
Structured Query
Language SQL

Lecture 7

By Marina Barsky

GROUP BY and AGGREGATION

Aggregation Operators

• They apply to entire columns of a table and produce a single
result.

• The most important examples:

• SUM

• AVG

• COUNT

• MIN

• MAX

Example: Aggregation

SELECT SUM(A), COUNT(A), MAX(B), MIN(B), AVG(B)

FROM R;

Remark

• We can also use COUNT(*) which counts
the number of tuples in the relation
constructed from the FROM and WHERE
clauses of the query.

R = A B
1 3
3 4
3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
MIN(B) = 2
AVG(B) = 3

GROUP BY clause

Grouping Operator

R1 := L (R2)

L is a list of elements that are either:
1. Individual (grouping) attributes.
2. AGG(A), where AGG is one of the aggregation

operators and A is an attribute.

Example: Grouping/Aggregation

R = A B C
1 2 3
4 5 6
1 2 5

 A,B,AVG(C) (R) = ??

First, group R :
A B C
1 2 3
1 2 5
4 5 6

Then, average C within
groups:

A B AVG(C)
1 2 4
4 5 6

SELECT A,B,AVG(C)
FROM R
GROUP BY A,B;

L(R) - Formally

• Group R according to all the grouping attributes on list L.
• That is, form one group for each distinct list of values for

those attributes in R.

• Within each group, compute AGG(A) for each aggregation on
list L.

• Result has grouping attributes and aggregations as attributes:
One tuple for each list of values for the grouping attributes and
their group’s aggregations.

GROUP BY

• The GROUP BY clause follows a SELECT-FROM-WHERE
expression

• The result of the SELECT-FROM-WHERE query

• is grouped according to the values of all the listed
attributes in GROUP BY, and

• any aggregation is applied only within each group and
gives a single value per group

Restriction on SELECT Lists With
Aggregation

• If any aggregation is used, then each element of the SELECT
list must be either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

Examples 1

SELECT country, MIN(GPA) AS minGPA
FROM Student
GROUP BY country

SELECT MAX(grade)
FROM took
GROUP BY course;

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Took

Name Course Grade

Bob Algo 55

John Algo 90

Tom DB 85

Maria HCI 100

Examples 2

SELECT COUNT (course)
FROM took;

SELECT COUNT (DISTINCT course)
FROM took;

SELECT COUNT (*)
FROM took;

SELECT MAX(grade), MIN(grade),
COUNT (DISTINCT course), COUNT (*)
FROM took;

Took

Name Course Grade

Bob Algo 55

John Algo 90

Tom DB 85

Maria HCI 100

Examples 3

SELECT name, AVG (grade)
FROM took;

SELECT name, AVG (grade)
FROM took
GROUP BY name;

SELECT name, AVG (grade)
FROM took
GROUP BY name
ORDER BY 2 DESC;

Took

Name Course Grade

Bob Algo 55

John Algo 90

Tom DB 85

Maria HCI 100

HAVING clause

HAVING

• HAVING <condition> may follow a GROUP BY clause.
If so, the condition applies to each group, and groups not
satisfying the condition are eliminated.

• WHERE let’s you decide which tuples to keep.

• Similarly, you can decide which groups to keep.

• Syntax:
...
GROUP BY «attributes»
HAVING «condition»

• HAVING refer to attributes of any relation in FROM clause, as long
as the attribute makes sense within a group; i.e., it is either:

• A grouping attribute, or
• Aggregated attribute.

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Example 1

SELECT country, MIN(GPA) AS minGPA

FROM Student

GROUP BY country

HAVING COUNT(country)>=2;

• For each student who took at
least three courses give his
maximum grade

• First we group, using Name as
a grouping attribute.

• Then, we compute the
Max(grade) for each group.

• Also, we need to compute the
COUNT(name) aggregate for
each group, for filtering out
those students with less than
three courses.

