
Advanced features of
relational databases

Lecture 10

By Marina Barsky

VIEWS

Views

• A view is a “virtual table”, a relation defined in terms of the
contents of other tables and views

• Views take very little space to store - the database contains only
the definition of a view, not a copy of all the data that it presents

• In contrast, a relation whose value is really stored in the database
is called a base table

Example

CREATE VIEW DMovies AS

SELECT title, year, length

FROM Movie

WHERE studioName = 'Disney';

Querying a View

• Query a view as if it were a base table.

Examples

SELECT title

FROM DMovies

WHERE year = 1990;

SELECT DISTINCT starName

FROM DMovies, StarsIn

WHERE DMovies.title = StarsIn.movietitle AND DMovies.year
= StarsIn.movieyear;

View on more than one relation

CREATE VIEW MoviesAndStars AS
SELECT Movies.Title asa title, Movies.year as year,

MovieStar.name as star FROM Movies, StarsIn,
MovieStar

WHERE Movie.title= StarsIn.movietitle
AND Movies.year= StarsIn.movieyear
AND MovieStar.name= StarsIn.starname;

SELECT * FROM MoviesAndStars;

Modifying views

• The view does not exist as a stored relation – can we modify
the data in a view?

• Where the inserted tuple should be stored?

• Does the deletion/update affect the base table?

• In most cases the answer is: views are not modifiable

• For some simple views and some DBMSs there are
updatable views

When modifications to a view are
permitted
• If the view is defined by SELECT (not SELECT DISTINCT) from

some relation R:
1. R is the only relation in the FROM clause
2. R is not in the subquery of the WHERE clause of this

view
3. The list in the SELECT clause includes enough

attributes such that for every tuple inserted into the
view, we can fill the other attributes out with NULL or
the default, and have a tuple that will yield the valid
insertion into R -

• In this case the insertion or update of the view can be
applied directly to relation R

Updateable view example

CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

THIS EXAMPLE WILL WORK WITH
ORACLE AND POSTGRESQL V 9.3,

we have V 9.1 which does not have
automatic support for updateable

views

Updateable view example:
conditions for being updateable
CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

R is the only relation in the FROM clause

Updateable view example:
conditions for being updateable
CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

R is the only relation in the FROM clause

R is not in the subquery of the WHERE
clause of this view

Updateable view example:
conditions for being updateable
CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

R is the only relation in the FROM clause

R is not in the subquery of the WHERE
clause of this view

View has enough attributes for the
insertion into R

Updateable view example:
insertion
CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

INSERT INTO ParamountMovie

VALUES ('Star Trek', 1979);

This insertion will fail! Why this insertion is not possible?

Updateable view example:
failed insertion
CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movie

WHERE studioName = 'Paramount';

INSERT INTO ParamountMovie

VALUES ('Star Trek', 1979);

Why this insertion is not possible?

The rationale for this behavior is:

• The above insertion, were it allowed
to get through, would insert a tuple
with NULL for studioName in the
underlying Movie table.

• However, such a tuple doesn't satisfy
the condition for being in the
ParamountMovie view!

• Thus, it shouldn't be allowed to get
into the database through the
ParamountMovie view.

Updateable view example: fixed

CREATE VIEW ParamountMovie2 AS

SELECT studioName, title, year

FROM Movie

WHERE studioName = 'Paramount‘;

INSERT INTO ParamountMovie2
VALUES ('Paramount', 'Star Trek', 1979);

Now it succeeds. Why?

Deleting from an updateable view

DELETE FROM ParamountMovie

WHERE year=2008;

is translated into

DELETE FROM Movies

WHERE year=2008 AND studioName='Paramount';

Updating an updateable view

UPDATE ParamountMovie
SET year = 1979
WHERE title= 'Star Trek';

is equivalent to the base-table update

UPDATE Movies
SET year = 1979
WHERE title = 'Star Trek' AND

studioName = 'Paramount';

Use of updateable views

• Often used to restrict user input

• For example, you could not by mistake:
INSERT INTO ParamountMovie2
VALUES (‘Disney', 'Star Trek', 1979);

Materialized views (Oracle)

• Effectively a database table that contains the results of a
query – sort of caching

• The power of materialized views comes from the fact that,
once created, Oracle can automatically synchronize a
materialized view's data with its source information with
little or no programming effort

SQL queries
with views

Find the stars who have worked for every studio.

