
Advanced features of
relational databases

Lecture 11

By Marina Barsky

ASSERTIONS AND TRIGGERS

Preserving data integrity:
constraints revisited
• Note that in most DBMS’es (including ORACLE) only simple

CHECK conditions are allowed.

• For example:
• It is not allowed to refer to columns of other tables
• No queries as check conditions.

Checks with sub-queries
(theoretically)
Example

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CONSTRAINT beer_check

CHECK (beer IN (SELECT name FROM Beers)),

price REAL CHECK (price <= 5.00)

); Not possible in PostgreSQL, Oracle

Possible: IN (‘Blue’, ‘Bud’)

Assertions (theoretically)

• Such checks are called assertions

• They state what must be true at all times

• DBMS’s do not generally support assertions since it is very
hard to implement them efficiently

Oracle solution:
Views WITH CHECK OPTION

Example
CREATE VIEW SellsSafe (bar, beer, price) AS
SELECT bar, beer, price
FROM Sells
WHERE beer IN (
SELECT beer FROM beers

)
WITH CHECK OPTION;

Then, we insert into this view as opposed to directly into Sells

(Note that for this example we could get away with using
foreign key constraints)

View with check option: example

CREATE TABLE HotelStays (

roomID INTEGER NOT NULL,

arrival_date DATE NOT NULL,

departure_date DATE NOT NULL,

guest_name CHAR(15) NOT NULL,

PRIMARY KEY (roomID, arrival_date),

CHECK (departure_date > arrival_date)

);

• We want to add the constraint that reservations do not
overlap.

Non-overlapping hotel stays

CREATE TABLE HotelStays (
roomID INT NOT NULL,
arrival_date DATE NOT NULL,
departure_date DATE NOT NULL,
guest_name CHAR(15) NOT NULL,
PRIMARY KEY (room_nbr, arrival_date),
CHECK (departure_date > arrival_date)

);

CREATE VIEW HotelStaysSafe AS
SELECT roomID, arrival_date, departure_date, guest_name
FROM HotelStays H1
WHERE NOT EXISTS (
SELECT *
FROM HotelStays H2
WHERE H1.roomID = H2.roomID

AND
(H2.arrival_date < H1.arrival_date
AND H1.arrival_date < H2.departure_date)

)
WITH CHECK OPTION;

H1.arrives H1.departs

H2 arrives H2 departs

We want to add the constraint

that reservations do not overlap.

Hotel Stays – Inserting

INSERT INTO HotelStaysSafe (roomID, arrival_date,
departure_date, guest_name)

VALUES(1, '01-Jan-2009', '03-Jan-2009', 'Alex');
This goes Ok.

INSERT INTO HotelStays (roomID, arrival_date,
departure_date, guest_name)

VALUES(1, '02-Jan-2009', '05-Jan-2009', 'Marina');
*
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Triggers

Triggers: Motivation

• Assertions are powerful, but the DBMS often can’t
implement them efficiently to be checked at all times

• Attribute- and tuple-based checks are checked at known
times, but are less powerful

• Triggers let the user decide when to check for any condition

Event-Condition-Action Rules

Another name for “trigger” is event-condition-action (ECA)
rule.

• Event : typically a type of database modification, e.g.,
“insert on Sells.”

• Condition : Any SQL boolean-valued expression.

• Action : Any SQL statements.

Trigger: general syntax

Create Trigger name

Before|After|Instead Of events

[referencing-variables]

[For Each Row]

When (condition)

action

Example 1: AFTER UPDATE trigger

• Using Sells(bar, beer, price) and a unary relation, maintain a list of bars
that raise the price of any beer by more than $1.
• Let the unary relation be RipOffBars(bar)

CREATE TABLE Sells(
beer VARCHAR(10),
bar VARCHAR(13),
price FLOAT

);

CREATE TABLE RipOffBars(
bar VARCHAR(13)

);

The Trigger

CREATE OR REPLACE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(new.bar);

END;

Remark. This and other trigger examples are in standard SQL
syntax which differs from both Oracle and PostgreSQL syntax.

The Trigger

CREATE OR REPLACE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(new.bar);

END;

EVENT: only changes to prices

The Trigger

CREATE OR REPLACE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(new.bar);

END;

We need to consider each
price change

The Trigger

CREATE OR REPLACE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(new.bar);

END;

CONDITION:
a raise in price > $1

Updates let us talk about old and
new tuples.