Example 2

Took

Name Course grade

Bob Algorithms 78

John Algorithms 60

Tom Algorithms 88

Bob Python 100

Tom Python 99

Bob Databases 89

John Databases 95

Maria Databases 67

John GUI 56

Maria GUI 90

Example 2

• For each student who took at least
three courses give his maximum grade

SELECT name, MAX(grade) AS maxGrade

FROM Took

GROUP BY name

HAVING COUNT(name)>=3;

Took

Name Course grade

Bob Algorithms 78

John Algorithms 60

Tom Algorithms 88

Bob Python 100

Tom Python 99

Bob Databases 89

John Databases 95

Maria Databases 67

John GUI 56

Maria GUI 90

“Having” is a special kind of

• The previous query can also be written using sub-query as:

SELECT name, maxGrade

FROM

(SELECT name, MAX(grade) AS maxGrade, COUNT(name) AS ctName

FROM took

GROUP BY name)

WHERE ctName >= 3

Impact of null values on
aggregation
• Aggregation ignores NULL.

• NULL never contributes to a sum, average, or count, and

• can never be the minimum or maximum of a column
(unless every value is NULL).

• If there are no non-NULL values in a column, then the result
of the aggregation is NULL.

• Exception: COUNT of an empty set is 0.

Example: Effect of NULL’s

SELECT count(*)

FROM Student

WHERE gpa <= 3;

vs.

SELECT count(country)

FROM Student

WHERE gpa <= 3;

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Carry 2.8

Maria Mexico 4

Duplicate Elimination

SELECT DISTINCT name

FROM Took;

• Without DISTINCT, a name would
be listed as many times as there
were repetitions of student name

Took

Name Course grade

Bob Algorithms 78

John Algorithms 60

Tom Algorithms 88

Bob Python 100

Tom Python 99

Bob Databases 89

John Databases 95

Maria Databases 67

John GUI 56

Maria GUI 90

Duplicate Elimination in
aggregation
• DISTINCT inside an aggregation

causes duplicates to be eliminated
before the aggregation.

SELECT COUNT (DISTINCT name)
FROM Took;

vs.
SELECT DISTINCT COUNT (name)
FROM Took;

SELECT AVG(DISTINCT grade)

FROM Took;

Took

Name Course grade

Bob Algorithms 78

John Algorithms 60

Tom Algorithms 88

Bob Python 100

Tom Python 99

Bob Databases 89

John Databases 95

Maria Databases 67

John GUI 56

Maria GUI 90

??

??

Correlated Subqueries

• Find the students who got the grade greater than the
average grade for a given course.

SELECT name, course
FROM Took X
WHERE grade >

(SELECT AVG(grade)
FROM Took Y
WHERE Y.course = X.course)

Remarks
1. Outer query cannot reference any columns in the subquery.
2. Subquery references the tuple in the outer query.
3. Value of the tuple changes by row of the outer query, so the database

must rerun the subquery for each row comparison.

Another Solution (Subquery in
FROM)
• Find the students who got the grade greater than the

average grade for a given course.

SELECT X.name, X.course
FROM Took X, (SELECT course, AVG(grade) AS avgGrade

FROM Took
GROUP BY course) Y

WHERE X.grade>Y.avgGrade AND
X.name=Y.name;

CASE control structure: groups

Count how many students in each grade group per course

SELECT course,

CASE WHEN grade BETWEEN 0 AND 25 THEN ‘G1'

WHEN grade BETWEEN 25 AND 50 THEN ‘G2'

WHEN grade BETWEEN 50 AND 75 THEN ‘G3'

WHEN grade BETWEEN 75 AND 100 THEN ‘G4'

END CASE AS grade_group,

COUNT(*) AS num_students

FROM took

GROUP BY course, grade_group;

CASE with above average
• Find how many students got the grade above the average

grade in a given course

SELECT course,

COUNT(*) AS total_count_percourse,

AVG(grade) as avg_grade,

SUM (CASE WHEN grade > X.course_average THEN 1 ELSE 0 END CASE)

AS count_aboveaverage

FROM (SELECT course, AVG(grade) AS course_average FROM Took

GROUP BY course) as X,

Took

WHERE

Took.course = X.course

GROUP BY course;

