL, the result is NULL

Substituting NULL’s in SELECT

• The Postgre coalesce function converts a NULL value to an
actual value supplied as an argument

coalesce (column, value)

• Coalesce evaluates the arguments in order and returns the
current value of the first expression that initially does not
evaluate to NULL

Examples:

coalesce (comission,0)

coalesce (prerequisites, ‘None’)

Current date

SELECT CURRENT_DATE;

• Example: computing age (Approximate)

SELECT (CURRENT_DATE – birthdate)/365.25

FROM student

Function AGE computes number of years and months between 2
dates, if 1 argument – default is the current date

SELECT age (birthdate)

FROM student;

DISTINCT

Relations can have duplcates in
SQL
• A table can have duplicate tuples, unless this would violate

an integrity constraint.

• And SELECT-FROM-WHERE statements leave duplicates in
unless you say not to.

• Why?
• Getting rid of duplicates is expensive!
• We may want the duplicates because they tell us how

many times something occurred.

• To eliminate duplicates need to explicitly use DISTINCT:

SELECT DISTINCT *

FROM R;

Bags

• SQL treats tables as “bags” (or “multisets”) rather than
sets.

• Bags are just like sets, but duplicates are allowed.

• {6, 2, 7, 1, 9} is a set (and a bag)
{6, 2, 2, 7, 1, 9} is not a set, but is a bag.

• Like with sets, order doesn’t matter.
{6, 2, 7, 1, 9} = {1, 2, 6, 7, 9}

Impact of null values on DISTINCT

• Does SELECT DISTINCT treat two NULLs as the same?

create table X(a int, b int);

insert into X values (1, 2), (null, 3), (null, 4);

select * from X

a | b

---+---

1 | 2

| 3

| 4

.

Impact of null values on DISTINCT

• Does SELECT DISTINCT treat two NULLs as the same?

create table X(a int, b int);

insert into X values (1, 2), (null, 3), (null, 4);

select * from X

a | b

---+---

1 | 2

| 3

| 4

.

Impact of null values on DISTINCT

• If we ask for distinct values, the two NULLs are collapsed to
one - SELECT DISTINCT has considered the two NULL values
to be the same.

select distinct a from x;

a

1

(2 rows)

• This behavior is DBMS-dependent

ORDER BY clause

ORDER BY

• To put the tuples in order, add this as the final clause:
ORDER BY «attribute list» [DESC]

• The default is ascending order; DESC overrides it to force
descending order.

• The attribute list can include expressions: e.g., ORDER BY
sales+rentals

• The ordering is the last thing done before the SELECT, so all
attributes are still available.

Bonus: TOP-N analysis

• Top-N queries are used to sort rows in a table and then to
find the first-N largest (smallest) values

• In PostgreSQL and in SQLite:

SELECT gpa, name FROM Student

ORDER BY gpa DESC

LIMIT 5

Example 1: TOP-4 largest rooms

SELECT Building, RoomNo, Capacity

FROM location

ORDER BY Capacity DESC

LIMIT 4;

Example 2: TOP-3 lowest salaries

SELECT Lname, Fname, Salary

FROM employee

ORDER BY Salary

LIMIT 3;

