
Advanced features of
relational databases

Lecture 12

By Marina Barsky

TRANSACTIONS

Integrity or correctness of data

We would like data to be “accurate” or “correct” at all times

Name

White
Green
Gray

Age

52
3421

1

EMP table

Integrity or consistency constraints

• Predicates that data must satisfy

For example:

- x is key of relation R

- Domain(x) = {Red, Blue, Green}

- no employee should make more than twice the average
salary

Definition:

• Consistent state: satisfies all constraints

• Consistent DB: DB in consistent state

Integrity constraints may not capture
“full correctness”

Implicit (business) constraints:

• When salary is updated,

new salary > old salary

• When account record is deleted,

balance = 0

Observation:
DB cannot be consistent always

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2 a2 + 100

TOT TOT + 100

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

a2

TOT

Transaction: collection of actions that
bring DB from one consistent state to
another

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in isolation

T leaves consistent state

Inconsistent DB

Concurrent transactions

• In production environments, it is unlikely that we can limit our

system to just one user at a time.

• Consequently, it is possible for multiple queries to be

submitted at approximately the same time.

• If all of the queries were very small (i.e., in terms of time), we

could probably just execute them serially, on a first-come-first-

served basis.

SERIALLY – ONE AFTER ANOTHER

Queries are executed
“simultaneously”

• However, many queries are both complex and time

consuming.

• Executing these queries would make other queries wait a

long time for a chance to execute.

• Disk usage can be optimized for several queries running in

parallel

• So, in practice, the DBMS may be running many different

queries at about the same time.

INTERLEAVING QUERY PROCESSING

Concurrent Transactions

• Unlike operating systems, which support interaction of
processes, a DMBS needs to keep processes from
troublesome interactions.

• Even when there is no “failure”, several transactions can
interact to turn a
consistent state

into an
inconsistent state.

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, Ryan)

Monica: thinks
50 $ left

Ryan: thinks
0 $ left

In fact, the withdrawn amount is 150$

Example: two people - one bank
account

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, b)

The problem is that the reading and writing operations should be
performed as one transaction, their combination should be atomic

Example: two people - one bank
account

Transaction

• DBMS groups your SQL statements into transactions.

• The transaction is the atomic unit of execution of database

operations

• By default, each query or DML statement is a transaction

• User can group multiple SQL statements into a single

transaction

Transactions with SQL

START TRANSACTION; (BEGIN;)

…SQL statements

COMMIT; (END;)

End of a transaction

• The transaction ends when one of the following occurs:

• A COMMIT or ROLLBACK are issued

• A DDL (CREATE, ALTER, DROP …) or DCL (GRANT, REVOKE) statement

is issued

• A user properly exits (COMMIT)

• System crashes (ROLLBACK)

COMMIT and ROLLBACK

• The SQL statement COMMIT causes a transaction to
complete.
• It’s database modifications are now permanent in the

database.

• The SQL statement ROLLBACK also causes the transaction to
end, but by aborting.
• No effects on the database.

• Failures like division by 0 or a constraint violation can also
cause rollback, even if the programmer did not request it.

Banking example: DB terminal

BEGIN;

SELECT balance

FROM accounts

WHERE

account_name = "Monica and Ryan";

UPDATE accounts

SET balance = balance – 100

WHERE

account_name = "Monica and Ryan";

COMMIT;

BEGIN;

SELECT balance

FROM accounts

WHERE

account_name = "Monica and Ryan";

UPDATE accounts

SET balance = balance – 50

WHERE

account_name = "Monica and Ryan";

COMMIT;

Failure – constraint violated

Assuming we defined a CHECK constraint on balance >=0

Ryan Monica

JDBC syntax for transaction

Basic JDBC transaction pattern

Connection conn = ...;

conn.setAutoCommit(false);

try {

... //JDBC statements

conn.commit();

} catch (Exception e) {

conn.rollback();

}

Banking example: JDBC

PreparedStatement updateBalance = null;

PreparedStatement selectBalance = null;

String updateSQL =

"UPDATE " + schema + ".accounts " +

"set BALANCE = ? WHERE account_name = ?";