The Trigger

CREATE OR REPLACE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(new.bar);

END;

ACTION:
When the price change is big
enough, add the bar to
RipoffBars

Example 2: BEFORE INSERT trigger

CREATE TABLE sales (

empno INT,

deptno INT,

sale FLOAT,

comm FLOAT

);

For employees of department
30, we want to record
commission into comm each
time a new sale is recorded

The trigger

CREATE TABLE sales (

empno INT,

deptno INT,

sale FLOAT,

comm FLOAT

);

CREATE OR REPLACE TRIGGER emp_comm_trig

BEFORE INSERT ON sales

FOR EACH ROW

BEGIN

IF NEW.deptno = 30 THEN

NEW.comm := NEW.sale * .4;

END IF;

END;

For employees of department
30, we want to record
commission into comm each
time a new sale is recorded

Example 3: INSTEAD OF trigger for
updateable views
• Remember this updateable view that cannot be updated?

CREATE VIEW ParamountMovie AS

SELECT title, year

FROM Movies

WHERE studioName = 'Paramount';

The trigger

CREATE TRIGGER Paramount_Insert

INSTEAD OF INSERT ON ParamountMovie

FOR EACH ROW

BEGIN

INSERT INTO Movies (title, year, studioName)

VALUES(new.title, new.year, 'Paramount');

END;

Pg syntax with example:
https://vibhorkumar.wordpress.com/2011/10/28/instead-of-trigger/

Options: FOR EACH ROW

Two types of triggers:

• Row level triggers : execute once for each modified tuple.

• Statement-level triggers : execute once for an SQL
statement, regardless of how many tuples are modified.

• FOR EACH ROW indicates row-level; its absence indicates
statement-level.

Options: The Event

• AFTER can be BEFORE

• UPDATE ON can be DELETE ON or INSERT ON

• And UPDATE ON can be UPDATE …OF… ON mentioning a
particular attribute in relation

Row-level triggers

• For an update trigger:

• The old attribute value can be accessed using
old.<column>

• The new attribute value can be accessed using
new.<column>

• For an insert trigger, only new.<column> can be used.

• For a delete trigger only old.<column> can be used.

• In WHEN clause of the trigger we can use old.<column>,
new.<column>

Options: The Condition

• Any Boolean-valued condition

• Evaluated on the database as it would exist before or after
the triggering event, depending on whether BEFORE or
AFTER is used

Options: The Action

• Surround by BEGIN . . . END.

Multiple events

• You may specify up to three triggering events using the
keyword OR. Here are some examples:

... INSERT ON R ...

... INSERT OR DELETE OR UPDATE ON R ...

ACTION: restrictions

• Restrictions on <trigger_body> include:

• You can’t modify the same relation whose modification
triggered the trigger.

• You can’t modify a relation which is the “parent” of the
triggering relation in a foreign-key constraint.

PostgreSQL triggers:
(non-standard) syntax
and examples

https://www.postgresql.org/docs/9.1/static/sql-createtrigger.html

PG defines triggers in 2 steps

• Step 1: write procedure (function) that returns
trigger

• Step 2: use this procedure in the action part

• In general, PG trigger syntax is very far from
standard

Step 1. Create function

CREATE FUNCTION my_trigger_function()

RETURNS trigger

AS

'

BEGIN

IF NEW.C1 IS NULL OR NEW.C1 = '''' THEN

NEW.C1 := ''X'';

END IF;

RETURN NEW;

END

'

LANGUAGE 'plpgsql'

Step 2. Create trigger

CREATE TRIGGER my_trigger

BEFORE INSERT ON T

FOR EACH ROW

EXECUTE PROCEDURE my_trigger_function()

View triggers and functions

\dt --- shows tables

\df --- shows functions

• To see all triggers:

select * from pg_trigger;

• Pg_trigger is a normal system table, we can get its fields as

\d+ pg_trigger

select tgname from pg_trigger;

Dropping / disabling

• Dropping functions

DROP FUNCTION <function-name>();

• Dropping Triggers

DROP TRIGGER <trigger_name> ON <table-name>;

• Disabling or Enabling Triggers

ALTER TABLE tblname

DISABLE|ENABLE TRIGGER <trigger-name>;

The rest of examples are in
TRIGGERS_PG.sql

SQLite triggers
(even more non-standard)
• General SQLite syntax:

http://sqlite.awardspace.info/syntax/localindex.htm

• Triggers in SQLite: http://linuxgazette.net/109/chirico1.html

http://sqlite.awardspace.info/syntax/localindex.htm
http://linuxgazette.net/109/chirico1.html