CREATE VIEW MovieStarView AS

SELECT title, year, studioName, starName

FROM Movies, StarsIn

WHERE Movies.title = StarsIn.movieTitle and Movies.Year = Starsin.MovieYear;

SELECT DISTINCT starName

FROM MovieStarView X

WHERE NOT EXISTS (

SELECT studioName

FROM Studio

EXCEPT

SELECT studioName

FROM MovieStarView

WHERE starName = X.starName);

Checks emptiness of
the subquery.

Correlated subquery

• W7 exercises q 1

• W7 exercises q 2

Solution W7 q 2

Find the stars who have worked for Disney but no other studio.
CREATE VIEW MovieStarView AS

SELECT title, year, studioName, starName

FROM Movies, StarsIn

WHERE Movies.title = StarsIn.movieTitle

AND Movies.Year = Starsin.MovieYear;

SELECT starName

FROM MovieStarView X

WHERE X.studioName='Disney' AND NOT EXISTS (

SELECT *

FROM MovieStar

WHERE starName=X.starName AND

studioName<>'Disney'

);

• W7 exercises q 3

Solution W7 q 3

Find the stars who have worked for only one studio.
CREATE VIEW MovieStarView AS

SELECT title, year, studioName, starName

FROM Movies, StarsIn

WHERE Movies.title = StarsIn.movieTitle

AND Movies.Year = Starsin.MovieYear;

SELECT starName

FROM MovieStarView X

WHERE NOT EXISTS (

SELECT *

FROM MovieStarView

WHERE starName=X.starName AND

studioName<>X.studioName

);

• W7 exercises q 4

Solution W 7 q 4.

For each star that has more than two movies with Paramount,
find how many movies he/she has with Fox.

CREATE VIEW ParamountStars2 AS

SELECT starName

FROM MovieStarView

WHERE studioName='Paramount'

GROUP BY starName

HAVING COUNT(title)>=2;

CREATE VIEW FoxStars AS

SELECT *

FROM MovieStarView

WHERE studioName='Fox';

SELECT starName, COUNT(title) as countFox

FROM ParamountStars2 NATURAL LEFT OUTER JOIN FoxStars

GROUP BY starName;

Find the stars who have co-starred with the same star.

CREATE VIEW costars AS

SELECT X.starname AS star1, Y.starname AS star2

FROM StarsIn X JOIN StarsIn Y USING(title,year)

WHERE X.starname <> Y.starname;

SELECT Z.star1, W.star1

FROM costars Z, costars W

WHERE Z.star2=W.star2 AND Z.star1<W.star1;

star1 star2

A B

A C

D B

costars

star1 star2

A B

A C

D B

Z

star1 star2

A B

A C

D B

W

For each pair of co-stars give the number of movies each has
starred in.

The result should be a set of (star1 star2 n1 n2) quadruples, where n1 and n2
are the number of movies that star1 and star2 have starred in, respectively.
Observe that there might be stars with zero movies they have starred in.

CREATE VIEW starMovieCounts AS

SELECT name AS star, COUNT(title) AS moviecount

FROM Stars LEFT OUTER JOIN StarsIn ON name=starname

GROUP BY name;

SELECT C.star1, C.star2, X.moviecount, Y.moviecount

FROM costars C, starMovieCounts X, starMovieCounts Y

WHERE C.star1=X.star AND C.star2=Y.star;

Summary: Views

• Provide modularization abstraction for SQL queries (like a
function in programming languages)

• Limit the degree of exposure of the underlying tables to the
outer world

• Allow to join and simplify multiple tables into a single virtual
table

• Hide the complexity of data: provide logical data
independence

In your program, retrieve data from the view: if the
definition of underlining tables changes, you do not need
to update your code – just re-write the view