String selectSQL =

"SELECT balance FROM " + schema + ".accounts " +

"WHERE account_name = ?";

try {

con.setAutoCommit(false);

int balance;

updateBalance = con.prepareStatement (updateSQL);

selectBalance= con.prepareStatement (selectSQL);

selectBalance.setString (1, accountName);

ResultSet rs = selectBalance.executeQuery(query);

if (rs.next())

balance = rs.getInt("balance");

if (balance < withdrawal) { conn.rollback(); return false; }

updateBalance.setString (2, accountName);

updateBalance.setInt (1, balance - withdrawal);

updateBalance.executeUpdate();

con.commit();

con.setAutoCommit(true);

return true;

}

No need in DB
check
constraints here

Proper exception handling with
rollback
} catch (SQLException e) {

if (con != null) {

try {

con.rollback();

con.setAutoCommit(true);

return false;

} catch(SQLException excep) {

printException();

return false;

}

}

} finally {

// close statements updateBalance, selectBalance

}

Transaction should have ACID

• Atomicity: Whole transaction or none is done.

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another

• Isolation: It appears to the user as if only one process
executes at a time.

• That is, even though actions of several transactions
might be interleaved, the net effect is identical to
executing all transactions one after another in some
serial order.

• Durability: Effects of a process survive a crash.

Interleaving different
transactions
Interleaving of transactions may lead to anomalies even if all

the database constraints are preserved

Anomalies of interleaving
transactions: example 1

• Consider two transactions T1 and T2, each of which, when

running alone preserves database consistency:

• T1 transfers $100 from A to B (e.g. from checking to

saving account)

• T2 increments both A and B by 1% (e.g. daily interest)

T1 T2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

commit

r(B)

w(B)

commit

T1 deducted $100 from A

Anomalies of interleaving
transactions: example 1

T2
incremented
both A and B
by 1%

T1 added $100 to B

What is the
problem?

T1 T2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

commit

r(B)

w(B)

commit

T1 deducted $100 from A

Anomaly 1:
reading uncommitted data

T2
incremented
both A and B
by 1%

T1 added $100 to B

The problem is that the bank didn’t pay interest on the $100 that was being
transferred. This happened because T2 was reading uncommitted values.

Anomalies of interleaving
transactions: example 2

• Suppose that A is the number of copies available for a book.

• Transactions T1 and T2 both place an order for this book. First
they check the availability of the book.

• Consider the following scenario:
1. T1 checks whether A is greater than 1.

Suppose T1 sees (reads) value 1.

2. T2 also reads A and sees 1.
3. T2 decrements A to 0.
4. T2 commits.
5. T1 tries to decrement A, which is now 0, and gets an error

because some integrity check doesn’t allow it.

1. T1 checks whether A is greater than 1.

Suppose T1 sees (reads) value 1.

2. T2 also reads A and sees 1.

3. T2 decrements A to 0.

4. T2 commits.

5. T1 tries to decrement A, which is now 0, and gets an error because
some integrity check doesn’t allow it.

Anomaly 2:
unrepeatable reads

The problem is that because value of A has been changed by T1, when T2
reads A for the second time, before updating it, the value is different from
that when T2 started.

• Suppose that Larry and Harry are two employees, and their salaries must be

kept equal. T1 sets their salaries to $1000 and T2 sets their salaries to $2000.

• Now consider the following schedule:

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomalies of interleaving
transactions: example 3

What is the
problem?

• Suppose that Larry and Harry are two employees, and their salaries must be

kept equal. T1 sets their salaries to $1000 and T2 sets their salaries to $2000.

• Now consider the following schedule:

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomalies of interleaving
transactions: example 3

$1000 to Harry

$2000 to Larry

$1000 to Harry

$2000 to Larry

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomaly 3:
overwriting uncommitted data

The problem is that T1 has overridden the result
of T2, while T2 has not yet been committed.

Anomalies of interleaving

• Reading uncommitted (dirty) data

• Unrepeatable reads

• Overriding uncommitted data

None of these would happen if we
were executing transactions one after
another: serial schedules

A schedule is serializable if it interleaves transactions
but has the same effect as a serial schedule

Enforcing serializability by locks

• If scheduler allows multiple transactions access the same
element, this may result in non-serializable schedule

• To prevent this, before reading or writing an element X, a
transaction Ti requests a lock on X from the scheduler.

• The scheduler can either grant the lock to Ti or make Ti wait
for the lock.

• If granted, Ti should eventually unlock (release) the lock on
X.

Possibility of Deadlocks
Example:T1 and T2 each reads X and Y and later writes X and Y.

“When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start
up again until the other has gone.”

T1 T2

L1(X)

L2(Y)

L1(Y) denied

L2(X) denied

This problem is resolved by DBMS by
using different types of locks

Locking granularity

• Should we lock the whole table or just a single row? What’s a database
object? What should be the locking granularity?

• What happens if we insert a new tuple with the smallest year?

• Phantom problem: A transaction retrieves a collection of tuples twice and
sees different results, even though it doesn’t modify those tuples itself.

SELECT min(year)

FROM Movies;

Summary of problems

• Dirty read

• A transaction reads data written by a concurrent uncommitted
transaction

• Nonrepeatable read

• A transaction re-reads data it has previously read and finds that
data has been modified by another transaction (that committed
since the initial read).

• Phantom read

• A transaction re-executes a query returning a set of rows that
satisfy a search condition and finds that the set of rows satisfying
the condition has changed due to another recently-committed
transaction.

Transaction tuning in SQL

Gives control over the locking overhead

• Access mode:

• READ ONLY

• READ WRITE

• Isolation level (to which extent transaction is exposed to
actions of other transactions):

• SERIALIZABLE (Default)

• REPEATABLE READ

• READ COMMITED

• READ UNCOMMITED

Transaction Isolation Levels

SET TRANSACTION ISOLATION LEVEL X

Where X can be

SERIALIZABLE (Default)

REPEATABLE READ

READ COMMITED

READ UNCOMMITED

With a scheduler based on locks:

• A SERIALIZABLE transaction obtains locks before reading and writing objects,
including locks on sets (e.g. table) of objects that it requires to be unchangeable
and holds them until the end.

• A REPEATABLE READ transaction sets the same locks as a SERIALIZABLE
transaction, except that it doesn’t lock sets of objects, but only individual
objects.

• A READ COMMITED transaction T obtains exclusive locks before writing objects
and keeps them until the end.

That is to ensure that the transaction that last modified the values is
complete.

• T reads only the changes made by committed transactions.

• No value written by T is changed by any other transaction until T is
completed.

• However, a value read by T may well be modified by another transaction
(which eventually commits) while T is still in progress.

• T is also exposed to the phantom problem.

• A READ UNCOMMITED transaction doesn’t obtain any lock at all. So, it can
read data that is being modified. Such transactions are allowed to be READ
ONLY, or used in cases when reading dirty data does not matter

Transaction Isolation Levels

Examples – renting movies

csc343h-mgbarsky=> create table rent (movie varchar(2), rented INT);

CREATE TABLE

csc343h-mgbarsky=> insert into rent values ('A', 0);

INSERT 0 1

csc343h-mgbarsky=> insert into rent values ('B', 0);

INSERT 0 1

csc343h-mgbarsky=> insert into rent values ('C', 0);

INSERT 0 1

csc343h-mgbarsky=> begin;

BEGIN

csc343h-mgbarsky=> set transaction isolation level
serializable;

SET

csc343h-mgbarsky=> select rented from rent where
movie ='A';

rented

0

(1 row)

csc343h-mgbarsky=> update rent set rented=1 where
movie ='A';

UPDATE 1

csc343h-mgbarsky=> select rented from rent where m

ovie ='A';

rented

1

(1 row)

csc343h-mgbarsky=> commit;

COMMIT

csc343h-mgbarsky=> begin;

BEGIN

csc343h-mgbarsky=> set transaction isolation level
serializable;

SET

csc343h-mgbarsky=> select rented from rent where
movie='A';

rented

0

(1 row)

csc343h-mgbarsky=> select rented from rent where
movie='A';

rented

0

(1 row)

csc343h-mgbarsky=> update rent set rented=1 where
movie ='A';

ERROR: could not serialize access due to concurrent
update

Isolation level – serializable (default)

update rent set rented=1 where movie='B';

UPDATE 1

begin;

BEGIN

csc343h-mgbarsky=> set transaction isolation level
repeatable read;

SET

csc343h-mgbarsky=> select * from rent;

movie | rented

-------+--------

B | 0

C | 0

A | 1

(3 rows)

csc343h-mgbarsky=> select * from rent;

movie | rented

-------+--------

B | 0

C | 0

A | 1

(3 rows)

Isolation level – repeatable reads

Reads the same values

as before – as expected

begin;

BEGIN

csc343h-mgbarsky=> set transaction isolation level repeatable read;

SET

csc343h-mgbarsky=> select * from rent;

movie | rented

-------+--------

C | 0

A | 1

B | 1

(3 rows)

csc343h-mgbarsky=> select * from rent;

movie | rented

-------+--------

C | 0

A | 1

B | 1

(3 rows)

insert into rent values ('D', 0);

INSERT 0 1

Isolation level – repeatable reads

No phantom problem –

not as expected!

Postgre repeatable reads – no
phantoms
From PostgreSQl documentation:

• In PostgreSQL the Repeatable Read isolation level only sees data committed
before the transaction began

• It never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However, the query does see the effects
of previous updates executed within its own transaction, even though they are
not yet committed.)

• This is a stronger guarantee than is required by the SQL standard for this
isolation level, and prevents all of the phenomena including phantoms. This is
specifically allowed by the standard, which only describes the minimum
protections each isolation level must provide.

• This level is different from Read Committed in that a query in a repeatable read
transaction sees a snapshot as of the start of the transaction, not as of the start
of the current query within the transaction. Thus, successive SELECT commands
within a single transaction see the same data, i.e., they do not see changes
made by other transactions that committed after their own transaction started.

• Applications using this level must be prepared to retry transactions due to
serialization failures.

begin;

BEGIN

csc343h-mgbarsky=> update rent set rented
=1 where movie ='D';

UPDATE 1

csc343h-mgbarsky=> commit;

COMMIT

set transaction isolation level read committed;
SET
csc343h-mgbarsky=> select * from rent;
movie | rented
-------+--------
C | 0
A | 1
B | 1
D | 0
(4 rows)

csc343h-mgbarsky=> select * from rent;
movie | rented
-------+--------
C | 0
A | 1
B | 1
D | 0
(4 rows)

Isolation level – read committed

csc343h-mgbarsky=> select * from rent;
movie | rented
-------+--------
C | 0
A | 1
B | 1
D | 1
(4 rows)

How about read uncommitted?

• In PostgreSQL, you can request any of the four standard transaction isolation

levels.

• But internally, there are only three distinct isolation levels, which correspond

to the levels Read Committed, Repeatable Read, and Serializable.

• When you select the level Read Uncommitted you really get Read

Committed, and phantom reads are not possible in

the PostgreSQL implementation of Repeatable Read, so the actual isolation

level might be stricter than what you select.

• This is permitted by the SQL standard: the four isolation levels only define

which phenomena must not happen, they do not define which phenomena

must happen. The reason that PostgreSQL only provides three isolation

levels is that this is the only sensible way to map the standard isolation

levels to the multiversion concurrency control architecture.

Transaction: collection of actions that bring
DB from one consistent state to another

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in isolation

T leaves consistent state

We learned how to ensure that concurrent (interleaving) actions appear as if
each transaction runs in isolation

Inconsistent DB

We still may end up with an
inconsistent DB:

• Erroneous data entry

• Transaction bug (application programmer error)

• DBMS bug (DBMS programmer error)

• Other program bug

• System and media failures
• power loss

• memory failure

• processor stop

• disk crash

• catastrophic failure: earthquake, flood, end of world

Summary: ACID transactions

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another: serializable schedules

• Isolation: It appears to the user as if only one process
executes at a time: locking

• Atomicity: Whole transaction or none is done: logging

• Durability: Effects of a process survive a crash: logging,
recovery, RAID

